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Particle Swarm optimization Based Tuning of
Extended Kalman Filter for Manoeuvring
Target Tracking

RAVI KUMAR JATOTH, T. KISHORE KUMAR

Particle Swarm Optimization (PSO) is population

Abstract—- Kalman filter is a well known adaptive filtering  based stochastic optimization technique inspired by social
Algorithm, widely used for target tracking applications. When the  behavior of bird flocking or fish schooling in searching for
system rr_lodel_and measurements are non Iinea_lr, variation of f50( [6]. PSO exploits a population of individuals to probe

Kalman filter like extended Kalman filter (EKF) is used. For promising regions of the search space. In the context, the

obtaining reliable estimate of the target state, filter has to be lati . led d the individual led
tuned before the operation (off line).Tuning an EKF is the process population is called a swarm and the individuals are calle

of estimation of the noise covariance matrices from process data. Particles. Each particle moves with an adaptable velocity
In practical applications, due to unavailable measurements of the within the search space, and retains in its memory the best
process noise and high dimensionality of the problem tuning of position it ever encountered. In the global variant of PSO the

the filter is left for engineering intuition. In this paper, tuning of  hest position ever attained by all individuals of swarms is
the EKF is investigated using Particle Swarm Optimization communicated to all the particles.

(PSO). The simulation results show the superiority of the PSO

tuned EKE over the conventional EKE The bistatic range and range rate based tracking is
Keywords- Adaptive Filter; Extended Kalman Filter; Noise considered here for target tracking where a number of Radar
Covariances; Tuning; Particle Swarm Optimisation, receivers measures bistatic range (transmitter-target-receiver
Manoeuvring target tracking distance) and bistatic Doppler (bistatic range rate divided by
the wave- length, at the frequency of the radar operation). If
I. INTRODUCTION bistatic range and range rates are used for tracking then we can

I N many tracking applications Kalman Filter (KF) is used t&/S€ Wwide band antennas in which we can perform signal
estimate the velocity, position and acceleration of Rrocessing at baseband frequencies [7].

manoeuvring target from noisy radar measurements at high This paper implements PSO based tuned EKF, in which
data rates. When the process is to be estimated dHCESS noise and measurement covariances are tuned based
measurement model is nonlinear, EKF is used in which, te& biologically inspired evolutionary computing tool.

process is approximated to first order term of the Taylor's Organization of this paper is as follows. The problem
expansion for calculating the mean and covariance of tH€scription presented in Section Il. In Section IlI, the
random process [1] The Kalman filter demands prioEXtended Kalman Fllterlng algorithm and the New PSO Tuned
information about the noise covariances from the user [zl:}xtended Kalman Filter are discussed. The manoeuvring target
Initial process and measurement noise covariances play tE#fking modeling equations and CRLB bounds are derived in
important role in convergence of the filter. If the noiséection 1V. In Section V, simulations results are presented to
covariances are not chosen properly it may leads towaré@mpare the algorithm with an extended Kalman filter for
degradation of the filter performance [3]féw techniques for Maneuvering target tracking. Conclusions are presented in
determining the process and measurement noise covarianegstion IV.

for various applications have been discussed in the literature

[4], [5] and widely used tuning method is least squares Il. PROBLEM DESCRIPTION

approach.

Manuscript received June 9, 2009: Revised version received June 9, 20.09!r.] this paper target trgckmg environment '_S taker-1 as shown
This work was a part of Research work. in figurel. The transmitter is placed at High altitude and
c Ravi Kumar EJat_Oth is V\;it,le the IDlepartmenft TthEl'fCtFOC\i/CS andeceivers are placed at different places which is called bistatic
Commucalon Exgncerng o Nator Psite of Techoo0y MranGsaar environment If bistatic fange and range rate are used t
ravikumar@ nitw.ac.in). extract the information about target trajectories then we can
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technologies cheaper and low power receivers are available, so
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we can deploy number of receivers which gives accurate
information about the target.
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The measurement model of the system can be written as

Figure 1: Target Environment 2= HoX Yy oo, @)

. . Where Z, measurement vect iS measurement matrix
The state equation for the target motion could be K drl,

approximated with a linear equation of the form and v, ~ (O,Rk) which is assumed as zero mean white

X = Fx +Gw...... @) Gaussian noise with covariandg (called measurement noise

Where X, is the state vector that contains state variables ¢Rvariance). Both noises are assumed to be uncorreleted.

_ _ N . . measurement equation above relates the siate the
time k, F, is state transition matrix, which relate system staleasurement,z

k to k+1 time in the absence of forcing function and
W~ N(0,Q,) which is assumed as zero mean white |n practice ofinitial estimate of the process i%; and

Gaussian noise with covarianc€), (called process noise jnjtial estimation of the error covariance matrix B . The
covariance). G is the noise forcing matrix. priori estimation error is given by
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Error covariance matrix is given by covariance so as to that they can timely reflect the variety of
B =Hee ] oo (4) maneuvering acceleration. .
A few techniques for determining the process and
The EKF algorithm starts with calculation of Kalman Gairmeasurement noise covariances for various applications have

which is given by been discussed in the literature [10].
Ke = R HT(HF{ HT + R)_l -------- ) The innovations process can be used to adapt the
The next step is to update the position using the nespvariances on-line. The drawback of the method is that it
measurement which is given by utilizes initial, and often unavailable, estimate of the
N — - covariance matrices, the output innovations, and the process
= + — . ’ ’
%= X%+ Kz —Hx) o (©) model to estimate the model’s accuracy, as represented by the

From (6) we can say that based on the Kalman gafliOCesS noise statistics.
or the correction factor the estimated accuracy depends which i i
in turn depends on initial noise covariance matrices. Selectifiy Conventional Extended Kalman Filter

optimum parameters of these values gives optimum i )
performance of the filter. Most processes in real life are unfortunately not

Trial and error approach to obtain these tuninanear' and therefore needs to be linearized before they can be

parameters is tedious process and doesn't guarantee §fEMated by means of a Kalman filter. The extended Kalman

accuracy of estimation in Mean Square Error (MSE) senddter (EKF) solves this problem by calculating the Jacobian of

Choosing optimum Parameters of noise covariance matrick€ind h around the estimated state, which in turn yields a

“i.e.” is tuning the filter is a challenging task for Kalman filtertr@€ctory of the model function centred on this state.

designer. The extended Kalman filter extends the scope of
In this paper another approach of tuning the Kalmdfalman filter to nonlinear optimal filtering problems by

filter based on the particle swarm intelligence is proposed. forming a Gaussian approximation to the joint distribution of
state x and measurements z using a Taylor series based

Il . FILTER TUNING transformation. Extended Kalman filters is presented, which

. i . L _are based on linear and quadratic approximations to the
Tuning of the filter is referred as estimation of the NOISE 4 nsformation.

covariance matrices [8]. It has been shown previously that the Let us assume that our process has a state
performance of an EKF process depends largely on the 1" but that th ) d by th
accuracy of the knowledge of process covariance matrix ay]acto-rx , but t at.t € process ',S now governed by the
measurement noise covariance matrix. Incorrect aprigtPn-linearstochastic difference equation

knowledge of noi_se covariances may lead _to pe_rformance X = f(Xk_l,Uk,Wk_l) ...... (7)

degradat_lon _and it can even Iea_ld t(_) practical d'verge_nCWithameasurement that is

Hence, intelligent method of estimation of these matrices _

becomes very important for online deployment. Measurements 4 = }'(Xk,Vk) ............ (8)

can be performed before the operation of the filter under In this case the non-linear function in the difference
various noise conditions and measurement noise covariangg@ation above relates the state at the previous time step to the
can be obtained off line. state at the current time step. It includes as parameters, any
driving function y and the zero-mean process noise The
In literature it has been reported a pioneering workon-linear function ftourse one does not know the individual
on adaptive estimation of noise covariance matrices and {|yes of the noise mand v at each time step. However, one

Kalman filtering algorithm, based on correlation-innovationgan approximate the state and measurement vector without
method that can provide asymptotically normal, unbiased aggbm as

consistent estimates[9]. The other algorithm is based on the
assumption that noise statistics is stationary and the model X = f(f(k_l,uk 0) o, 9)
under consideration is a time invariant one. Later several
research works have been reported in the same direction,

employing many classical approaches. and 4 = h(Xk ,O) ............. (10)
The hardware implementation problems, however,
demand certain other factors such as process and noise Where #.is someaposteriori estimate of the state

covariances. In practice, owing to the complex backgrounflom a previous time stef). Here the function h is linearized
and other inherent factors, the maneuverability of target hag@&r a nominal trajectory and the algorithm is applied as
larger randomness, and the acceleration is an importa®ywn below in figure2.

parameter reflected maneuverability of target, hence, when we
design the Maneuvering target trackifMTT) adaptive filter,

it becomes an important problem of MTT that how to correctly
estimate acceleration of target and reasonably adjust its
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The trajectory of the particle is dependent on three factors: its
previous position, pbest and gbest. Greater the strain of the

— Measurement Update ("Correc”) particle in searching food, smaller is the acceleration
Time Update ("Predic”) (1) Compuiethe Kalnan gin coefficients. The inertial weight factor vsignifies the
(1) Project the state ahead K, = PHI(HPHT+V R VT)'] importance of the particle’s previous position in further search
k= DOV R

B = [l pu0) S
(2) Update estimate with measurement z;

[-Elejemhe error covariance ahead _’(k = (A + Kk(‘_‘k = h(}L_l (i))
Pk = "\kPk— ]/\f? + Wka_ | WZ (3) Update the error covariance
P = (I-K,H)P,
i = (=K HE, xi(t:f -
—— — — i

resultant direction

1

FOOD

Initial estimates for &, _jand Py,

Figure2: EKF Algorithm
ghesti(t)
B Particle Swarm Optimization. pbesti(t)

The particle swarm algorithm is an adaptalgorithm based %@
on a social-psychological metaphor; a population of
individuals adapts by returning stochastically towarfli
previously successful regions in the search space, and
influenced by the successes of their topological neighb
[11].

E%.:% Trajectory of particle after velocity updation

%Hhus each particle tend to move towagtest to reach food
early. Ifgbest has less number of values then the particles will

. - _ reach the food early. The algorithm comes to an end when all
The Swarm of particles indicates estimates qﬁ

ol ; ivolved in th bl W b e particles converge at that gbest i.e. food position. In our
muttiple parameters involved in the problem. Wve can eg#}oblem i.e. attaining minimum possible value NBE.
with initializing a random swarm of particles. During eac
iteration fithess of the particle is evaluated with the help of

. . ) The trajectory of each particle is influenced in a direction
fitness function (Mean Square Error in our problem). J y P

determined by the previous velocity and the locatioghast
and pibesti. The two acceleration coefficients combined form
tvhat is analogous to the step size of an adaptive algorithm.
Small acceleration coefficients tend to give a better search
with slower convergence, while larger coefficients give a
rIgsser search and faster convergence. The ramdamctors

The algorithm progressively replaces most fi
parameters of each particle.igbestthe best position of the
particle itself.

There exist another best positighestwhich is the
global best i.e. the best position in the swarm. Each parti fovide the randomness of the step betwgleestand pbesti.
has the influence of these two bests in their trajectories. T fie inertia weight controls the influence of the previous
parameters of each particle are updated with the followi%

) locity. A single particle update is graphically illustrated in
equations. Ity Ingle particle up is graphically illu i

two dimensions in Figure 4. The new particle coordinates can
Velocit dati lie anywhere within the bounded region, depending upon the
elocity updation weights and random components associated with each vector.

vi(t+1)=wy ()+ G.rand( pbest - &) pyn+1)

c,.rand.(gbest Y- X ¥ (11)

Position updation vel,(n)+3+b =vel,(n+1)

Ra=R+Vea ... (12) ghest 4
Where
p-instantaneous position of the particle

v-instantaneous velocity of the particle

1]

Pbest-positional best of the particle Y
gbest-global best position of the swarm of pon)
particles !
W — Inertial weight factor X
C1, C2 — acceleration coefficients Figure.4: Resultant direction of particles
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As newgbestsare encountered during the update processpntinuous process noise, two parameters of measurement
all other particles begin to swarm toward the nghbest, noise standard deviations (range and range rate) . So, a total of
continuing to search along the way. The search regiofige parameters have to be optimized. Taking the extreme
continue to constrict as nepbestisare encountered. The worst cases of these five parameters, we proceed according to
algorithm is terminated when all of the particles in the swarthe Particle Swarm Optimization.
have converged tgbestor a suitable minimum error condition

is met.
_ ) ) IV. MATHEMATICAL MODELING OF TARGET TRACKING
The block diagram of PSO can be shown like this: USING BISTATIC AND RANGE RATE MEASUREMENTS.
Real Target Motion could be described by a large
initalse particles with random number of models, mixed in unknown ways  [12-17]. At this
velocities and posttions foop unl al partces extaust section, three moti_on models nearly constant veIoc.ity, nearIy_
| constant acceleration, and constant turn are described. Basic
For each aric’s posion () evalate iess problgm is to esymate the target kinematic statt_a (position and
velocity) from noise corrupted measurements. Since the output
| of the filtering algorithm is required to be Cartesian position
If fitness(p) better than fimess(pbest) then pbest=p and velocity, the target kinematic state can be described by the
| state vector defined in discrete time as
— T
0op until max ter Set best of pBestsas gBest %= 1% Yo ZoVao VoVl (13)

| where T denotes matrix transposg, ¥ and z are the
Cartesian target coordinates at time index k and

Ve ' Vy, ,andvZk are their respective derivatives (velocities). It

Update particles velocity and position

- ‘ ‘ is well known that if a derivative, such as range-rate, is
‘STOMNHS gBest, aptimal sontion measured, better performance can typically be obtained if an
acceleration state is included in the filter In this case,
acceleration is added to the state vector, which becomes
— T
X5 [ %e Yie Zie Ve Vyio Vaio Qg By 8] (14)

Fig.5 Block Diagram of PSO

C. Applying P_SO n F_llter Tuning . Wherea, ,a, anda, are the target accelerations.
We refer to filter tuning as a process of obtaining parameters L ®

of a filter such as values of matrig®sandR for EKF that give For extracting three dimensional positions four wide
the best filter performance in Mean Square Error (MSE) sen&#nd radars are used by employing triangulation method. Each
Typically this kind of problems of designing a filter with radar-sensor measures blstath range and bistatic Doppler.
optimal tuning parameters was left up to engineering intuitiohN€se measurements, after being processed locally (at each
and trial and error method that do not guarantee best filgceiver) and transformed to bistatic range and bistatic velocity
performance due to large number of parameters to be tunedfrming bistatic tracks), are sent to the central station whgre
straightforward way of tackling this problem is to employhey form the measurement vector of the central station
global optimization method that minimizes function of MSHiltering algorithm. The measurement vector is given by
position_error with re_zspect _to filter parameters. Th(_ere arg, :[r1 b I, \(1 \/r2 vr3 Vr4]T 15

several issues associated with such an approach. First, each Where 1 and v, are the bistatic rang'e”é'\nd istatic
time we need a value of MSE during global optimization L } _

procedure we have to run EKF on all available data. THignge-rate, respectively, measured by the ith receiver.

requires a significant computational time since for example in _Taking as the origin the coordinate frame the
order to find a global minimum of a smooth function of gransmitter, the relationship of each measurement with filter

parameters; we need to compute the function value maﬁt};\te vector is described via the non linear measurement
times model,

One of the practical solutions to these issues is to Z = h(X)+Vy oo, (16)
estimate approximate functional relation between tunin _ )
parameters and the MSE criterion of optimization in ﬁlathemancal Modeling
deterministic way and then apply nonlinear global optimizatiofThe target motion with constant velocity in state space model
method to find optimal parameters which correspond tan represented as
minimum of MSE.
Here in this problem we are tracking the target under
different conditions such as nearly constant velocity, nearly
constant acceleration and nearly constant turn. Therefore we
have three power spectral densities of the corresponding
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Vet 0001 0 0% 100 Y
vy, 0000 1 0}y, 010
A 10000 0 1)y, |0 0 1] The process noise covariance is
.................. a7) T y
Where Tk is the observation time. The process noise ool V\(V\Z] B .[ Go G dt
covariance matrix 0
T ot Aclzs Bylgs Cylyg
Q: EV\(V\Z]:J.GUGdt Qk:qS Bk|3*3 Dk|3*3 Ek|3*3
0 Ciles Eulas Fulss] o)
3 2
_ B3 g tE12% 1y
1], 2 . .
te/2% 1y 1 % lgg Ba,t, — 8sin &, t, +sin 2« ,t
................ 18 T kot koK X
(18) Whete 20?
_ 2sin *(w,t, 12)
Where g1 is the level of power spectral density of continuous ™ W,
process noise. c == 2w, t, + 4sin w,t, - sin 2w ,t,
k
Nearly constant acceleration (NCA) model for manoeuvring 4wy
target flight segment is is given by D = 2@l ~Sin 2w,
o o X 4o}
Y1100t ooz 0 o™ [[er 0 o] £ Sin ot
%1l lo100t 0 0 422 0|*|| 0 22 0 KT 2w?
\Z/"*l 00100t 0 O tkzlz\zlk 0 0 iR Eoo 204t +sin 20,1,
“|looo100t O O|*||t O O kT 4w,
V,[5000010 0 t O%M O t ovywvg]
%, || 00000170 0 & 10 0 % V. CRAMER -RAO L OWER BOUND DERIVATION
3. [ 000000 1 0 0fgq(|1 0 O . }
“1'1o0o0000 0 1 0O 0 1 o0 The optimal solution to the problem formulated cannot be
& 000000 0 0 1 a 0o o 1 derived analytically, even for the case of a single dynamic
¥ 18] - - model, since the measurement equation is non linear. In the

The process noise covariance is
t2/20% 1, t218%1,, t3/6%1,,
Q=q,|t /8%, t3/3*I,,

(6% 1o 172" laa t*lag | o0

Where g2 is the level of power spectral density of
corresponding continuous noise.

A three dimensional nearly constant speed turn (NCT)
manoeuvring flight segment is written as [10]

X1 = FX +GW
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absence of optimal analytic solution, one has to resort to
approximate solutions. However, the existence of a lower
bound of performance would help the assessment of the level
of approximation introduced by a particular algorithm. The
bound will be derived under the assumption that process noise
is zero and the model history is known [18-19].

The general framework for derivation of CRLB of an unbiased
estimator for non linear discrete time is described. The CRLB
for an unbiased estimator of the target state vector is given by
the inverse of Fisher Information Matrix (FIM).Thus the error
covariance matrix As bounded from below as follows :

P = E{(X¢ — Xp)(Xp — N;c]IT-}}:JEJ*

Where Jin the Fisher Information matrix defined as
r r T
J. =FE { 'V, log p(xg. Zk}] 'V, log p(xg, Zy }-‘ }
............ (23)
Where 7, being the gradient operator with respect goaxnd
E{.} the expectation operator. The CRLBs of the state vector
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components are calculated as the diagonal elements of taalistic, the parameters ranges are taken between the

inverse information matrix extremes. Finally, the sampling interval was assumed to be
- PR B | 1s (which means that the number of measurements is the same
CRLB{[%:]:} = [J;'].. L _ ,
J - i (24) as time in seconds), while the detection and false alarm
Information matrix can be calculated using the foIIowingﬁ]r()ba_b'“t'eS of radar equ_al FO _1_and 0, respectively. The
: agnitude of the acceleration is divided by g (g = 9.8)m|s
recursion
- _ —1 } _ .
Jesr = [Qu+ FIU'FL + E{H Ry Hyy
...(25
and the initial value of this matrix is taken as 3000 _ -
Jo = Pl
- (26) 2500 . -
2000 | -
V. SIMULATION RESULTS 1500 . -

The signal bandwidth was assumed to be 10MHz, 1000+ -
concerning the target simulated motion, its initial position
Firstly, as far as multistatic radar deployment is concerned, the
transmitter is placed in [0, O, Om], while the four receivers are
assumed to be at: (i) [31500, 0, -700 m]; (ii) [3500, -200 m];
(iii) [38500, 0, -500 m] and (iv) [35000, -3500, -300 m]. It
should be underlined that the topology of the whole system
affects directly the system performance since the multistatic
radar resembles a large distributed antenna. As a consequeRgye 6: Simulated target motion in three dimensions
the more distributed the elements-receivers the better the
performance (tracking accuracy) obtained. The radar
frequency of operation was selected to be at the loweris  Figure 6 shows that the PSO tuned filter accurately tracks the

[% VY, Z,]= R5000m 4000m 100Q true motion. The projections of tracking on different planes are
shown for further information.

500 4 -

moving with nearly constant velocity system model with an
initial velocity

[y y yI=[0ns-833ns OnVs oo | o Pt

|
True |
|

— — — Estimated

10000

for the first 50s.

For the next 50 s the target makes a motion with nearly g0
constant acceleration with initial acceleration of approximately

1 g 6000

[a, a, a,]=[10m$ O0m<s 0ms’

4000

Y Axis

2000

It turns right for 25 s with initial acceleration being the
acceleration of the last segment of motion and a nearly
constant turn rate of%8, thus changing its heading by more
than 1568. The maximum acceleration obtained during this o0
phase is approximately 6g.

-4000

Finally, the target resumes a nearly constant velocity motion,
with the velocity it had attained at the end of the previous Fjgyre7: Simulated target motion in X-Y plapeojections.
phase.

The bistatic range measurement error deviation, the bistatic
range-rate measurement error, process noise level of power
spectral densities during constant velocity, constant
acceleration, constant turn are tuned according to the PSO.
Here the fitness function is a function of the RMS errors in the
3 directions. In order to make the performance analysis more
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Figure8: Simulated target motion in Y-Z plane
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Figure9: Simulated target motion in X-Z plane projections.
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Figures 7-9 are projections drawn on X-Y, Y-Z, and X-Z _ o _
respectively. From these results also we can say that in \4lhen the RMS errors are compared in the 3 directions with
maneuvering motions filter tracking original position of théhe conventional EKF, it has observed that the PSO tuned EKF

vehicle.
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Figure 10: RMSE in X-Direction.
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is outperforming the conventional EKF.

vI. CONCLUSION.

The work presented tuning Procedure for EKF and a
comparison of two nonlinear filtering algorithms EKF and

PSO Tuned EKF for maneuvering target tracking and their
application to a multistatic radar system. The Cramer—Rao
lower bound for the problem of maneuvering target tracking
using multiple Dbistatic range and bistatic velocity

measurements with switching dynamic models was firstly
derived. The theoretical bound is conservative, being derived

under the assumption that model history is known.
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