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Abstract— According to our knowledge, VAG serves great 

interest for the detection of Osteoarthritis. However, there is no 

scientific research being carried out to study the effect of LPCC and 

MFCC on vibroarthrographic (VAG) signals. Hence, the objective of 

this project is to evaluate the effectiveness of LPCC and MFCC in 

extracting features from VAG signals of 30 subjects. We have carried 

out quantitative analysis on the VAG cepstral model from inter-

subject and intra-subject perspective. Our study exhibits high 

recognition rates of 90.36% for LPCC and 88.64% in the intra-

subject analysis of the VAG signal. In conclusion, the cepstral 

analysis of VAG signal has been showing great potential for future 

research given the high intra-subject analysis. Nevertheless, we 

strongly suggest a larger research population with the inclusion of 

OA patients. 

 

Keywords—Linear Predictive Cepstral Coefficient, Mel 

frequency Cepstral Coefficient, Signal Processing, 
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I. INTRODUCTION 

nee arthritis is caused by the degeneration of the knee 

joint cartilages [1]. With more than 100 types of arthritis 

being identified until recently, the three most common types of 

arthritis are Osteoarthritis (OA), Rheumatoid arthritis (RA) 

and Post traumatic arthritis. OA, identified as degenerative 

arthritis, is caused by the degeneration of articular cartilage 

due to family inheritance, injuries and aging [2]. The clinical 

symptoms of OA includes knee joint pain, swelling and bony 

spur.  

Meanwhile, RA is classified as inflammatory arthritis [3]. 

Although the major cause of RA is unknown, early symptoms 

such as infiltration of the synovial membrane and morning 

stiffness could serve as possible warning signs indicating 

development of RA.  

The post traumatic arthritis occurs when patient sustains 

serious injury to the knee joint section or undergoes invasive  
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surgical procedures. The deterioration to the articular cartilage 

and subchrondral bone after trauma encourage degeneration to 

the surrounding cartilage, resulting in the development of 

Osteoarthritis. 

In 2009, the population of the American arthritis 

population has been standing at 46.3 million, engulfing $128 

billion of direct and indirect medical cost.  A survey conducted 

by Centre for Disease Control and Prevention (CDC) 

estimated that in 2030 [4], there will be 63 million Americans 

affected by arthritis.  Although there is still no cure to knee 

arthritis, diagnosis techniques have been able to provide early 

warning to patients for early treatment and prevention. These 

detection methods are arthroscopy, Magnetic Resonance 

Imaging (MRI), Computed Tomography scanning (CT scan) 

and X-ray.  

Arthroscopy is an invasive surgical procedure to provide 

direct visualization of cartilage quality. The surgical 

procedures involve inserting the arthroscopic through a small 

incursion on the knee joint to monitor the knee joint cartilages. 

As the golden standard to monitor cartilage, this direct knee 

cartilage visualization approach ensures reliable diagnostic 

outcome [5]. Nevertheless, arthroscopy is more suitable for 

assessing mild cartilage degeneration [6] since applying this 

technique on highly degenerated knee poses high risk.   

MRI, CT scan and X-Ray represent the indirect cartilage 

visualization approaches.  These imaging based techniques are 

non-invasive and able to provide excellent depiction of the 

knee joint degeneration level. Furthermore, MRI is non-

radiation while CT scan could be completed in a short 

duration. However, imaging modalities do not indicate 

integration function of knee joint cartilage, providing only 

gross picture of the knee joint [7].  Furthermore, MRI and CT 

scan are expansive. Although various image processing 

techniques have been introduced [8, 9], X-ray fails to clearly 

delineate the cartilage tissue of knee joint [10, 11]. 

Vibroarthrography (VAG) represents the analysis of 

patelloferomal joint vibration signals produced by leg 

movement. This method was first proposed by Robert Hooke 

in 17
th

 century [12] and its potential as a possible arthritis 

diagnosis method has been explored since 1902 [13]. The 

possible detection technique is non-invasive and low cost 

while able to provide important information on the 

physiological condition of the cartilage. At the early stage of 

the scientific experiment on VAG signals, Steindler [14] 
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attempted the use of cardiophone, oscilloscope and recorder to 

record knee joint sound signals. He was reported to be the first 

to improve the VAG signals by using filter and recorded the 

knee angle. In 1978, Chu [12] concluded that the energy 

parameter of the VAG signal was directly proportional to the 

level of degeneration of the knee joint. 

Aside of fundamental researches on VAG signals, analyses 

have been conducted to improve the pre-processing and 

feature extraction method. Initial study has been using the 

fixed segmentation to segment the VAG signals and analysed 

the signals by Short Time Fourier Transform (STFT). 

However, this signal analysis method produced large number 

of signal segments [12].  

In 1996, Zahra [16] reported the use of Recursive Least 

Squares (RLS) modelling technique to segment the data 

samples into fewer model parameters. Dominant pole was then 

extracted from the processed signals by using forward 

backward linear prediction method and was classified by using 

Statistical Package for the Social Sciences (SPSS). Her 

analysis method has been further improved by Krishnan [13] 

who shifted to Recursive Least Squares lattice (RLSL) to 

segment VAG signals and introduced the Burg Lattice method 

in Auto Regressive modelling (AR) to extract dominant poles 

from VAG signals. Krishnan’s methodology retained the SPSS 

as classification tool. 

In 2000, Sridhar [7] proposed the decomposition of VAG 

signal by using Matching Pursuit (MP) algorithm in adaptive 

Time Frequency Distribution (TFD). After that, energy, energy 

spread, frequency and frequency spread are extracted from the 

TFD. A statistical pattern classification system based on 

stepwise logistic regression analysis was applied to classify the 

signals.  

Keo [17] segmented and normalised the VAG signals using 

Dynamic Time Warping (DTW), transformed the VAG signals 

by Wigner Ville Distribution (WVD), reduced the noise using 

Singular Value Decomposition (SVD) and extracted energy, 

energy spread, frequency and frequency spread from VAG 

signals. The study classified the signals using BNPP 

classification system. 

In 2008, Rangayyan [25] has conducted study on the 

possibility of using statistical parameters of VAG signals such 

as form factors for certain duration of the signals, skewness, 

kurtosis and, entropy to investigate the nature of the VAG 

signals. The study implemented the Fisher linear discriminant 

analysis (FLDA) to identify the pattern of the signals, where 

the best discriminant result was used to derive a receiver 

operating characteristics (ROC) curve for calculating the 

associated area under the curve using ROCKIT. The method 

was able to produce screening efficiency of up to 0.82 in terms 

of the area under the receiver operating characteristics curve. 

In latter attempt, Rangayyan [33] has introduced a novel 

statistical modelling method to analyse the VAG signals 

statistical characteristics by studying their probability density 

functions (PDFs). Parzen windows were applied to derive the 

PDF models and Kullback-Leibler distances between the 

signals’ PDF models were interpolated. In assessing the 

viability of this method, the study has included mean, standard 

deviation, coefficient of variation, skewness, kurtosis and 

entropy into the analysis. An overall accuracy of 77.53%, 

sensitivity of 71.05%, and specificity of 82.35% were achieved 

in the PDF analysis.  

After reviewing various efforts being tested to improve the 

VAG technique, a novel attempt to evaluate the  effectiveness 

of LPCC and MFCC on VAG signals analysis have been made 

the objective in this project. The effectiveness is gauged by 

evaluating the mean recognition rate and standard deviation of 

standard deviation of LPCC and MFCC.  

II. ESTABLISHMENT OF THE EXPERIMENT 

There are four major stages in this experiment i.e. data 

collection, pre-processing, feature extraction and 

classification, which is shown in Fig. 1. The VAG signals are 

collected using vibroarthrography intended recording 

stethoscope. A total of 30 normal subjects have been recruited 

for the recording process with their consent obtained. Other 

important pre-recording elements in VAG signal analysis are 

taken into consideration prior to the analysis and will be 

discussed in section A.  

After that, desired features will be extracted from the 

signals by using LPCC and MFCC. We have introduced the 

application of Hidden Markov Model (HMM) as the classifier 

to produce the recognition rates for analysis.  

 

VAG Signal 

Collection

Pre-processing

Feature Extraction

Classification

 
Fig. 1 The flow process of analyzing VAG signals using 

cepstral coefficient 

A. Data Collection 

A total of 900 VAG signals are collected from 30 subjects 

in this experiment. We use a built in microphone recording 

stethoscope because its’ recording head can fit nicely to the 

uneven surface of knee joint. The illustration of our recording 

stethoscope is shown in Fig. 2. Double side tape attaches the 
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recording stethoscope to the subject knee joint and reduces the 

sensitivity of noise.  

Medial condyle of patella is identified as the ideal 

auscultation location after considering the muscle contraction 

interference (MCI) factor. The subjects are required to sit 

straight before the swing. A full swing cycle in this experiment 

is comprised of a 90 degree full flexion and 90 degree full 

extension, in a 4 second recording period. The recording 

procedures are illustrated in Fig. 3 (a) and (b) Only one full 

swing cycle will be recorded in each recording period. The 

VAG signals are digitalized at a sampling rate of 8 KHz. The 

VAG signal sample is illustrated in Fig. 4 

 

 
Fig. 2 Recording stethoscope 

    
(a) 

 
(b) 

Fig. 3 knee position at (a) full flexion and (b) full extension  

 

 
Fig. 4 Sample of normal VAG signal 

B. Pre-processing 

In the pre-processing stage, non-stationary VAG signals 

will be divided into frames to make the signal “stationary”. 

The pre-emphasis filtering will flatten the frames to evaluate 

the high frequencies of the spectral reflectance signal since the 

high frequency bands is always weaker than that in lower 

frequency bands. (1) defines the pre-emphasis filter in 

mathematical terms and (2) reflects the relationship between 

the input )(nS  with its output )(' nSS . 

  11  zzH   (1) 

 

1
'

 nnn SSS   (2) 

 

During the pre-processing stage, leakage occurs during the 

flame blocking process of non-stationary signals, leading to 

faulty information about the spectral amplitude and frequency 

of the signal. In order to minimise spectral leakage, VAG 

frames will pass through the windowing process [20]. The 

mathematical expression of Hamming window is illustrated in 

(3).  

 

 12cos46.054.0)(  NnnW   (3) 

 
Hamming window can be applied in any type of signals 

without compromising the frequency resolution of the signals. 

The size of window in this experiment is 20 ms. Overlapping 

occurs during the windowing to avoid discontinuities on both 

side lobes of each window. The overlapping in this experiment 

is 33.33%. After that, the stationary frames will undergo DFT 

and change from time domain to frequency domain [21]. The 

mathematical expression for DFT is shown in (4): 

 

)()()( njInRnS   (4) 

III. CEPSTRAL ANALYSIS 

Homomorphic system is a nonlinear signal processing 

system that abides by the generalized principal of 

superposition [31]. The superposition-type multiplication, 

exponentiation as well as addition operations are one of the 

vital properties of the homomorphic system whereby the 

mathematical expression of the combined superposition 

operations shown in (5). In traditional speech processing, the 

cepstral analysis is derived from a simple linear acoustic 

model. According to the model, a speech signal is produced by 

convoluting an excitation waveform,  )(ne  with the vocal 

filter, )(nh as illustrated in (6). The convolution is then 

converted into frequency domain in (7) and expressed in 

logarithmic terms to linearly combine the excitation signal and 

vocal tract filter in linear expression in (8).  

 

           nxDnxDnxnxD 2221 )( 


  (5) 
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)()()( fHfEfS   (7) 

 

     )(log)(log)(log fHfEfS   (8) 

 

In order to analyze the characteristic of the vocal tract 

response, homomorphic system can decouple the excitation 

signal, )(ne from the vocal tract response )(nh in a process 

known as cepstral deconvolution. Through liftering operation, 

the excitation part is removed from the logarithm speech signal 

in (7). Hence, inverse Fourier transform can be applied onto 

the vocal tract filter to obtain the cepstrum, which is divided 

into real and complex cepstrum. The definitions of the real and 

complex cepstrum are illustrated in (8) and (9) respectively. 

Since the logarithmic function obeys the generalized 

superposition property, the cepstral analysis produces output 

that is a linear superposition of the input signals under a 

nonlinear transformation.  

 

    ][log1 nxFTFTnc   (9) 

 

    ][log][ 1 nxFTFTFTnx   (10) 

 

In previous studies, cepstral analysis has been showing 

better accuracy in analyzing VAG signals compared to other 

modeling parameters. The cepstral coefficient is capable of 

disclosing higher and more prominent discriminant 

information by weighting on lower band frequencies and 

exhibit superior separabilty in feature [38]. Moreover, cepstral 

coefficients are uncorrelated, thus, these coefficients are 

suitable for building machine learning models. The MFCC has 

its real cepstral coefficients derived from the Discrete Fourier 

Transform (DFT) of the signal. Nonetheless, the MFCC is 

carried out based on Mel-frequency scale instead of the 

nonlinear frequency scale. On the other hand, LPC coefficients 

can be converted to complex cepstrum by using iterative 

technique.  

A. Mel Ferquency Cepstrum Coefficinet (MFCC) 

MFCC is a popular feature extraction technique in the 

human speech analysis field due to its high sensitivity to the 

low order cepstral coefficients in overall spectral slop [23] and 

its ability to capture phonetically important characteristics of 

human voice [24,42]. To perform MFCC, we convert the DFT 

into Mel-frequency scale using a set of triangular bandpass 

filters shown in Fig. 5. These filters act linearly at the range 

between 0 to 1000 Hz but increases logarithmically for 

frequency above 1000 Hz [36].  The mapping of linear 

frequency to Mel frequency or Mel-frequency wrapping is 

shown in (11) and its critical bandwidth function could be 

calculated by applying (12).  

. 
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As a result, the Mel frequency scale is linearly represented 

in low range but logarithmically represented in high range. 

This representation gives more weight to the low frequency 

components. The Mel parameters are transformed back into 

time domain by using Discrete Cosine Transform (DCT) and 

the result of the transformation is recognized as MFCC or 

acoustic vectors [26].  We transform the Mel parameters back 

into time domain by using the mathematical equation 

expressed in (13). 
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j

ji
       (13) 

 

 
Fig. 5 Triangular bandpass filters with band limit between 0 

to 8000 Hz for filtering the spectral envelop 

B. Linear Predictive Cepstrum Coefficient (LPCC) 

LPC arose from the concept of analyzing speech signal by 

estimating the resonance (formant) in the signal [30, 37, 40], 

remove their effect from the signal (inverse filtering) and 

estimate the intensity and frequency of the remaining signal, 

recognized as residue. LPC synthesizes the VAG signals by 

using the signal residue to create a source signal, and use the 

formants to create a filter, and run the source through the filter. 

However, the LPC faces limitation in determining the 

formants from the given signals, which can be resolved by a 

difference equation shown in (14). An all pole mode is used to 

model the VAG signal )(nS  that expresses each sample of 

the VAG signal as a linear combination of its previous 

samples.  The coefficients of the difference equation, 

)( p
k

 characterize the VAG formants. In autocorrelation 

method, we could estimate these coefficients and their gain 

factor through minimizing the mean-square error (MSE) 

between the predicted VAG signal and the actual VAG signal. 

We have set the modeling order p at 12.   
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LPC can be computed through the transfer function of the 

all pole model filtering in z transform can be represented 

by )(zH [41]. The function’s mathematical expression of all 

pole models in  transform and their gains is shown in (15) 

and (16) [35]. 

 

)(/)()( zXzSzH     (15) 

 






p

K

kp
zGzH

K

1

]1/[)(     (16) 

 

The best all-pole model can be obtained when the linear 

predictor coefficients, k that provides the best all pole model 

to the power spectral density function of a particular random 

process )(nS  are also the coefficients that minimize the mean 

error between the current value of )(nS  and its linear estimate 

][ns , shown in (17). After that, we can find the linear 

predictor coefficient 
K

 that minimizes the MSE  2  through 

(18). By considering (15) and (16), we can obtain a resultant 

MSE which is illustrated in (19). 
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In order to express the optimal LPC coefficients implicitly, 

we differentiate the MSE with respect to linear predictor 

coefficient and set the result to zero. (20) and (21) illustrate 

the differentiation of the MSE and the result of the 

differentiation. 
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To solve the LPC equation illustrated in (21), we have 

implemented Levinson-Durbin recursion attributable to its 

relative simplicity and fast computational ability. The 

equations of the Levinson-Durbin recursion that have been 

used to compute the corresponding reflection coefficient, ik   

and LPC parameter are illustrated from (22) to (26) to 

subsequently acquire the linear predictor coefficients. The 

reflection coefficients comprise of an alternate specification of 

the random process )(nS  that is unique and complete as the 

LPC predictor coefficient. 
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By reiterating the (22) through (26) for i = 1, 2… p, the 

reflection coefficient can be obtained. (27) illustrates the final 

computational of LPC through Levinson-Durbin recursion 

method where the recursion ranged between 1 and p. 
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LPCC is the LPC representation in cepstral domain [28] 

and resembles the equivalents of to the smoothed envelop of 

the log spectrum of the speech in MFCC. LPCC decomposes 

the smoothed spectrum envelop to extract desired features 

while MFCC extracts desired features directly from the FFT 

power spectrum. LPCC could be derived from LPC through 

recursive conversion method shown in (28).  
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IV. CLASSIFICATION MODEL 

With the desired cepstral features extracted through the 

LPCC and MFCC, we would analyze the performance of these 

cepstral features through intra-subject and inter-subject 

approaches. The intra-subject approach is carried out by 

analyzing every subject’s knee joints signals separately to test 

the applicable of the cepstral features on VAG signals. The 

inter-subject analysis is intended to test the capability of 

cepstral coefficients in representing VAG signals in large scale 
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study.  

A. Vector Quantization 

In vector quantization, signal data is encoded statistically 

into a set of k-dimensional of data vector or codeword, Ci, 

where i = 1, 2, 3, … These set of data vectors are represented 

by a finite set of M symbols. A codebook is a set of complete 

set of M codewords, which is constructed through a training 

process by training large amount of vector data [27].   

During the encoding process, each encoded k-dimension 

vector iX  is compared to each of the M codewords in the 

codebook. The distortion  ii CXD ,  where i = 1, 2, … , M 

between the input vector and the codeword is computed to find 

out the minimum distortion. The receiver, which is assumed to 

have a copy of the codebook, uses this index to look up the 

corresponding codeword, iC .  Codeword, jC  is then used as 

the encoded value of the vector X  [31].   

The average quantization distortion is an important element 

which is used to match score during the identification process 

[32]. The average quantization distortion with N frames is 

defined in (29). 
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The codebook used in this experiment is 64 bit per vector 

dimension. Typically, size of the codebook, M is equal to 
L2 and the rate of the vector quantization is 

K
L  bits per 

vector dimension. The 64 bit per vector dimension is 

appropriate because the primary computational burden during 

the encoding process is that of computing the distortion 

between the input vector and each of the M codewords [33]. 

B. Hidden Markov Model (HMM) 

The non-stationary nature of VAG signals give rise to 

frequency components within a wide range at a given period of 

time, making the temporal structure of the VAG signals 

unpredictable. Hence, we have opted for HMM, with the 

assistance of MFCC and LPCC, to serve as an effective tool in 

capturing the non-linear variability in auscultatory signals [39]. 

The training and testing of VAG signals using HMM is shown 

in Fig. 6 

A HMM is a Markov chain where the output observation is 

a random variable generated according to an output 

probabilistic function associated with each state [22, 29, 34]. 

The fundamental of HMM constitutes of five imperative 

elements:  

 

i. The number of hidden states in the model, S 

ii. The number of distinct observation symbols, K 

iii. The state transition probability matrix,  A =   jia
  

where  jia is the probability of taking a transition 

from state i to state j 

iv. The set of state output probability distribution,  B = 

  ti ob  where the   ti ob is the probability of 

emitting tO when the state i is entered 

v. The initial state distribution, 
 

 i    

 

Two important assumptions, i.e. first order process 

assumption and independent observation assumption have 

been applied in the HMM to reduce the number of parameter 

that need to be estimated as the model complexity without 

significantly affecting the VAG signal analysis performance. 

The first order Markov assumption states that the state 

transition at time t depends only on the previous state at time t-

1. (30) expresses the time invariant state transition probability. 
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The output independence assumption states that the present 

observation depends only on the current state and neither chain 

evolution nor past observations influence if the last chain 

transition is specified. The mathematical expression of the 

second assumption is stated in (31). 
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V. RESULT 

Although no previous study has been carried on the 

application of LPCC and MFCC on VAG signals, these two 

feature extraction methods have proved to be successful in 

extracting desired features from many types of sound signals 

aside from speech recognition application. 

For instance, research on the application of LPCC on 

milling sound signals has been carried out by Ai [18]. The 

milling sound has been playing an important role in monitoring 

the tool wear as high level manufacturing process which 

emphasizes on precision, efficiency and cost is emphasized. 

LPCC was applied and the results showed that LPCC was able 

to extract related features from milling sound signals and 

concluded the LPPC was appropriate to be utilized to extract 

parameters from milling sound signals for monitoring purpose. 

A feature extraction monitoring analysis has been 

conducted by M. Hariharan [19] on LPCC for infant cry signal 

parameters. His experiment enhanced the LPPC method by 

giving out suitable weighting to the cepstrum coefficients 

which aimed at reducing the noise sensitivity of the baby 
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Fig. 6: Training and testing of VAG signal using HMM for the cepstral analysis model 

 

Table 1: Recognition Rates of generated by using LPCC and MFCC. The recognition rate is classified by two elements i.e. intra-

subject and inter-subject. Intra-subject measures the accuracy of the experiment by training the VAG signals by subject while 

inter-subject measures the accuracy of the experiment by training the VAG signals by number of training signal.

 Scale of Analysis 

Intra-subject Inter-subject 

LPCC Recognition Rate, % 90.17 60.33 

MFCC Recognition Rate, % 88.83 56.83 

 

Table 2: Quantitative analysis on the reproducibility of cepstral analysis on VAG signals using mean, variance and standard 

deviation. In order to ensure the specificity of the study, we have conducted the analysis from the intra-subject and inter-subject 

perspective.

 Intra-subject Inter-subject 

LPCC MFCC LPCC MFCC 

Mean, % 90.36 88.64 61.11 57.33 

Variance, % 0.23 0.99 3.92 0.49 

Standard 

Deviation, % 
0.48 0.99 1.98 0.70 

 

crying signals. The LPCC yielded a classification accuracy of 

more than 98%.  

A study by Gao [15] has been extracting spectral and 

temporal parameters such as pitch and spectral envelop from 

the music signal segments by using LPCC and MFCC. The 

result of the study was promising as an accuracy of 87.92% 

was achieved for the broad class LPCC and an accuracy of 

88.37% was achieved broad class MFCC of the experiment. 

In this study, we have quantified the effect of cepstral 

analysis application by evaluating the accuracy of the study. 

Table 1 shows the recognition rates generated by using LPCC 

and MFCC in the VAG signals. The intra-subject analysis 

exhibited high recognition rates for both LPCC and MFCC, 

producing accuracy of 90.17% and 88.83% respectively.  

However, feature extraction using LPCC and MFCC in the 

inter-subject analysis rendered unimpressive recognition rates, 

at 60.33% and 56.83% respectively. This observation reflects 

the inverse relationship between accuracy of the representation  

 

of VAG signal using cepstral coefficient with database size. 

The VAG signals may contain highly discriminant information 

that require additive features to harness an effective VAG 

signal extraction or a weighted cepstral analysis specially 

designed for VAG signals.     

Second important indicator contributed by this paper shows 

that the LPCC outperforms MFCC in both dependent and 

independent class of database. The mean recognition rates of 

LPCC for both inter-subject and intra-subject analyses are 

obviously higher than those of MFCC. The better overall 

performances shown by the LPCC may suggest the LPCC is 

more capable of extracting salient information from the VAG 

signals, thus, enable the construction of a more comprehensive 

training database.  

Thirdly, the increasing standard deviation as the scale of 

analysis increases and the large variation indicate the LPCC 

analysis of VAG signals are inconsistent and need further 

optimization for better VAG signal parametric representation. 
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Although the MFCC is not showing good recognition rates, the 

consistency of MFCC features are obviously better than LPCC 

as the scale of analysis increase. 

VI. CONCLUSION 

We have proposed the use of cepstrum coefficients to 

extract spectral features from the VAG signals in order to 

represent the VAG signal for digital signal processing. We 

concluded that LPCC and MFCC render accurate recognition 

rates in the case of intra-subject analysis, where the mean 

recognition rates are 90.36% for LPCC and 88.64% for 

MFCC. The standard deviations of no more than 1.0% in both 

methods indicate LPCC and MFCC are able to produce 

consistent results.  

On the other hand, inter-subject analysis requires further 

improvement and revision before it could produce satisfactory 

results. The claim is justified by the inaccurate performance 

displayed by inter-scale analysis. The mean recognition rate of 

both approaches achieved only 61.11% for LPCC and 57.33% 

for MFCC.  

Despite high accuracies observed by LPCC and MFCC in 

other applications, the relative inaccuracy of inter-subject 

analysis demonstrated in this experiment indicates more 

optimizations are needed and provide further room for future 

researches on this technology. 
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