
 

 

  
Abstract— The using of the Hammerstein and Wiener models in 

the linear adaptive control of the nonlinear processes is described in 
this paper. The main aim of this research study is an increasing of the 
adaptive control quality by using of the factorable methods which are 
based on the fact that many nonlinear systems can be factorized into 
the linear and the nonlinear parts. 

The factorization of the nonlinear system into the nonlinear static 
part and the linear dynamic part is assumed in this paper. 

The transfer function of the linear dynamic part of the nonlinear 
system is assumed in the time-discrete second-order Z-model form. 
Its parameters are estimated by the using of the time-discrete least-
squares method with the directive forgetting. 

The estimated parameters of the linear dynamic part are used for 
the design of the linear time-discrete control system, which is 
represented by the two-degree of freedom control system 
configuration (2DOF). The resulting controller is derived by the 
using of the polynomial approach and the characteristic polynomial 
of the closed control loop is chosen by the using of the optimal LQ 
approach and Pole Placemen Method (PPM).   

The described method is tested on the nonlinear system which is 
represented by the servo-speed mechanism AMIRA DR300. 
 

Keywords — adaptive control, optimal LQ control, pole 
placement method, nonlinear systems, cascade models, Hammerstein 
and Wiener models, 2DOF configuration, servo-speed mechanism 
AMIRA DR300.  

I. INTRODUCTION 
HE nonlinear system control theory is an area of the 
control theory which is examines less than the classical 

linear system control. Many books and papers about linear 
system control theory exist there, for example [3], [6] and 
many others, but only a few about nonlinear control [1], [2], 
[15]. There are many reasons for it, but the most important 
reasons are these: firstly, for description of nonlinear systems 
and design of nonlinear control systems we cannot use 
methods like Laplace transformation or Z-transformation, 
secondly, only a few general methods which can be applicable 
for all (or at least for the majority) types of nonlinear systems 
exist there and finally, the design of nonlinear control systems 
have to be done originally for every nonlinear system and its 
mathematical complexity is many times higher than a design 
of the linear control systems. 
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However, in practice, the majority of real systems have, 
more or less, a nonlinear behavior or nonlinear properties.  
The most frequently used method how we can solve this 
problem is a substitution of the nonlinear system by one or 
more linear models in the neighborhood of the operating 
points. But this method, when we use the linear control 
systems designed for the linear approximations of the 
nonlinear system, has a lot of limitations. The most important 
problem is: the quality of real control process, when the linear 
controller designed for the linear approximation is used for the 
control of the nonlinear system, is generally significantly 
worse than for the linear approximation simulations because 
there are many unpredictable influences which can be 
significant for the nonlinear system behavior but insignificant 
for the behavior of the linear approximation. For many types 
of the nonlinear systems we cannot use this method because 
the quality of control process is very bad or the control process 
is unstable. 

One possible solution of this problem is the using of the 
adaptive process control [3], [4], [5], [15], [16], [17]. The 
quality of control process is being increased in many cases but 
on the other hand, there are many problems too. For example, 
the important condition of high quality of the adaptive control 
is following: the quality of adaptive control is high in the cases 
when the rate of change of the adaptive-models parameters is 
higher than the rate of change of the real-systems parameters. 
In practice, this condition could not be real. The following 
problem is the fact that the adaptive control works no suitably 
for the systems with some types of nonlinearities like a dead 
zone or the saturation. 

Another possible solution is the using of cascade models 
when we consider that the system can be factorable - these 
systems consist of the linear and nonlinear parts [1], [6], [9], 
[10]. Then, the nonlinear part of the nonlinear system can be 
linearized and its influence on the system behavior can be 
minimized. Models are consisting of the nonlinear static and 
the linear dynamic parts are the most frequently used ones in 
practice. On the basis of their mutual position, the 
Hammerstein or the Wiener model can be distinguished.  

The using of the cascade models is quite simple and 
effective method how the quality of control can be increased 
significantly in many cases. But on the other hand, this 
method has some limitations too. For example, many 
nonlinear system cannot be factorable clearly – the static 
nonlinearity is dominant but there is also a dynamic 
nonlinearity, or linear model´s parameters are variable – a 
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time variable or by change of the operating modes. 
Method which combines both approaches mentioned above 
will be presented in this paper. The main aim of this research 
study is to find the method which increases the quality of 
linear adaptive control of the nonlinear systems by using of 
the relatively simple approaches. 

II. HAMMERSTEIN AND WIENER MODEL 
The nonlinear process will be factorable into the nonlinear 

static block and the linear dynamic block. On the basis of their 
mutual position, the Hammerstein or the Wiener model can be 
distinguished. 

A.  Basic description of the Hammerstein model 
In Figure 1, we can see the basic schematic structure of the 

Hammerstein model.  
 

 
 

The basic Hammerstein model  is a cascade structure of 
the nonlinear static block and the linear dynamic block which 
can be described by following formulas: 
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 ( ) ( )nkYakYamkXb
kXbkXbkY

nHm

HH

−−−−−−+
++−+=

...1)(
...)1()()(

1

10  (2) 

The H-models (HM) can describe many different processes, 
especially if their main nonlinear behavior is caused by 
actuators (dead zone, saturation, etc.).  

B. Basic description of the Wiener model 
In Figure 2, we can see the basic schematic structure of the 

Wiener model.  
 

 
The basic Wiener model N_W is the cascade structure of 

the linear dynamic block and the nonlinear static block which 
can be described by the following formulas: 
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The W-models (WM) are appropriate for systems whose 
outputs are measured by sensors with nonlinear characteristic 
or for the controller design. 

Hammerstein and Wiener model formulas are derived from 
the time-discrete models but very similarly can be derived also 
for the time-continuous models. 

III. BASIC CLOSED CONTROL LOOP WITH USING HAMMERSTEIN 
AND WIENER MODELS 

In Fig. 3, we can see a schematic plan of the basic closed 
control loop with HM and WM which is used for linearizing 
of the non-linear processes. 

 
 
where: 
YW – the linear dynamic part of the control system (the 

general linear controller designed by any linear method for the 
linear part of controlled system) 

fW – the nonlinear static part of the control system 
fH – the nonlinear static part of the controlled system 
YH – the linear dynamic part of the controlled system 
 
If we choose 1−= HW ff , then we can write (from Fig. 3): 
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From the formula (5) we can deduce the following 
conclusion:  

If we can describe the system nonlinearity and it can be 
inversible (minimally in parts) then we have to study only the 
properties of the linear dynamics of the controlled system for 
the design of controllers. The formula (5) is derived for the 
time-discrete models but basic principles are similar for all 
types of linear models (Z-model, S-model and δ-model). 

IV. HAMMERSTEIN MODEL OF THE LINEAR SYSTEM 
In this part, the basic principles of the described method 

will be explained for linear example.  
The linear transfer function will be assumed in the form: 
 

 
Fig. 3 Closed control loop with the controlled system of the 

Hammerstein type and the controller of the Wiener type. 

 
Fig. 2 Wiener model of the nonlinear system [6] 

 
Fig. 1 Hammerstein model of the nonlinear system [6] 
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This system can be factorable to: 
 
Static gain: 

 )(lim sGK
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Dynamic part: 
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This factorization is applicable only for the stable systems. 
 
The Hammerstein model of the linear system can be 

assumed in the form: 
- for time-continuous models: 
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- for time-discrete models: 
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Very similar process will be assumed for nonlinear systems: 
The static characteristic of the nonlinear system: 
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Dynamic models of the nonlinear system will be assumed in 
the form: 
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For simplification, we assume the following fact:  
- for the time-continuous system:  )()(lim tYtY S

t =∗
∞→  

- for the time-discrete system:  )()(lim 1 zYzY S
z =∗
→  

- for the system without dynamic:  ))(()( ⋅=⋅∗ UfY stat   

for all  )(⋅U  

V. SERVO-SPEED MECHANISM AMIRA DR300 
The servo-speed mechanism AMIRA DR300 is a laboratory 

model which consists of two identical electro motors which 

are interconnected inseparably, the speed-voltage generator 
used for the speed of rotation measurement and the IRC sensor 
is used for measurement of the spindle angular displacement. 

 
 
The first electromotor is used as a variable load torque 

generator and the second electromotor is controlled by the 
controller signal. 

The nonlinear system AMIRA DR300 can be approximately 
described by these formulas: 
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where: 
i [A] – electromotor current, ω  [ 1−s ] - motor speed,  ϕ  [rad] 
– motor spindle angular displacement, u [V] – input motor 
voltage, zm  [Nm] – external load torque, R [ Ω ] – motor 

electrical resistance, L [H] – motor inductivity, J [ 12 −skgm ] – 

motor moment of inertia, b – motor friction torque, ek [ 1−sV ] 

– motor electrical constant, mk [ 12 −skgm ] – motor 
mechanical constant 

VI. CONTROLLER DESIGN 
The linear time-discrete control system, which is 

represented by the two-degree of freedom control system 
configuration (2DOF), is depicted in Fig. 5. 

 
where: 

)(kw  - reference signal, )(ku  - control action, )(ky  - 
output signal 

 
Fig. 5 2DOF control system configuration [5] 

 
Fig. 4 Nonlinear system – the servo-speed mechanism AMIRA DR300 
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From Fig. 5, we can write the following formula for the 

control action: 
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If we choose 
( )
( ) )()( 1

1

ky
zB
zAku −

−

=  than we can transform 

formula (14) into the transfer function of the closed control 
loop: 
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The controller parameters are computed from the following 
polynomial formulas: 
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The transfer function of the control process is assumed in 
the form: 
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The transfer function of direct part of the controller is 
assumed in the form 
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and the transfer function of the feedback part of the controller 
is assumed in the form: 
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The degrees of the polynomials ( )1−zR , ( )1−zQ  and 

( )1−zP  were chosen on the basis of the polynomial algebra 
principles [3], [5], [11]. 

The characteristic polynomial of the closed control loop 
will be chosen in the basic form: 
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Now, from the formulas (16), (20) and (21) we obtained the 
matrix formula: 



















+
−+

−+

=





































−
−
−

4

23

212

11

1

2

1

0

22

1212

112

1 1

00
0

10
100

d
ad

aad
ad

p
q
q
q

ab
aabb

abb
b

 (22) 

By its solution, we obtained the parameters of the feedback 
part of the controller. 

The parameters of the direct part of the controller will be 
obtained by solution of the formulas (17) and (19) for 1−=z : 
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From this, we can write: 
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VII. POLE PLACEMENT METHOD 
For Pole Placement Method, the characteristic polynomial     

( )1−zD  was chosen as: 
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where: 
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where:   nω - circular frequency,   ξ - damping ratio 

VIII. OPTIMAL LQ CONTROL 
Optimal LQ control methods are based on the minimizing 

the quadratic criterion with control action penalization: 
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The quadratic criterion has minimal value for the formula: 

)()()()()()( 111111 −−−−−− =+ zDzQzBzPzKzA  (30) 
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where the polynomial )( 1−zD  is obtained by solution of the 
spectral factorization of the formula:  

)()()()()()( 111 zDzDzBzBzAqzA u δ−−− =+  (31) 

Detailed deduction of this condition can be found for 
example in [11]. 

The parameters of the polynomial D )( 1−z can be obtained 
by solution of the following formulas [5]. 

We compute auxiliary parameters: 
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which are used for the computing of the parameters of the 

polynomial D )( 1−z : 
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The exact derivation of this algorithm was described 
in [5], [11]. 

IX. LINEAR DYNAMIC PART OF THE NONLINEAR SYSTEM 
AMIRA DR300 

The linear dynamic part of the nonlinear system will be 
assumed in the second order time-discrete linear form 
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which can be rewrited into the transfer function form: 
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The parameters of the linear transfer function (35) will be 
estimated by the time-discrete least-squares method from 
regression vector: 
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Vector of the time-discrete models parameters 

 [ ]2121)( bbaakT =Θδ  (37) 

will be estimated recursive from the formula: 

 )()1()()( kkkky T εδδ +−ΦΘ=  (38) 

The exact description of the time-discrete least-squares 
method can be found, for example, in [2], [3], [6], [16]. 

X. NONLINEAR STATIC PART OF THE NONLINEAR SYSTEM 
AMIRA DR300 

From measured data, the static characteristic of the 
nonlinear servo-speed mechanism AMIRA DR300 had been 
determinate. 

 
For the purpose of this research, the static characteristic will 

be considered as the dominant static nonlinearity of the 
controlled system. 

The static characteristic will be approximated by function 

)( S
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Table 1: Approximated static characteristic of the system 

AMIRA DR300 

Static control action Static output signal 
(approximated) 
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Fig. 6 Static characteristic of the nonlinear system AMIRA DR300 
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sU , 
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sU  

 
For the best linearization of the static nonlinearity

))(()( kUfkY S
stat

S = , we have to consider the following 
manners: 

 The saturation of the control action cannot be 
compensated, but we should include it into the computation of 
the control action. 

 The dead zone of the control action can be compensated 
in the following way: 

S
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S
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For the control action computation, the values of )(kXW  

has to be used, we cannot use the linearized values of )(ku . 

XI. REAL MEASUREMENT OF CONTROL PROCESS – POLE 
PLACEMENT METHOD 

The quality of control process is assessed in the following 
criterion: 

 UY JJJ +=  (41) 

where: 

 









−−+⋅

−
=

−⋅
−

=

∑

∑

=

=
n

i
U

n

i
Y

iuiuu
n

J

iyiw
n

J

2

22

1

2

))1()(()1(
1

1

))()((
1

1

 (42) 

A. Simple Control Process – Detailed View 
Control system parameters: 
Sampling period 1:  sT 125.00 =  
Sampling period 2:  sT 15.00 =  
Poles of the characteristic polynomial were chosen under 

rules discussed in section VII. 
circular frequency: 0/1.0 Tn =ω  

damping ratio: 1=ξ  

Identification process parameters: 
Exponential forgetting parameter: 85.0=ϕ  
Other parameters were chosen under rules mentioned in [5]. 
 

B. Control process without control action limitation 
 

 

 
 
Control Quality: 0926.0=YJ , 121064.4 ⋅=UJ  

 
 

 
Fig. 9 Control process without control action limitation for 
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Fig. 8 Estimation of system parameters for sT 125.00 =   

-2
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Fig. 7 Control process without control action limitation for 
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Control Quality: 1828.0=YJ , 81014.7 ⋅=UJ  

C. Control process with control action limitation 

 

 
 
Control Quality: 0123.0=J , 0015.0=YJ , 

0108.0=UJ  

 

 
 
Control Quality: 0092.0=J , 0020.0=YJ , 

0072.0=UJ  
 
As we can see in figure 7 and 9, the using of the control 

action limitation is necessary, because without it, the control 
processes are unstable and useless. 

To compare the control quality criterions, we can derive the 
following facts: the changing of the sampling period has only 
limited influence for the quality of control process. The 
evidence of this we can see in figures 11 and 13.  

Generally we can say that the extension of the sampling 
period decreases the quality of control slightly but nonlinear 
behavior of the controlled system is the main reason for the 
low quality of control when the linear adaptive control is used. 

 
Fig. 14 Estimation of system parameters for sT 15.00 =   
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Fig. 13 Control process with control action limitation for 
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Fig. 12 Estimation of system parameters for sT 125.00 =   

-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 25 50 75 100 125 150

a1
, a

2, 
b1

, b
2

time [s]

Estimation of the system parameters

a1 a2 b1 b2

 
Fig. 11 Control process with control action limitation for 
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Fig. 10 Estimation of system parameters for sT 15.00 =   
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D. Control process with using of the Hammerstein and 
Wiener models 
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As we can see in figures 15 and 17, the using of the 

Hammerstein and Wiener models of the control and controlled 
systems has radical influence for the quality of control process 
which is less oscillating and more stable. The quality of 
control process increases rapidly. 

XII. REAL MEASUREMENT OF CONTROL PROCESS – LQ 
APPROACH 

The quality of control process is assessed in the criterion 
mentioned in section XI: 

A. Simple Control Process – Detailed View 
Control system parameters: 
Sampling period 1:  sT 125.00 =  
Sampling period 2:  sT 15.00 =  
Poles of the characteristic polynomial were chosen under 

rules discussed in section 8. 
 
Identification process parameters: 
Exponential forgetting parameter: 85.0=ϕ  
Other parameters were chosen under rules mentioned in [5] 
 

B. Control process without control action limitation 
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Fig. 18 Estimation of system parameters for sT 15.00 =   
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Fig. 17 Control process with using of the Hammerstein and 
Wiener models for sT 15.00 =  
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Fig. 16 Estimation of system parameters for sT 125.00 =   
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Fig. 15 Control process with using of the Hammerstein and 
Wiener models for  sT 125.00 =  
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C. Control process with control action limitation 
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Fig. 25 Control process with control action limitation for 
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Fig. 24 Estimation of system parameters for sT 125.00 =   
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Fig. 23 Control process with control action limitation for 

sT 125.00 =  
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Fig. 22 Estimation of system parameters for sT 15.00 =   
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Fig. 21 Control process without control action limitation for 

sT 15.00 =  
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Fig. 12 Estimation of system parameters for sT 125.00 =   
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To compare the control quality criterions from sections 

XI.b, XI.c and XII.b, XII.c we can derive the following facts: 
the changing of the sampling period or the poles of the 
characteristic polynomial has only limited influence for the 
quality of control process. The evidence of this we can see in 
figures 7, 9, 19 and 21. 

Using of the LQ approach boosts the quality of control. On 
the other hand, using of the linearization method is necessary 
for attainment of the high quality of control. 

The using of the control action limitation is still necessary, 
because without it, the control processes are unstable and 
useless. 

 

D. Control process with using of the Hammerstein and 
Wiener models 
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As we can see in figures 15, 17, 27 and 29, the using of the 

LQ approach increase the quality of control but using of the 
Hammerstein and Wiener models is more significant for 
attainment of the high-quality control process. 

 
Fig. 30 Estimation of system parameters for sT 15.00 =   
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Fig. 29 Control process with using of the Hammerstein and 
Wiener models for sT 15.00 =  
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Fig. 28 Estimation of system parameters for sT 125.00 =   
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Fig. 27 Control process with using of the Hammerstein and 
Wiener models for sT 125.00 =  
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Fig. 26 Estimation of system parameters for sT 15.00 =   
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XIII. MULTI-LEVEL CONTROL PROCESS 
Control system parameters: 
Sampling period:  sT 125.00 =  
Poles of the characteristic polynomial were chosen under 

section VII and VIII. 
 
Identification process parameters: 
Exponential forgetting parameter: 85.0=ϕ  
Other parameters were chosen under [5] 

A. Multi-level control process with control action limitation 
(Pole Placement Method) 
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B. Multi-level control process with using of the Hammers-
tein and Wiener models (Pole Placement Method) 
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C. Multi-level control process with control action limitation 
(LQ approach) 
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Fig. 34 Estimation of system parameters for sT 125.00 =   
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Fig. 33 Multi-level control process with using of the 
Hammerstein and Wiener models for sT 125.00 =  
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Fig. 32 Estimation of system parameters for sT 125.00 =   
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Fig. 31 Multi-level control process with control action 
limitation for sT 125.00 =  
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D. Multi-level control process with using of the 
Hammerstein and Wiener models (LQ approach) 

 

 
 
Control Quality: 00163.0=J , 001.0=YJ , 

00063.0=UJ  

XIV. DISCUSSION 
The control processes when the linear adaptive control 

without Hammerstein and Wiener models is used we can see 
in figures 11, 13, 23, 25, 31 and 35. The control action had to 

be limited, because without it, the control processes were 
unstable and useless – as we can see in figure 7, 9, 19 and 21. 
The using of the control action limitation increase the quality 
of control processes but they are still not optional.  

The control processes when the Hammerstein and Wiener 
models are used are displayed in figures 15, 17, 29, 27, 33 and 
37. We can derive the following facts from this measured data. 
The using of the linear adaptive control with the Hammerstein 
and Wiener models increases the quality of control process 
rapidly. Also, the control processes are less oscillating and 
more stable. 

 On the other hand, some limitations exist there too. Firstly, 
the using of the Hammerstein and Wiener models is not 
suitable for all types of the nonlinear systems – the static 
nonlinearity has to be more dominant than other ones and 
nonlinear system has to be factorable to static and dynamic 
parts. Secondly, for the design of the controller with Wiener 
models, the knowledge of the static characteristic of the 
nonlinear system is necessary and this measurement cannot be 
fully automated. The design of the control system is unique for 
every nonlinear system. 

This method can be interesting in practice applications 
because it is quite easy to use and it can be combined with 
almost all types of the linear controllers – time-continuous or 
time-discrete [14], [17]. 

Limitations of this method can be minimizing and quality of 
control can be increased by a future research. Many possible 
ways exist there. For example, we can apply the predictive 
control approaches [19], [20], [22] the optimization and 
evolutionary techniques [23], neural network methods [24] 
and many others [26]. 

The next important way for a future research of this method 
is its extension for using for the Multi-Inputs and Multi-
Outputs (MIMO) nonlinear systems. 
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