
 

 

  
Abstract—The use of short sampling period in adaptive control 

has not been described properly when controlling the real process by 
adaptive controller. The new approach to analysis of on-line 
identification methods based on one-step-ahead prediction clears up 
their sensitivity to disturbances in control loop. On one hand faster 
disturbance rejection due to short sampling period can be an 
advantage but on the other hand it brings us some practical problems. 
Particularly, quantization error and finite numerical precision of 
industrial controller must be considered in the real process control. 
We concentrate our attention on dealing with adverse effects that 
work on real-time identification of process, especially quantization. It 
is shown; that a neural network applied to on-line identification 
process produces more stable solution in the rapid sampling domain. 
 

Keywords—Adaptive Controllers, Neural Networks for 
Identification, Comparison of Identifications methods, Rapid 
Sampling Domain.  

I. INTRODUCTION 
HE correct choice of the sampling period is a top-priority 
task in adaptive control. It is important to keep in mind, 
that long sampling period results problem with aliasing. 

On the other hands, rapid sampling causes problem with 
numerical stability. The most advantages of fast sampling are 
faster disturbances cancellation and smaller overshoot in the 
control process. 

When we use the classical identification method with a 
rapid sampling rate for a real time identification of a real 
dynamic plant, this method fails, though simulation (even with 
simulated disturbances) behaves differently. This fact is 
caused by existence of quantization in an A/D converter. The 
quantization effect, the real noise and other nonlinearities of 
the plant make on-line identification more complex than could 
be expected. We will show that a possible solution of this 
problem is using of an identification method based on neural 
networks. 
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II. ON-LINE IDENTIFICATION 
The basic idea of on-line identification is to compare the 

output of estimated system with the output of model during 
some time. The model is describable as a parameter vector. 
The aim is to adjust parameter until the model output is 
similar to the observed system output. The classical Recursive 
Least mean Square (RLS) identification method and gradient 
method compares only actual model output to system output, 
while the identification method based on neural network-
approaches compares outputs over some interval of time 
defined by length of a training set. 

A. Linear Regression 
The predicted output can be expressed as a linear function 

of vector )(kθ ; that is 

( ) ( ) ( )kθkky Tˆ ϕ=    (1) 
where )(T kϕ  is the vector of measured variables. We use a 

discrete time shift operator model ARX expressed in form 
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where ib and ja are in the vector )(kθ  parameters. 

( ) ( ) ( ) ( ) ( )[ ]T11 kakakbkbkθ nm LL=  (3) 
In accordance with (1) we write 

( ) ( ) ( ) ( ) ( )[ ]T1111 nkykymkukuk −−−−−−−−= LLϕ  (4) 

B. Classical RLS Identification 
RLS is a widely used method. It is often used in case that 

data comes continuously in time (e.g. on-line estimation). In 
each sampling period vector )(kθ is updated by 

( ) ( ) ( ) ( ) ( ) ( )( )kθkkykKkθkθ Tϕ−++=+ 11   (5) 

It is interesting to note that the model )1( +kθ  is updated 
through a prediction error that has a very small value even if 
inaccurate vector )(kθ  is used. This problem cause that RLS 
is sensitive to disturbances. 

The posterior information of the model errors is 
incorporated in covariance matrix )(kP  that is updated too 

( ) ( ) ( ) ( ) ( )kPkkKkPkP T 111 ++−=+ ϕ   (6) 
Vector of correction )1( +kK  is computed by applying 
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covariance matrix 

( ) ( ) ( ) ( ) ( ) ( )[ ] 111111 −
++++=+ kkPkkkPkK T ϕϕϕ  (7) 

C. Simple Gradient Identification 
Simple gradient identification is an older method, which 

become more popular by expansions of neural network 
techniques. It is suitable especially for fluently perturbed 
system identification. It has the worst quality for identification 
of unknown processes (from described methods), but its 
advantage is simplicity and small time-consuming 
computation. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )kθkθkkyμkθkθηkθkθ T 1111 +−++−−+=+ ϕ
 (8) 

You can note similarly to the RLS method that the model is 
updated by the same principle. That affects the similar 
problems like the RLS method. Parameter η is momentum 
constant and parameter μ is learning-rate constant. 

D. Identification Based on Neural Network with 
Levenberg-Marquardt Training Method 
The Levenberg-Marquardt iterative algorithm, gives a 

numerical solution to the problem of minimizing a sum of 
squares of generally nonlinear functions. We can consider a 
real dynamic system to be nonlinear because it contains 
nonlinear saturation, A/D (D/A) converters with constrained 
inputs (outputs) and quantization. The L-M identification 
works in accordance to the principle of searching of global 
minima of an error between the plant last outputs and model 
outputs through entire a states buffer 

( ) ( ) ( )[ ]pkkkkX −−= ϕϕϕ ...1)(  (9) 
The states buffer (training set) contains a certain number of 

last states of the plant, where p is a length of buffer. It is 
desirable to set the length of buffer that the buffer contains a 
time period invariant to the sampling rate. 

The minimization algorithm iterate certain number of 
iterations i at each identification step k 

( ) ( ) ( ) ( )[ ] ( ) ( )i|kEi|kJλIi|kJi|kJi|kθi|kθ TT 11 −
+−=+  (10) 

where ( )kiE  is a vector of errors (11) between model 

output and estimated system output )(kT  in (12): 

( ) ( ) ( )kθkXkTE(k) TT −=  (11) 
( ) ( ) ( ) ( )[ ]pky...kykykT −−= 1  (12) 

The Jacobian matrix ( )kiJ  represents the best linear 

approximation to a differentiable vector-valued function near 
a given point and is evaluated at each of iteration. 

( ) ( )
( )

( ) ( ) ( )( )
( ) ( )kX
kθ

kθkXkT
kθ
kEkJ T

TT

−=
∂
−∂

=
∂
∂

=
 (13) 

The (non-negative) damping factor λ is adjusted at each of 
iteration by evaluation of a quadratic error. 

III. QUANTIZATION EFFECT  
The quantization effect is more known for example in 

instrumentation theory or signal processing theory than in 
control theory. Furthermore, in control theory the 
phenomenon has been usually disregarded. It is due to the fact 
that the conditions used in process control allow the 
quantization effect to be ignored. Nowadays, when the 
sampling period is demanded to be very short and the 
requirements for the control precision are higher than before, 
the quantization effect plays considerable role in the practical 
control. 

A. Quantization Error 
The process control of continuous time system and the 

control of sampled continuous time system are two different 
fields. It happens that the controller design is created without 
precise knowledge of sampling, shaping and quantization 
effect. 

The A/D and D/A converters are necessary parts of each 
real-time system [2]. The basic feature of the converters is to 
convert continues signal to discrete values and back (see 

Fig. 1). 
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The quantization error e is limited to quantization band ≡ 1 

LSB. The quantization range RANGEQ  and the quantization 
resolution RESQ  are basic parameters for definition of the 

quantization band. For example 25622 8RES ==Q  number of 
codes is given for RESQ . Next, for bipolar converters ±10 V 

the quantization band is BANDQ = 10/256 = 39.1 mV≈ 
≈ 0.04 V. Therefore the value in finite word-length precision 
is numerically rounding off to the three valid places divisible 
by ≈ 0.04 V. 

The quantization error may be modeled as deterministic or 
stochastic signal in linear analysis. In deterministic model, the 
error is modeled as constant having the size of quantization 
errors and with the resolution in the arithmetic calculation. In 
the stochastic model, the error introduced by rounding or 
quantization is than described as additive white noise with 
rectangular distribution [1]. Next paper [3] deals with 
quantization analysis and shows cases where after 
linearization the round off quantization error is uncorrelated 
with quantizer input. 

Let us consider the modeling of quantizer. The model can 
be built from quantization effect description to show the 
disturbance properties of quantization effect. The model can 
be seen in Fig. 2, where the linear part of value Lu  is 
disturbed by non-linear part represented as quantization error 
e. This point of view is very simple, given from description of 

 
 

Fig. 1 the real model with A/D and D/A converters 
represented as quantizer 
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quantization effect and it gives us the beginning point for 
explanation of quantization effect. 

It can be written that 
)(ufueuu qLq =+=

 (15) 
where f(·) is exact non-linear function. The idea to derive 

presented equation explains answer to the question how the 
quantization error arises. It is shown that quantization error is 
dependent on quantizer input signal. 

Fig. 2 principal model of quantization effect 
 
This dependence is negligible as long as the sampling 

period is not too short and the numerical precision of 
quantizer error added to output is insignificant. In our case 
where the process control needs short sampling period, it is 
clearly shown that quantization error e is not independent 
from quantizer input u and hence cannot be treated as the 
independent additive noise [4], [5]. Next the quantization error 
cannot be treated as the Gaussian or even white noise because 
it is directly derived from quantizer input. It means that the 
noise is deterministic and it can be predicted. For example the 
quantization error is bigger when the amplitude of quantizer 
input is smaller. 

B. The Limitation of Sampling Rates 
The limitation of sampling rates in identification based on 

prediction error method. The correct setting of a sampling 
period in case of identification is described in [6]. The authors 
advise, without detailed analysis, setting of the sampling 
period empirically by the bandwidth Bw  of a close loop. The 
domain, where is the sampling faster than the recommended 
one, is called Rapid Sampling. 

A typical adaptive controller works with an unchangeable 
sampling period (the operating system doesn’t allow a change 
of cycle time without a new initialization of the system), thus, 
when we demand high-adaptive algorithm, we get to rapid 
sampling domain easily. It will be shown; the boundaries of 
the domain are fuzzy and depending on disturbances in 
control loop. 

We have cleared up that the sampling period is set, so the 
performance of identification will consider to the relative time 
constant. In this case it holds that with rising relative time 
constant of plant identification became more difficult. 

We define the relative time constant as follows: 

S

G
REL T

TT =
 (16) 

where GT  is a global time constant of plant. ST  is a sample 
time. 

Prediction error methods (PEM) updates the model of a 
plant by prediction error ),( θke : 

( ) ( ) ( ) ( )kθkkyk,θe Tϕ−=  (17) 
where y(k) is an actual output of plant and part )()(T kk θϕ  

is a predicted output by model )(kθ  with values of last plant 
inputs and outputs. 

We define quadratic prediction error iEP  

( )( )∑
=

=
S
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i

T
T

k
iSE k,θeTP

0

2

 (18) 

tT  is computation interval by lasting simulation; for (19) 

we used 100=tT s. Prediction error ),( θke  falls 

exponentially to noise level by rising RELT  (16). The main 
disadvantage of PEM methods is obvious form Fig. 3. The 
figure shows relation between quadratic prediction error iEP  
and relative time constant. The predicted system had transfer 
function (19). His predictors iθ  (the parameters of predictor 
model iF ) was discrete equivalents of systems (20): Predictor 

1 – 1F (s); Predictor 2 – 2F (s); Predictor 3 – 3F (s) – only for 
comparison very bad estimation of (19).  
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The theoretic boundary of RELT  is given by levels of 
quantization noise of A/D converters (10-bit and 16 bit one is 
shown in the Fig. 3). 

 
Fig. 3 the relation between prediction error iEP  and relative 

time constant for different predictors iF (s) 
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IV. THE INFLUENCE OF RAPID SAMPLING AND QUANTIZATION  
In this section is the influence of rapid sampling and 

quantization on the applicability of identification methods 
described. In the last section, we explained that there is an 
upper bound of a sampling rate (or relative time constant) at 
prediction error methods. Now, we will show, that the 
identification method based on a neural networks approach 
with Levenberg-Marquardt training algorithm provides better 
estimate of a model dynamics than the gradient method and 
RLS method. This is caused by an accumulation of prediction 
error by training set (13). 

The validation of the trained model by one-step prediction 
error is insufficient (see last section), therefore we validate 
similarity between plant and its model by cumulating 
difference between output of plant and free model. In each 
step we compute free prediction error: 

( ) ( ) ( ) ( )kθk,θkyk,θe Tϕ−=V  (21) 

 
Fig. 4 the influence of sampling period and quantization 

(from 10-bit to 20-bit converter) on the performance of a RLS 
algorithm identification 

 
Fig. 5 the influence of sampling period and quantization 

(from 10-bit to 20-bit converter) on the performance of a 
Simple Gradient Algorithm identification 

 
Now, the content of the regression vector ),(T θϕ k  depend 

on the model )(kθ  which is adjusted in each step by a tested 
method. The criterion of similarity between plant and model:  

( )( )∑
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Fig. 6 the influence of sampling period and quantization 

(from 10-bit to 20-bit converter) on the performance of an 
Identification based on neural network with Levenberg-
Marquardt training method 

 
Each identification method estimates parameters of plant 

(19). The gain of plant is perturbed by 50%. 
The values of (22) are shown in next Fig. 4, Fig. 5 and 

Fig. 6 for each identification method and depend on sampling 
rates and quantization. Note that the identification based on a 
neural network gives less accurate solution, but it produces the 
most stable solution in the rapid sampling domain. This 
feature is more obvious in real system control (see Fig. 6). 

V. ADAPTIVE CONTROL 
Application that on-line parameter identification can be put 

to is in adaptive control. The idea of adaptive controllers (or 
self-tuning controllers) is to combine an on-line identification 
with on-line control law synthesis. Many of control law 
synthesis approaches are based on two methods – pole 
placement and inversion of dynamic. Both of the methods are 
numerically sensitive to the bad-estimated model of a plant.  

    
Fig. 7 the architecture of the adaptive heuristic controller 

based on modified Ziegler-Nichols open loop method 
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The requirement for correctly computed vector θ  is not 
often fulfilled during controlling of a real system with a higher 
order. Therefore, we use simple heuristic synthesis based on 
modified Z-N 1 method. The basis architecture of the adaptive 
controller we discussed is shown in Fig. 7.  

%108.0 TL =     LT
YR

−
=

%90

%100

  
;
 (23) 

;8.0
RL

KP = ;5.0;3 DI LTLT ==  (24) 

Fig. 8 the characteristic points used for a tuning of the 
adaptive heuristic controller based on modified Ziegler-
Nichols open loop method 

 
The step response generator generates the sequence RY  of a 

step response of the estimated model θ . Then, the state 
machine finds characteristic points 10%Y , 90%Y  and 100%Y  in 

the sequence RY  (Fig. 8). These values are used to design the 
PID discrete controller according modification [10] – (23), 
(24). 

A. Real Process Control Results  
The comparison of a controller that uses RLS identification 

method with a controller that uses identification based on 
neural network with Levenberg-Marquardt training method is 
shown. The real process control proves the advantages of the 
second identification method. The transfer function of 
controlled dynamic system was 

( )
( )( )21110

1
++

≈
ss

sF
 (25) 

with interval of linearity <-6, 7> (V). 
Fig. 9 and Fig. 10 shows the both methods of identification 

applied in an adaptive control. Both controllers work with the 
same settings. The sampling period was set to ST = 0.1 s. The 
short sampling period is used in order to reduce an overshot 
and mainly for a disturbance cancellation. 

VI. CONCLUSION 
This paper discus influences affecting the process of 

identification at rapid sampling domain. We compared three 
methods of on-line identification: the recursive least square 

method, the gradient identification method and the 
identification method based on neural network approach with 
Levenberg-Marquardt minimization. On the basis of section 5 
we applied the neural estimator for an adaptive control. 

The real process control shows the advantage of using 
identification based on neural networks in the real application 
against the classical identification methods. The identification 
based on a neural network gives less accurate solution, but it 
produces the most stable solution in the rapid sampling 
domain. 

It was shown that: 
Quantization deeply affects a performance of identification.  
Neural networks based identification enables plants with 

greater RELT  to be used in adaptive control process (with 
shorter sampling period). 

Fig. 9 real process control; RLS identification method (12–
bit A/D and D/A converter) 

Fig. 10 real process control – identification method based 
on neural network (12–bit A/D and D/A converter) 

 
On-line control law synthesis with step response generator 

provides stable coefficients of discrete PID controller. 
Application that on-line parameter identification can be put 

to is in adaptive control. The idea of adaptive controllers (or 
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self-tuning controllers) is to combine an on-line identification 
with on-line control law synthesis. The basis architecture for 
the adaptive controller is discussed in [9]. We used some 
variant of this architecture. 
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