
 

 

  
Abstract—- Kalman filter is a well known adaptive filtering 

Algorithm, widely used for target tracking applications. When the 
system model and measurements are non linear, variation of 
Kalman filter like extended Kalman filter (EKF) is used. For 
obtaining reliable estimate of the target state, filter has to be 
tuned before the operation (off line).Tuning an EKF is the process 
of estimation of the noise covariance matrices from process data. 
In practical applications, due to unavailable measurements of the 
process noise and high dimensionality of the problem tuning of 
the filter is left for engineering intuition. In this paper, tuning of 
the EKF is investigated using Particle Swarm Optimization 
(PSO). The simulation results show the superiority of the PSO 
tuned EKF over the conventional EKF 

                Keywords— Adaptive Filter; Extended Kalman Filter; Noise  
                 Covariances; Tuning; Particle Swarm Optimisation,  
                  Manoeuvring target tracking.  

I. INTRODUCTION 

N many tracking applications Kalman Filter (KF) is used to 
estimate the velocity, position and acceleration of a 

manoeuvring target from noisy radar measurements at high 
data rates. When the process is to be estimated and 
measurement model is nonlinear, EKF is used in which, the 
process is approximated to first order term of the Taylor’s 
expansion for calculating the mean and covariance of the 
random process [1]. The Kalman filter demands priori 
information about the noise covariances from the user [2]. 
Initial process and measurement noise covariances play an 
important role in convergence of the filter. If the noise 
covariances are not chosen properly it may leads towards 
degradation of the filter performance [3]. A few techniques for 
determining the process and measurement noise covariances 
for various applications have been discussed in the literature 
[4], [5] and widely used tuning method is least squares 
approach.  
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                Particle Swarm Optimization (PSO) is population 
based stochastic optimization technique inspired by social 
behavior of bird flocking or fish schooling in searching for 
food [6]. PSO exploits a population of individuals to probe 
promising regions of the search space. In the context, the 
population is called a swarm and the individuals are called 
particles. Each particle moves with an adaptable velocity 
within the search space, and retains in its memory the best 
position it ever encountered. In the global variant of PSO the 
best position ever attained by all individuals of swarms is 
communicated to all the particles.  

 The bistatic range and range rate based tracking is 
considered here for target tracking where a number of Radar 
receivers measures bistatic range (transmitter-target-receiver 
distance) and bistatic Doppler (bistatic range rate divided by 
the wave- length, at the frequency of the radar operation). If 
bistatic range and range rates are used for tracking then we can 
use wide band antennas in which we can perform signal 
processing at baseband frequencies [7]. 

 This paper implements PSO based tuned EKF, in which 
process noise and measurement covariances are tuned based 
on biologically inspired evolutionary computing tool.  

 Organization of this paper is as follows. The problem 
description presented in Section II. In Section III, the 
Extended Kalman Filtering algorithm and the New PSO Tuned 
Extended Kalman Filter are discussed. The manoeuvring target 
tracking modeling equations and CRLB bounds are derived in 
section IV. In Section V, simulations results are presented to 
compare the algorithm with an extended Kalman filter for 
maneuvering target tracking. Conclusions are presented in 
Section IV.  

II.  PROBLEM DESCRIPTION.  

 

In this paper target tracking environment is taken as shown 
in figure1. The transmitter is placed at High altitude and 
receivers are placed at different places which is called bistatic 
radar environment. If bistatic range and range rate are used to 
extract the information about target trajectories then we can  
use wide band antennas for tracking which facilitates signal 
processing at low frequencies. Because of the current day 
technologies cheaper and low power receivers are available, so 
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we can deploy number of receivers which gives accurate 
information about the target.  
 
 
 

 
 
 
 
 

 
Figure 1: Target Environment 

 

The state equation for the target motion could be 
approximated with a linear equation of the form  

kkkk GwxFX +=+1 ……. (1) 

Where kx is the state vector that contains state variables at 

time k, kF is state transition matrix, which relate system state 

k to k+1 time in the absence of forcing  function and  

),0(~ kk QNw which is assumed as zero mean white 

Gaussian noise with covariance kQ (called process noise 

covariance). G is the noise forcing matrix. 
 
 
 

The measurement model of the system can be written as 

kkkk vxHz +=   ……………… (2) 

Where kz measurement vector, kH is measurement matrix 

and ),0(~ kk Rv  which is assumed as zero mean white 

Gaussian noise with covariance kR (called measurement noise 

covariance). Both noises are assumed to be uncorrelated. The 
measurement equation above relates the state xk to the 
measurement zk.. 

 

 In practice of Initial estimate of the process is −0x and 

initial estimation of the error covariance matrix is −0P .  The 

priori estimation error is given by 
−− −= kkk xxe  …………………  (3) 
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Error covariance matrix is given by 

           
][0

T
kkeeEP =−  ..………………….. (4) 

The EKF algorithm starts with calculation of Kalman Gain 
which is given by  

1)( −−− += RHHPHPK T
k

T
kk  ..…… (5) 

The next step is to update the position using the new 
measurement which is given by  

)(ˆ −− −+= kkkkk HxzKxx ……..(6) 

From (6) we can say that based on the Kalman gain 
or the correction factor the estimated accuracy depends which 
in turn depends on initial noise covariance matrices. Selecting 
optimum parameters of these values gives optimum 
performance of the filter.  

Trial and error approach to obtain these tuning 
parameters is tedious process and doesn’t guarantee the 
accuracy of estimation in Mean Square Error (MSE) sense. 
Choosing optimum Parameters of noise covariance matrices, 
“i.e.” is tuning the filter is a challenging task for Kalman filter 
designer. 

In this paper another approach of tuning the Kalman 
filter based on the particle swarm intelligence is proposed. 

III . FILTER TUNING  

Tuning of the filter is referred as estimation of the noise 
covariance matrices [8]. It has been shown previously that the 
performance of an EKF process depends largely on the 
accuracy of the knowledge of process covariance matrix and 
measurement noise covariance matrix. Incorrect apriori 
knowledge of noise covariances may lead to performance 
degradation and it can even lead to practical divergence. 
Hence, intelligent method of estimation of these matrices 
becomes very important for online deployment. Measurements 
can be performed before the operation of the filter under 
various noise conditions and measurement noise covariances 
can be obtained off line.  
 

In literature it has been reported a pioneering work 
on adaptive estimation of noise covariance matrices and for 
Kalman filtering algorithm, based on correlation-innovations 
method that can provide asymptotically normal, unbiased and 
consistent estimates[9]. The other algorithm is based on the 
assumption that noise statistics is stationary and the model 
under consideration is a time invariant one. Later several 
research works have been reported in the same direction, 
employing many classical approaches. 

The hardware implementation problems, however, 
demand certain other factors such as process and noise 
covariances.  In practice, owing to the complex background 
and other inherent factors, the maneuverability of target has a 
larger randomness, and the acceleration is an important 
parameter reflected maneuverability of target, hence, when we 
design the Maneuvering target tracking (MTT) adaptive filter, 
it becomes an important problem of MTT that how to correctly 
estimate acceleration of target and reasonably adjust its 

covariance so as to that they can timely reflect the variety of 
maneuvering acceleration.  

A few techniques for determining the process and 
measurement noise covariances for various applications have 
been discussed in the literature [10].  

 
The innovations process can be used to adapt the 

covariances on-line. The drawback of the method is that it 
utilizes initial, and often unavailable, estimate of the 
covariance matrices, the output innovations, and the process 
model to estimate the model’s accuracy, as represented by the 
process noise statistics. 
 
A. Conventional Extended Kalman Filter 
 

Most processes in real life are unfortunately not 
linear, and therefore needs to be linearized before they can be 
estimated by means of a Kalman filter. The extended Kalman 
filter (EKF) solves this problem by calculating the Jacobian of  
f and h around the estimated state, which in turn yields a 
trajectory of the model function centred on this state. 

The extended Kalman filter extends the scope of 
Kalman filter to nonlinear optimal filtering problems by 
forming a Gaussian approximation to the joint distribution of 
state x and measurements z using a Taylor series based 
transformation. Extended Kalman filters is presented, which 
are based on linear and quadratic approximations to the 
transformation.  

Let us assume that our process has a state 

vector nx ℜε , but that the process is now governed by the 
non-linear stochastic difference equation        

),,( 11 −−= kkkk wuxfx …….(7)      

 With a measurement that is  

),( kkk vxhz = …………   (8) 

In this case the non-linear function in the difference 
equation above relates the state at the previous time step to the 
state at the current time step. It includes as parameters, any 
driving function uk and the zero-mean process noise wk. The 
non-linear function h course one does not know the individual 
values of the noise wk and vk at each time step. However, one 
can approximate the state and measurement vector without 
them as 

)0,,ˆ(~
1 kk uxfx −=  …………(9) 

 

and
                   

)0,~( kk xhz = ………….(10) 

 
Where is some aposteriori estimate of the state 

(from a previous time step k). Here the function h is linearized 
over a nominal trajectory and the algorithm is applied as 
shown below in figure2. 
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                      Figure2: EKF Algorithm 
 
B  Particle Swarm Optimization. 
 
The particle swarm algorithm is an adaptive algorithm based 
on a social-psychological metaphor; a population of 
individuals adapts by returning stochastically toward 
previously successful regions in the search space, and is 
influenced by the successes of their topological neighbors 
[11]. 
 

The Swarm of particles indicates estimates of 
multiple parameters involved in the problem. We can begin 
with initializing a random swarm of particles. During each 
iteration fitness of the particle is evaluated with the help of 
fitness function (Mean Square Error in our problem). 

 
The algorithm progressively replaces most fit 

parameters of each particle i.e. pbest, the best position of the 
particle itself.  

There exist another best position gbest which is the 
global best i.e. the best position in the swarm. Each particle 
has the influence of these two bests in their trajectories. The 
parameters of each particle are updated with the following 
equations. 

  
Velocity updation 

1( 1) . ( ) . .( ( ) ( ))i iv t w v t c rand pbest t x t+ = + −
+ 

                 2. .( ( ) ( ))ic rand gbest t x t−
….. (11) 

 
Position updation 

                  11 ++ += ttt vPP ……………….     (12) 

Where  
       p- instantaneous position of the particle  
      v- instantaneous velocity of the particle 
     Pbest-positional best of the particle 
      gbest-global best position of the swarm of                    
particles 
       W – Inertial weight factor 
      C1, C2 – acceleration coefficients 

 
The trajectory of the particle is dependent on three factors: its 
previous position, pbest and gbest. Greater the strain of the 
particle in searching food, smaller is the acceleration 
coefficients. The inertial weight factor w signifies the 
importance of the particle’s previous position in further search. 
 

 
 

Fig.3 Trajectory of particle after velocity  updation               
 
Thus each particle tend to move towards gbest to reach food 
early. If gbest has less number of values then the particles will 
reach the food early. The algorithm comes to an end when all 
the particles converge at that gbest i.e. food position. In our 
problem  i.e. attaining minimum possible value for MSE. 
 

The trajectory of each particle is influenced in a direction 
determined by the previous velocity and the location of gbest 
and pibesti. The two acceleration coefficients combined form 
what is analogous to the step size of an adaptive algorithm. 
Small acceleration coefficients tend to give a better search 
with slower convergence, while larger coefficients give a 
lesser search and faster convergence. The random ei vectors 
provide the randomness of the step between gbest and pbesti. 
The inertia weight controls the influence of the previous 
velocity. A single particle update is graphically illustrated in 
two dimensions in Figure 4. The new particle coordinates can 
lie anywhere within the bounded region, depending upon the 
weights and random components associated with each vector. 

 
Figure.4: Resultant direction of particles. 
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As new gbests are encountered during the update process, 
all other particles begin to swarm toward the new gbest, 
continuing to search along the way. The search regions 
continue to constrict as new pbestis are encountered. The 
algorithm is terminated when all of the particles in the swarm 
have converged to gbest or a suitable minimum error condition 
is met. 
 
The block diagram of PSO can be shown like this: 

 

 
Fig.5 Block Diagram of PSO 
 

C. Applying PSO in Filter Tuning  
We refer to filter tuning as a process of obtaining parameters 
of a filter such as values of matrices Q and R for EKF that give 
the best filter performance in Mean Square Error (MSE) sense. 
Typically this kind of problems of designing a filter with 
optimal tuning parameters was left up to engineering intuition, 
and trial and error method that do not guarantee best filter 
performance due to large number of parameters to be tuned. A 
straightforward way of tackling this problem is to employ 
global optimization method that minimizes function of MSE 
position error with respect to filter parameters. There are 
several issues associated with such an approach. First, each 
time we need a value of MSE during global optimization 
procedure we have to run EKF on all available data. This 
requires a significant computational time since for example in 
order to find a global minimum of a smooth function of 5 
parameters; we need to compute the function value many 
times.  

One of the practical solutions to these issues is to 
estimate approximate functional relation between tuning 
parameters and the MSE criterion of optimization in a 
deterministic way and then apply nonlinear global optimization 
method to find optimal parameters which correspond to 
minimum of MSE. 

Here in this problem we are tracking the target under 
different conditions such as nearly constant velocity, nearly 
constant acceleration and nearly constant turn. Therefore we 
have three power spectral densities of the corresponding 

continuous process noise, two parameters of measurement 
noise standard deviations (range and range rate) . So, a total of 
five  parameters have to be optimized. Taking the extreme 
worst cases of these five parameters, we proceed according to 
the Particle Swarm Optimization. 
 

IV.  M ATHEMATICAL M ODELING OF TARGET TRACKING 

USING BISTATIC AND RANGE RATE  M EASUREMENTS. 

 
Real Target Motion could be described by a large 

number of models, mixed in unknown ways     [12-17].  At this 
section, three motion models nearly constant velocity, nearly 
constant acceleration, and constant turn are described. Basic 
problem is to estimate the target kinematic state (position and 
velocity) from noise corrupted measurements. Since the output 
of the filtering algorithm is required to be Cartesian position 
and velocity, the target kinematic state can be described by the 
state vector defined in discrete time as 

T
zkykxkkkkk vvvzyxx ],,,,,[=

   …………. (13)
 

where T denotes matrix transpose, xk, yk and zk are the 
Cartesian target coordinates at time index k and 

kxv ,
kyv ,and

kzv are their respective derivatives (velocities). It 

is well known that if a derivative, such as range-rate, is 
measured, better performance can typically be obtained if an 
acceleration state is included in the filter In this case, 
acceleration is added to the state vector, which becomes 

T
zkykxkzkykxkkkkk aaavvvzyxx ],,,,,,,[ ,=

…… (14)
 

Where 
kxa ,

kya and 
kza are the target accelerations. 

For extracting three dimensional positions four wide 
band radars are used by employing triangulation method. Each 
radar-sensor measures bistatic range and bistatic Doppler. 
These measurements, after being processed locally (at each 
receiver) and transformed to bistatic range and bistatic velocity 
(forming bistatic tracks), are sent to the central station where 
they form the measurement vector of the central station 
filtering algorithm. The measurement vector is given by  

T
rrrrk vvvvrrrrz ][
43214321=

….. (15)
 

Where ri and are the bistatic range and bistatic 

range-rate, respectively, measured by the ith receiver. 
Taking as the origin the coordinate frame the 

transmitter, the relationship of each measurement with filter 
state vector is described via the non linear measurement 
model,  

kkk vxhz += )(  ………………………. (16) 

Mathematical Modeling  

 The target motion with constant velocity in state space model 
can represented as 
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                                                        ………………(17) 

Where Tk is the observation time. The process noise 
covariance matrix  

∫==
T

TT
kk dtGGwwEQ

0

2][ σ  


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

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=

3*33*3
2

3*3
2

3*3
3

1
**2/

*2/*3/

ItIt

ItIt
q

kk

kk

 …………….(18)

 

 

Where q1 is the level of power spectral density of continuous 
process noise.  

Nearly constant acceleration (NCA) model for manoeuvring 
target flight segment is is given by 
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The process noise covariance is  
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Where q2 is the level of power spectral density of 
corresponding continuous noise.  

 

A three dimensional nearly constant speed turn (NCT) 
manoeuvring flight segment is written as [10] 

kkk GwFxx +=+1                         ……… (20) 
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The process noise covariance is  
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V. CRAMER -RAO LOWER BOUND DERIVATION  

The optimal solution to the problem formulated cannot be 
derived analytically, even for the case of a single dynamic 
model, since the measurement equation is non linear. In the 
absence of optimal analytic solution, one has to resort to 
approximate solutions. However, the existence of a lower 
bound of performance would help the assessment of the level 
of approximation introduced by a particular algorithm. The 
bound will be derived under the assumption that process noise 
is zero and the model history is known [18-19]. 
The general framework for derivation of CRLB of an unbiased 
estimator for non linear discrete time is described. The CRLB 
for an unbiased estimator of the target state vector is given by 
the inverse of Fisher Information Matrix (FIM).Thus the error 
covariance matrix Pk is bounded from below as follows : 

……..(22) 

Where Jk in the Fisher Information matrix defined as    

 
                                                ………… (23) 
Where  being the gradient operator with respect to xk, and 
E{.} the expectation operator. The CRLBs of the state vector 
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components are calculated as the diagonal elements of the 
inverse information matrix 

      ……….(24) 
Information matrix can be calculated using the following 
recursion 

...(25
) 
and the initial value of this matrix is taken as  

                                ……(26) 
 

V. SIMULATION RESULTS 

 
The signal bandwidth was assumed to be 10MHz, 

concerning the target simulated motion, its initial position 
Firstly, as far as multistatic radar deployment is concerned, the 
transmitter is placed in [0, 0, 0m], while the four receivers are 
assumed to be at: (i) [31500, 0, -700 m]; (ii) [3500, -200 m]; 
(iii) [38500, 0, -500 m] and (iv) [35000, -3500, -300 m]. It 
should be underlined that the topology of the whole system 
affects directly the system performance since the multistatic 
radar resembles a large distributed antenna. As a consequence, 
the more distributed the elements-receivers the better the 
performance (tracking accuracy) obtained. The radar 
frequency of operation was selected to be at the lower is 

]1000400025000[][ 000 mmzyx =  

 
moving with nearly constant velocity system model with an 
initial velocity  

]/0/3.83/0[][
000

smsmsmvvv zyx −=  

 
for the first 50s.  
For the next 50 s the target makes a motion with nearly 
constant acceleration with initial acceleration of approximately 
1 g  

]/0/0/10[][ 222
111

smsmsmaaa zyx −=  

 
 It turns right for 25 s with initial acceleration being the 
acceleration of the last segment of motion and a nearly 
constant turn rate of 60/s, thus changing its heading by more 
than 1500. The maximum acceleration obtained during this 
phase is approximately 6g.  
 
Finally, the target resumes a nearly constant velocity motion, 
with the velocity it had attained at the end of the previous 
phase. 
 
The bistatic range measurement error deviation, the bistatic 
range-rate measurement error, process noise level of power 
spectral densities during constant velocity, constant 
acceleration, constant turn are tuned according to the PSO. 
Here the fitness function is a function of the RMS errors in the 
3 directions. In order to make the performance analysis more 

realistic, the parameters ranges are taken between the 
extremes. Finally, the sampling interval tk  was assumed to be 
1s (which means that the number of measurements is the same 
as time in seconds), while the detection and false alarm 
probabilities of radar equal to 1 and 0, respectively. The 
magnitude of the acceleration is divided by g (g = 9.8 m|s2).        
 
    

2
4

6
8

x 10
4

-2000 0 2000400060008000

0

500

1000

1500

2000

2500

3000

 

 

True

Estimated

 
 
Figure 6: Simulated target motion in three dimensions 
 
 
Figure 6 shows that the  PSO tuned filter accurately tracks the  
true motion. The projections of tracking on different planes are 
shown for further information. 
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Figure7: Simulated target motion in X-Y plane projections. 
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Figure8: Simulated target motion in Y-Z plane  
projections. 

0 2 4 6 8 10 12

x 10
4

0

1000

2000

3000

4000

5000

6000
X-Z Projection

X Axis

Z
 A

xi
s

 

 

True

Estimated

 
Figure9: Simulated target motion in X-Z plane projections. 
 
Figures 7-9 are projections drawn on X-Y, Y-Z, and X-Z 
respectively.  From these results also we can say that in all 
maneuvering motions filter tracking original position of the 
vehicle. 
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Figure 10: RMSE in X-Direction. 
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Figure 11: RMSE in Y-Direction. 
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Figure 12: RMSE in Z-Direction. 

 
When the RMS errors are compared in the 3 directions with 
the conventional EKF, it has observed that the PSO tuned EKF 
is outperforming the conventional EKF. 

VI. CONCLUSION. 

 
The work presented tuning Procedure for EKF and a 

comparison of two nonlinear filtering algorithms EKF and 

PSO Tuned EKF for maneuvering target tracking and their 

application to a multistatic radar system. The Cramer–Rao 

lower bound for the problem of maneuvering target tracking 

using multiple bistatic range and bistatic velocity 

measurements with switching dynamic models was firstly 

derived. The theoretical bound is conservative, being derived 

under the assumption that model history is known.  
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RMSE Conventional 

EKF (meters) 
Tuned EKF 
(meters) 

RMSE in X-
direction 

200 150 

RMSE in Y-
direction 

68 44 

RMSE in Z-
direction 

110 105 

 
   

Motivated by the idea of the EKF and the advantages of the 
new developed PSO tuned EKF, we have presented a new 
approach for estimating state in nonlinear system. Given its 
performance and implementation advantages in the example, 
we conclude that the new filter should be preferred over EKF 
and be efficient in many nonlinear filtering applications. 
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