
 

 

  
Abstract—In this work, an asymmetrical microstrip SPICE model 
for crosstalk evolution used in telecommunication sectors is 
presented. In a first part, we evaluate the per unit length parameters 
in coupled microstrip lines by mathematical model based on the 
method of moments. In a second part, predicting near-crosstalk and 
far-crosstalk are realized by a SPICE model. The model allows the 
study of the crosstalk evolution in function of physical parameters, 
and the electrical signal dynamic. Some curves are proposed in 
function of strip width, spacing, and electrical stress, which can help 
the designer in the conception for limiting the adverse effects of 
crosstalk. 

 
Keywords—Crosstalk, NEXT, FEXT, method of moment, per unit 
length parameters. 

 

I. INTRODUCTION 
he industrial constraints evolution causes a break in the 
electronic cards design. Today, it is necessary that all of 
analog and digital functions are integrated on supports 

increasingly small and they have increased speed. However, 
these changes also lead to a degradation of signal quality and 
increased electromagnetic interference especially in PCB cards 
used in telecommunication sectors [1]-[3]. The 
electromagnetic interference such as crosstalk is a coupling 
between an aggressor line, and an adjacent line (victim). This 
could cause a failure or a degradation of the electrical system. 
The near-crosstalk (NEXT) is the voltage on the victim line 
next to the source, and the voltage at the other end is the far-
crosstalk (FEXT). In this paper, an asymmetrical microstrip 
spice model for crosstalk evolution used in telecommunication 
sectors is presented. First of all, we need the knowledge of per 
unit length parameters for asymmetrical transmission lines. 
The extraction of per unit length parameters is performed by a 
mathematical model based on the method of moment (MoM) 
in MATALB routines. In second part to modeling the crosstalk 
between asymmetrical transmission lines, we developed a 
SPICE model based on per unit length parameters. The 
electrical model allows the estimation of the NEXT and the 
FEXT, between asymmetrical coupled  transmission lines. The 
model allows the study of the crosstalk evolution in function of 
physical parameters, and the electrical signal dynamic. Some 
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curves are proposed in function of strip width, spacing, and 
electrical stress, which can help the designer in the conception. 

II.  EXTRACTION PRINCIPAL  
We used the method of moment for the extraction of per unit 
length parameters, in the case of asymmetrical coupled 
transmission lines [4]-[7]. In the method of moments we use 
the pulse basic function, and divide each strip width in N 
section. We consider the charge distribution constant in each 
strip division, for estimating the total charge distribution on 
coupled transmission lines. The different steps of the 
extraction are resumed as follows [8]-[9]: 
 First of all, we calculate the total charge distribution Q0 in 

the absence of the substrate. For a unitary voltage, the 
expression of the capacitance matrix C0 is given by (1) 
[10]-[12]. 

 From the propagation velocity expression we can find the 
inductance matrix expression by (2). 

 Finally, we calculate the total charge distribution Q in the 
presence of the substrate. For a unitary voltage, the 
expression of the capacity matrix C is given by (3). 

  

0 0 0Q C V=                     (1) 

1
0 0 0L Cµ ε −=                      (2) 

0Q CV=                     (3) 

III. EXTRACTION VALIDATION 
 
To validate the extraction model previously defined, a series of 
measurement were performed by the impedance analyzer 
4294A. Fig 1 and Fig 2 illustrate a PCB card (PCB1), with two 
asymmetrical coupled transmission lines of length l, and a 
ground plane on the other side. 
Table 1 summarizes the characteristics of PCB 1. In the case 
of asymmetrical coupled transmission lines, two scenarios 
facing us: scenario 1 and 2. In scenario 1, we consider the line 
1 as the aggressor line, and line 2 as a victim line. In scenario 
2 we consider the line 2 as the aggressor line, and line 1 as a 
victim line. 
Fig 3 illustrates the electrical model of asymmetrical coupled 
transmission lines with the assumption of weak coupling [13]. 
That means in scenario 1, line 1 have effect on line 2, and the 
effect of line 2 on line 1 is negligible. Reciprocally we have 
the same effect when line 2 is the aggressor [14]-[17]. With 
C11 is the capacity of the line 1, C12 is the mutual capacitance 
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from line 1 to line2. L11 is, the inductance of the line 1, L12 is 
the mutual inductance from line 1 to line 2. 
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Fig 1. PCB1’s photography 
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Fig 2. Asymmetrical microstrip 

Table .1. The PCB1’s characteristics 

Line 1 width W1 3 mm 
Line 2 width W2 1.5 mm 

S 4 mm 
H 1.5 mm 
l 25 cm 
εr 4.3 

 
 

C11 
 

L11 
 

L12 
 

C12 
 

C22 
 

L22 
 

Line 1 

Line 2 
 

Fig 3. Electrical model of asymmetrical microstrip 

 
A. Capacitance measurement 

For the capacitance measurement C11, the impedance analyzer 
probe is connected at the first connector of the line 1 via an 
adapter, and the other connector is open. Also for the 
capacitance measurement C22, the impedance analyzer probe is 
connected at the connector of line 2 via an adapter, and the 
other connector is open. 
 
 

B. Inductance measurement 
For the inductance measurement L11, the impedance analyzer 
probe is connected at the first connector of line 1 via an 
adapter, and the other connector is in short circuit. The 

expression of the inductance measurement Lmeas is given by 
(4). 

 11meas GNDL L L= +                        (4) 
 
LGND, is the ground plane inductance, which is measured by the 
impedance analyzer. Also for the inductance measurement L22, 
the impedance analyzer probe is connected at the first 
connector of line 2 via an adapter, and the other connector is in 
short circuit. 

C. Mutual inductance measurement 
To measure the mutual inductance L12, we proceeded at two 
measurements in PCB 1. At first we put the analyzer probe in 
port 1, connect port 2 to port 3 with a cable, and port 4 in short 
circuit. The expression of inductance measurement Lmeas1 is 
given by (5). Lcable is the cable inductance. In the second step 
we connect port 2 to port 4, with the same cable used in the 
first measure, and port 3 in short circuit. The expression of 
inductance measurement Lmeas2 is given by (6). Finally, the 
mutual inductance expression is given by (7). 

 1 11 22 122 meas GND cableL L L L L L= + − + +        (5) 

 2 11 22 122 meas GND cableL L L L L L= + + + +        (6) 

( )12  2 1 4meas measL L L l= −                (7) 

D. Mutual capacitance measurement 
The mutual capacitance C12 measurement requires using a 
special probe in point. We put the probe directly on the 
coupled asymmetrical microstrip, with all connectors open. 
The mutual capacitance expression is given by (8). 

11 22
12

11 22
meas

C CC C l
C C

 
= − + 

             (8) 

E. Results 
We have proceeded at measurements, for the total evaluation 
of parameters per unit length, of asymmetrical coupled 
microstrip. Table 2 and table 3 illustrate the results obtained 
from a mathematical model, and the measurement for both 
scenarios. The obtained results show a good agreement, with 
an error from 0.21% to 4.5%. 
 

Table .2. Parameters per unit length of two asymmetrical 
microstrip lines for scenario 1 

 MoM Measure 

L11 (nH/m) 75.87 76.26 

L12 (nH/m) 4.41 4.47 

L22 (nH/m) 107.7 110.56 

C11 (pF/m) 34.3 34.2 

C12 (pF/m) 0.46 0.44 

C22 (pF/m) 23.05 23.1 
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Table .3. Parameters per unit length of two asymmetrical 
microstrip lines for scenario 2 

 MoM Measure 

L11 (nH/m) 107.7 110.56 

L12 (nH/m) 7.9549 7.11 

L22 (nH/m) 75.87 76.26 

C11 (pF/m) 23.05 23.1 

C12 (pF/m) 0.58016 0.65 

C22 (pF/m) 34.3 34.2 

 

IV. ELECTRICAL MODEL OF ASYMMETRICAL COUPLED 
TRANSMISSION LINES  

The extracted parameters based on the method of moments are 
introduced into an SPICE model, illustrated in Fig 2. 
A Matlab routine was developed for the determination of 
parameters per unit length in function of physical parameters 
(strip width, spacing, and substrate).  
This model will be used to study the crosstalk by calculating 
the NEXT and the FEXT in function of physical parameters, 
and also the rise time of the input signal.  
This study will allow us to find the optimal distance of 
tolerance, for limiting the crosstalk effects. 
 

A. Electrical model validation 
To validate the electrical model, a series of measurement were 
performed for the NEXT (Fig 4), and the FEXT (Fig 5) in 
PCB1, and compared at the model results. We applied a pulse 
input signal at port 1 of PCB1. Port 2 is loaded with a matched 
load. The measurement of the NEXT and the FEXT are made 
from port 3 and port 4.  
Fig 6 and Fig 7 show a good reproduction of the phenomenon 
of electromagnetic coupling by the electric model. This model 
will allow studying the crosstalk by reducing the number of 
experimental measurements. 
 

B. Spacing influence on crosstalk  
As a function of the spacing between asymmetrical microstrip, 
we studied the influence of the strip width on the crosstalk. 
The calculation of per unit length parameters was performed 
for 12 spacing values, and for three cases of strip widths: 
 

 Case 1: W1=1mm, W2=1.5mm 
 Case 2: W1=1.5mm, W2=2mm 
 Case 3: W1=2.5mm, W2=3mm 

 
Fig. 8, and Fig. 9, show respectively the NEXT and the FEXT 
depending on the spacing between asymmetrical microstrip 
lines, for three fixed strip widths. We observe that the NEXT 
and the FEXT decreases exponentially with the increase of the 

spacing between the coupled transmission lines. Also 
increasing the width of the strip reduces the crosstalk 
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Fig 4. NEXT measurement 
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Fig 5. FEXT measurement 
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Fig 6. NEXT by model and measurement 
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Fig 7. FEXT by model and measurement 
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Fig 8. NEXT as a function of the spacing for different strips width 

0.5 1 1.5 2 2.5 3
-140

-120

-100

-80

-60

-40

-20

spacing [mm]

F
E

X
T

  
[m

V
]

 

 

W1=1mm,W2=1.5mm
W1=1.5mm,W2=2mm
W1=2.5mm,W2=3mm

 
Fig 9. FEXT as a function of the spacing for different strips width 

C. Influence of  lines length on crosstalk 
We studied the influence of the length of coupled transmission 
lines onto the crosstalk. The calculation per unit length 
parameters was applied for 12 spacing values, and for three 
configurations of lines length (l=5 cm, l= 20 cm, l=50 cm). 
For each model, we have taken the peaks of voltages for the 
NEXT and the FEXT. Fig. 10, and Fig. 11, illustrate the 
variation of the peaks of the NEXT and the FEXT in function 
of the spacing for different line length. We observe that the 
NEXT and the FEXT decreases exponentially with the increase 
of the spacing between the coupled transmission lines.  
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Fig 10. NEXT as a function of the spacing for different line length 
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Fig 11. FEXT as a function of the spacing for different line length 

D. The electrical signal dynamic influence 
Another important factor to take into account is the dynamic of 
the electrical signal. We studied the influence of the time 
variation of an input signal depending on the spacing between 
two microstrips. The calculation per unit length parameters 
was applied for 12 spacing values, and for three 
configurations: 
 

 Case 1: W1=1mm, W2=1.5mm, tr=5ns 
 Case 2: W1=1mm, W2=1.5mm, tr=10ns 
 Case 3: W1=1mm, W2=1.5mm, tr=15ns 
 

For each model, we have taken the peaks of voltages for the 
NEXT and the FEXT. Fig. 12, and Fig. 13, illustrate the 
variation of the peaks of the NEXT and the FEXT in function 
of the spacing for different rise time. We can see that the 
influence of the rise time is not linear. For example, for a 
spacing of 0.5mm the NEXT changes from 587 mV at tr=5ns to 
368 mV at tr=10ns. This amplitude is not negligible and can 
seriously disrupt the functioning of the victim line. The 
knowledge of this parameter is important at the moment of 
conception. 
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Fig 12. NEXT in function of the spacing for different rise time 
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Fig 13. FEXT in function of the spacing for different rise time 

V. CONCLUSION 

 
In this work an asymmetrical coupled microstrip transmission 
lines SPICE model for crosstalk evolution used in 
telecommunication sectors is presented. The study of the 
crosstalk requires knowledge of per unit length parameters and 
coupling coefficients between coupled transmission lines, the 
extraction of per unit length parameters is performed by the 
method of moments. To model the electromagnetic couplings 
between coupled transmission lines, we developed a model 
based on electrical parameters of the per unit length extracted 
by the method of moments. This model allowed us the 
estimation of the NEXT and the FEXT between asymmetrical 
transmission lines used in telecommunication systems and 
show the influence of physical parameters. The crosstalk 
collected can be very harmful, in our application; by 
increasing the spacing of 0.5mm we can divide by two the 
crosstalk. By adjusting the physical parameters, and the 
dynamic of the input signal we can reduce the influence of the 
crosstalk by more than 90%, and it becomes less problematic 
for components and systems close to telecommunication 
systems. This work will create curves that will help the 
designer in the choice of strip width and spacing as a function 
of electrical stress in the accepted specifications. 
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