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Abstract—The paper deals with a simple modification of predic-

tive control for specifically-optimal robot motion. The task of 
optimal robot motion is solved in many different industrial 
applications including accurate manipulation and positioning. The 
modification consists in different definition of requirements for a 
robot motion. Usually, the robot motion is determined by known 
trajectory. 
The range-space modification investigated herein takes into account 
only range (limits) of required robot movement and its end point. 
Such approach can just solve manipulation issues, where the accurate 
achievement of some trajectory is not important, but the robot has 
to move through known corridor described by appropriate output 
range (limits) and has to reach some defined end point. The modi-
fication generates optimal control actions, which meet mentioned 
requirements. The explanation is documented by several examples 
of described control process applied to one advanced robot structure 
based on parallel kinematical concept. 
 

Keywords—Accurate Manipulation, Industrial Robotics, Predic-
tive Control, Range-Space Control. 

I. INTRODUCTION 
NDUSTRIAL applications especially robotic applications 
 include a lot of operations, in which amount of different 

displacements of materials, semi or final products, tools or ac-
tive elements as sensors and cameras have to be provided. 
These operations have a manipulation character, which does 
not require the accurate achievement of some predetermined 
trajectory. Thus, in most of cases, the trajectory is not im-
portant, but on the other hand a fulfillment of some permitted 
output range is required. The range or set of ranges are given 
by definite limits following from space configuration of indi-
vidual robot, manipulated object and other possible obstacles 
occurred in the robot workspace. 

Solution of manipulation issues is important particularly 
at parallel robots [1], where the workspace is more limited 
and achievement of optimal robot movement is more 
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challenging than in case of conventional open-loop robots [2]. 
This paper specifically concerns with one solution of des-

cribed task based on predictive control [3], which takes into 
account robot dynamics. Proposed solution represents simple 
way managing both trajectory planning with time paramete-
rization and real control. This way can replace special CAD 
software intended for trajectory planning or can save time 
spending in this software. 

At the paper beginning, the manipulation problem is formu-
lated and general model of robot dynamics is defined. In next 
sections, the predictive control and its range-space modi-
fication [10] is explained. Finally, the paper concludes by 
several illustrative examples of application of proposed 
solution. 

II. PROBLEM FORMULATION 
As mentioned, the manipulation belongs to the most frequ-

ently occurred operations in many different robotic appli-
cations. From control point of view, it can be formulated 
as a controlled movement of robot gripper (robot end-effector) 
from start to end point through defined free range Fig. 1. 
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Fig. 1 Free range for possible robot movement 

 
Since, there is no further (exact) specification for the robot 

movement, the real robot trajectory (trace of realized robot 
movement) should begin at start point and achieve required 
end point taking into account ranges of workspace during the 
robot displacement. It is possible to generate infinite number 
of such trajectories, but they need not be optimal in view of 
considered robot. 

Optimal robot motion can be obtained by specific modi-
fication of predictive control design, which considers required 
points, free (permitted) ranges and model of robot dynamics. 
The control actions provide smooth motion in spite of sharp 
ranges. 
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III. MODEL OF ROBOT DYNAMICS 
The model of robot dynamics expresses time relations of 

external (drive actions) and internal (reactions, inertias) forces 
and torques, all usually relating to the position of robot 
gripper (end-effector). The model makes possible to predict 
future robot behavior and to optimize its further movement. 

The robot itself (not only parallel configurations) generally 
represents a multi-body system usually with multi-input multi-
output character. It is characterized by weights and inertia 
moments (mass parameters) of individual bodies and set of 
lengths and physical coordinates (geometrical parameters). By 
coordinates, the dynamics can be straightforwardly described 
by Lagrange’s equations [4]. The equation type depends on 
number of used coordinates in relation to number of degrees 
of freedom (DOF). In general, in case of using physical 
coordinates, which number is higher than DOF, then 
Lagrange’s equations are mixed type and lead to the system of 
differential algebraic equations – DAE (1) and (2) 

 
TugΦsM +=− λT

s&&  (1) 
 

0sf =)(  (2) 
 

where M  is a mass matrix, s  is a vector of physical 
coordinates, sΦ  is a Jacobian, λ  is a vector of Lagrange’s 
multipliers, g  is a vector of other internal relations, matrix T  
connects inputs u  to appropriate differential equations and 

0sf =)(  represents algebraic equations of geometrical 
constraints. 

As mentioned, the model (1) is a DAE system, since 
physical coordinates generally need not represent independent 
coordinate system. The number of coordinates is usually 
greater than number of DOF. However, the model (1) can be 
transformed to a system of ordinary differential equations, i.e. 
transformed to independent coordinate space corresponding to 
DOF. The transformation reduces the number of differential 
equations and mainly removes redundant Lagrange’s 
multipliers, connected with structural forces and structural 
relations; i.e. the transformation provides zeros of term λT

sΦ  
and reduces physical coordinates s  only to independent 
coordinates y  equaled DOF. 

From mathematical point of view, the suitable solution is a 
determination of null space of the whole Jacobian sΦ , which 
is simultaneously interpreted as a Jacobian matrix R , fitting 
the following equality, arising from properties of null space 

 
0ΦRRΦ == T

s
T

s  (3) 
 

and arising also from coordinate transformation (4): 
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Now, if expression (4) is inserted in (1) and obtained 
equation is multiplied by transposed Jacobian matrix TR , 
then the resultant system of equations – pure equations of 
motion have the following form: 

 
uTRgRyRMRyRMR TTTT +=+ &&&&  (5) 

 
They can be transformed and simplified to a form with 
isolated second derivative 
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where ),( yyf &  represents robot dynamics and )(yg  is an 
input matrix of control actions. The model (6) can be rewritten 
in the state-space formula: 
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where x  is a state vector defined as T],[ yyx &= . This 
formula is simpler and more transparent relating to multi-input 
multi-output character of robot. To have finite computation 
time of the control and to provide uniformly distributed points 
of robot trajectory, the model (7) is discretized. However, 
before model discretization, it is necessary to linearize 
nonlinear vector function )(xf , in order that resultant model 
corresponds to usual state-space formulation. Matrix )(xG , 
although is also nonlinear in relation to the robot state x , does 
not need to be linearized. The nonlinear function )(xf  in (7) 
can be decomposed according to [12], to have linear form. 
Then, the model is written as follows 
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The model (8) including decomposition xxA )(  for )(xf  

describes the robot dynamics identically as model (6) or (7). 
The individual elements of matrices )(xA  and )(xG  have to 
be recomputed on-line for appropriate robot state x . The use 
of decomposition described in [12] is shown e.g. in [8] or [9]. 

Then, the discretization of (8) can be done by usual way via 
expansion of exponential functions [11]. The resultant model 
has following standard form: 
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which represents initial model for control design. 
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IV. PREDICTIVE CONTROL 
The choice of suitable control depends on character of 

given control process and used means of control. In robotics, 
in the most of cases, the control process (controlled robot 
movement) is required to be accurate, robust and effective 
both in respect time and energy consumption [1]. 

The robots were and are usually intended for flexible 
production, therefore their control algorithms have to cope 
with energy optimization and saving in working time. These 
algorithms should optimize control actions in relation to future 
robot behavior. To managing mentioned conditions, predictive 
control is offered [3] (Fig. 2). 
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ŷ

(GT G+λ)-1 GT

D
E
M
U
X

ROBOTROBOT

CA

CAN

···
y)

X(k)u(k)

u(i)| i=k+1, ···, k+N-1

uw
+ -

(GT G+λ)-1 GT

D
E
M
U
X

ROBOTROBOT

CA

CAN

···
CA

CAN

···
y)

X(k)u(k)

u(i)| i=k+1, ···, k+N-1

uw
+ -

desired values
for N steps ahead
desired values
for N steps ahead

difference compensation
of free responses
from desired values

difference compensation
of free responses
from desired values

N step prediction of free responses
(u( i) = 0, i = k + 1, ···, k + N)

N step prediction of free responses
(u( i) = 0, i = k + 1, ···, k + N)

i = k + 1, ···, k + N - 1

ŷ

 
Fig. 2 Principal scheme of predictive control 

 
Predictive control, as well as linear quadratic control [5], 

combines feedback and feedforward. It represents a multi-step 
strategy, which optimizes control actions using quadratic 
criterion within some finite horizon. 

In the criterion, future expected robot behavior like states 
with appropriate user requirements are compared. The future 
states are expressed by equations of predictions within 
predefined finite horizon. The equations arise from robot 
model. The following subsection will show their composition. 

A. Equations of Predictions 
Equations of predictions represent from control point of 

view the expression of feed-forward for some given prediction 
horizon N . They form the main base determining dominant 
part of control actions. Using discrete state-space form (9), the 
equations of predictions have the following form [3]: 
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The system (10) can be expressed by matrix notation 
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which simplifies the expressions in the quadratic criterion. 

The equations are composed by repetitive substitution of 
unknown future states for states determined from one topical 
state and state-space model (9). The state-space model is 
considered to be constant for composition of the equations for 
considered time step and corresponding horizon N , called 
horizon of predictions. 

Control actions u , which are occurred in (10) and (11), 
represent unknown parameters. Thus, (10) or its condensed 
notation (11) means functional expression of dependency of 
future states ŷ  on control actions u  for whole horizon N . 
Unknown actions are computed by minimization of quadratic 
criterion. 

B. Quadratic Criterion 
As was mentioned, quadratic criterion is fundamental for 

determination of control actions. Usually, it is expressed in the 
following form 

 

∑
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where yQ  and uQ  are penalizations for control error and 

action, respectively. They balancing terms of the criterion; and 
)( jk +w  are desired values. The criterion (12) can be 

profitably expressed in condensed matrix notation as well: 
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In equation (13), the future outputs ŷ  are substituted by 

use of equation (11). The notation (13) is, at first, more 
transparent for minimization process, and in the second place 
it represents suitable initial form for stable mathematical 
solution. The control actions are determined by minimization 
of the criterion as it is shown in next section. 
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C. Minimization of the Criterion 
Used algorithm for minimization of the criterion is crucial 

for considering of different (additional) control requirements. 
The simple algorithm based on determination of control 
actions as a local minimum search [3], [11] leads to the 
following expression 

 
)()( 1 fwGλGGu −+= − TT  (14) 

 
However, this algorithm is limited by matrix inversion. 

Different, more general way is algorithm based on square-root 
minimization. It arises from condensed notation (13) 
represented as follows: 

 
JJ=kJ  (15) 

 
from which only one part (square-root) is sufficient to be 
minimized: 
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After substitution of ŷ , the square-root is expressed  
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Its minimization leads to the solution of algebraic equations 
for unknown control actions 
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Suitable method of solving set of algebraic equations is QR 

decomposition [6] based on Householder algorithm [7]. It 
reduces excess rows of matrix A  and elements of vector b  
into upper triangular matrix R  and vector c , or matrix 1R  

and vector 1c , respectively, according to the following 
scheme: 
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To obtain unknown control actions u , then only upper part 
of the system (20) is need 
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Since a matrix 1R  is upper triangle, then the control u  is 

given directly by backward calculation procedure. 
Obtained vector u  represents control actions for whole 

horizon N . However, only first appropriate actions are really 
applied to the robot. 

The criterion (12), respectively the form (13) can be simply 
extended for additional terms representing additional 
requirements on control. This property will be considered in 
range-space modification. 

The described process of minimization is repeated in every 
time step for appropriately updated model within defined 
horizon of prediction. 

V. RANGE-SPACE MODIFICATION 
Range-space modification follows from the demand to 

simplify coding (planning) the robot trajectory in cases, when 
the trajectory is not strictly determined by some accurate 
geometrical shape or path. In such cases, there is only 
information on location of obstacles in a robot workspace and 
furthermore knowledge of start and required end points [10], 
altogether define rough free corridor for safe robot motion, i.e. 
free range-space (Fig. 3). 

SS
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Fig. 3 Example of free corridor for safe robot motion 

 
The range-space modification of predictive control can 

serve either as on-line control for slower movements or as a 
fast off-line simulative planner of smooth trajectories. To 
design adequate control actions via range-space modification, 
it is necessary to make the following steps: 

 • define free movement ranges: splitting the robot 
workspace or robot neighborhood within view in small simple 
elementary areas inclusive obstacle highlighting; 

 • select suitable penalty matrices: balancing of 
importance of the corridors in given time for robot motion. 

Then, it is possible to minimize modified quadratic 
criterion, which provides mentioned assignment. 
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A. Modified Quadratic Criterion 
The quadratic criterion used in predictive control design can 

cope with different control requirements due to its flexibility. 
It considers robot dynamics included in predictions for 
defined horizon. By this, the optimal distribution of input 
energy is provided. The quadratic criterion for range-space 
modification is modified relating to new required ranges [10], 
which substitute usual desired values 
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The criterion can be again expressed in advantageous matrix 
notation 
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The modified criterion leads to the same procedure of its 
minimization indicated in subsection IV.C, only matrices have 
different types. 

In the criterion, there occur two new terms, which 
correspond to differences from the limits of free (permissible) 
ranges. Furthermore, there are also two new output 
penalizations raQ  and rbQ . 

In usual control process with standard criterion, the only 
one appropriate penalization yQ  is selected as identity matrix. 

However, the new penalizations need not be constant and 
equal identity matrices. The selection of penalization will be 
outlined thereinafter in subsection V.C. 

B. Definition of Free Movement Ranges 
Definition of free movement ranges arises from specific 

simple envelope of possible free space for robot movement, 
which excludes all obstacles and other limits of given robot 
workspace. This envelope is divided into uniform square or 
triangle segments. 

The density of segmentation follows from rough distance of 
the start and end points and selected sampling period. For 
small periods, the segment density should be higher and vice 
versa. 

Thus, the free ranges are determined for individual 
segments. They represent upper and lower limits for each 
segment. Important is start and end periods. At the beginning, 
the range spreads from start point (triangle segment) and at the 
end it narrows to end point as it is indicated in Fig. 4. 

 

 
Fig. 4 Free ranges: (a) acceleration period (start), (b) general state 
(process), (c) braking period (end) 

 
Example of one short definition of free ranges is illustrated 

in Fig. 5. 
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Fig. 5 Example of definition of free ranges 
 

Corresponding values of upper and lower limits of indi-
vidual segments in Fig. 5 are enumerated in Table I. The all 
values are repeated in number equaled length of horizon N  . 

 
TABLE I 

DEFINITION OF FREE RANGES: 
],,[ ψyaxa=ar   AND  ],,[ ψybxb=br . 

%     1     2     3     4     5     6 …
xa=[-0.08 -0.08 -0.06 -0.04 -0.04 -0.02 …
xb=[-0.08 -0.06 -0.04 -0.02 -0.02  0.00 …
ya=[ 0.00  0.00  0.00  0.00  0.02  0.02 …
yb=[ 0.00  0.02  0.02  0.02  0.04  0.04 …

… 7     8     9    10    11    12
… 0.00  0.00  0.02  0.04  0.04  0.06];
… 0.02  0.02  0.04  0.06  0.06  0.06];
… 0.02  0.00  0.00  0.00  0.02  0.04];
… 0.04  0.02  0.02  0.02  0.04  0.04];

%     1     2     3     4     5     6 …
xa=[-0.08 -0.08 -0.06 -0.04 -0.04 -0.02 …
xb=[-0.08 -0.06 -0.04 -0.02 -0.02  0.00 …
ya=[ 0.00  0.00  0.00  0.00  0.02  0.02 …
yb=[ 0.00  0.02  0.02  0.02  0.04  0.04 …

… 7     8     9    10    11    12
… 0.00  0.00  0.02  0.04  0.04  0.06];
… 0.02  0.02  0.04  0.06  0.06  0.06];
… 0.02  0.00  0.00  0.00  0.02  0.04];
… 0.04  0.02  0.02  0.02  0.04  0.04];

 
 
Horizon length and rate of elementary areas determine time 

needed for robot displacement from start to end point through 
the free ranges. 
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C. Selection of Penalty Matrices 

Selection of penalty matrices for outputs raQ  and rbQ  and 

for inputs uQ  is depended on considered sampling period of 
the control (speed of control process), selected ranges of 
segments and horizon of predictions. They have the following 
structures 
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The structures show details, but it is enough to set only 
multiplicative constants. They follow from dynamic relations 
of given robot. Usual adequate selection is IQQ rrbra k==  

and IQ uu k= , where I  is identity matrix. The lower values 

rk  and uk  still keeping control stability lead to the best 
results. 

VI. ILLUSTRATIVE EXAMPLES 
In this section, several simulative examples will 

demonstrate application of range-space control on one given 
planar parallel robot ‘Moving Slide’ considered as basis for 
simple top milling machine. 

A. Considered Robot Structure 
Considered robot, illustrated in Fig. 6, represents horizontal 

planar parallel mechanism, which includes 4 x Rotational + 
Prismatic + Rotational joints. Moreover, it is redundantly 
actuated. There are four drives for only three degrees of 
freedom. Note, this feature furthermore improves robot 
stiffness. 
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Fig. 6 Scheme: 4RPR parallel robot ‘Moving Slide’ 

B. Experiments 
The aim of experiments was to control robot through given 

free ranges and to achieve given end points. The following 
figures demonstrate such process. 

The first, Fig. 7, shows realization of free ranges from Fig. 
5, defined by Table I; the points mark the appropriate times. 
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Fig. 7 2D plan of realized control process 

 
The time histories of the corresponding control actions are 

drawn in Fig. 8. In it, the braking at the end of movement is 
well perceptible. In some cases, it can be a problem. The robot 
by its own inertial energy can cross (or miss) the required end 
point and can continue a little bit over and thereafter stop near 
the required point. To damp this undesired property, it is 
necessary to spread several last segments in their higher 
number or to adapt the penalization matrices. 
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Fig. 8 Time histories of control actions for Fig. 7 
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The further figures (Fig. 9 and Fig. 10) show other different 
examples of robot movement. 
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Fig. 9 Example of simple spiral trajectory 
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Fig. 10 Example of more complicated trajectory 

 
As was mentioned in subsection V.B, by the selection of 

control horizon and adjustment of elementary area rates, the 
speed of the robot movement may be regulated. 

In figures above, which represent xy-graphs, it is 
perceptible that the movement speed is more or less uniform 
expect for robot braking in sharp turns and braking before the 
end points. The braking (or acceleration) stages in figures are 
indicated by distance shortening (or lengthening), whereas the 
time difference stays the same. 

VII. CONCLUSION 
In the paper, the range-space modification of predictive 

control was introduced. It can solve not only mentioned 
manipulation issues, but also some camera scan of some scene 
given by ranges (corridors) or can serve after some 
adjustments for on-line optimal path control of mobile robots. 

In general, the predictive control approach belongs to the 
powerful and flexible control strategies, which are promising 
to solve different requirements of industrial applications. 
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