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ABSTRACT

An adaptive sliding-mode control system, which is insen-
sitive to uncertainties, is proposed to control the position of
an induction motor drive. The designed sliding mode control
presents an adaptive switching gain to relax the require-
ment for the bound of uncertainties. The switching gain is
adapted using a simple algorithm which do not implies a
high computational load. Stability analysis based on Lyapunov
theory is also performed in order to guarantee the closed loop
stability. Finally simulation results show, on the one hand that
the proposed controller provides high-performance dynamic
characteristics, and on the other hand that this scheme is robust
with respect to plant parameter variations and external load
disturbances.

I. INTRODUCTION

In recent years the induction motors have been increasingly
taking place of the DC motors in high performance electrical
motor drives [5]. The main advantage of the DC motors is that
their speed control can be carried out in a simple way, since
the torque and flux are decoupled. However, the technique of
vectorial control [3] based on the rotor field orientation applied
to the induction motors provides the decoupling between the
torque and flux in a similar way to the DC machine. Therefore,
with the progress of the power electronics and the appearance
of low cost and very fast microprocessors, the induction motor
drives have reached a competitive position compared to DC
machines. However, the control performance of the resulting
linear system is still influenced by uncertainties, which usually
are composed of unpredictable parameter variations, external
load disturbances and unmodelled and nonlinear dynamics [4].
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In the past decade, the variable structure control strategy
using the sliding-mode has been focussed on many studies and
research for the control of the AC servo drive system [2], [1].
The sliding-mode control offers many good properties, such as
good performance against unmodelled dynamics, insensitivity
to parameter variations, external disturbance rejection and fast
dynamic response [6]. These advantages of the sliding-mode
control may be employed in the position and speed control of
an AC servo system. However, the traditional sliding control
schemes require the prior knowledge of an upper bound for
the system uncertainties using this bound for the switching
gain calculation. This upper bound should be determined as
precisely as possible, because the higher is the upper bound,
the higher value should be considered for the sliding gain,
and therefore the control effort will also be high which is
undesirable in practice. Then, to relax the requirement for the
bound of uncertainties, an sliding mode control scheme with
adaptive switching gain is proposed to control the induction
motor drive. The switching gain is adapted using a simple
algorithm which do not implies a high computational load.

II. INDUCTION MOTOR MODEL

A dynamic model of an induction motor in a synchronously
rotating d-q reference frame expressed in terms of state
variables is given by the following equations [3]:
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where isd and isq are d-q components of the stator current;
Vsd and Vsd are d-q components of the the stator voltage;
ψrd and ψrq are d-q components of the rotor flux linkage;

σ = 1− L2
m

LrLs
is the leakage coefficient; Ls, Lr and Lm are

stator, rotor and mutual inductances; Rs and Rr are stator and
rotor resistances; we is the synchronous speed; and wr is the
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stator electrical speed; τr =
Lr

Rr
is the rotor time constant; Te

is the induction motor torque and p is the is the pole numbers.

The relation between the synchronously rotating reference
frame and the stationary reference frame is performed by the
so-called reverse Park’s transformation:
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where θe is the angle position between the d-axis of the
synchronously rotating reference frame and the a-axis of the
stationary reference frame, and it is assumed that the quantities
are balanced.

The main objective of the vector control of induction motor
is, as in direct current (DC) drives, to control the torque and the
flux independently. This DC machine-like performance is only
possible if the current component isd is oriented (or aligned)
in the direction of flux ψ̄r and the other current component
isq is established perpendicular to it (field orientation control
principle). This means that we may control the current is by
means of isq without affecting the flux ψ̄r, and similarly, when
the flux ψ̄r is controlled by means of isd the q-component of
the current isq is not affected [3].

Under this condition of field orientation control it is satisfied
that:

ψrq = 0, ψrd = |ψ̄r| (3)

Then, the dynamic equations (1) may be simplified to:
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Therefore, for the ideal decoupling, the torque equation (8)
become analogous to the DC machine as follows:
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where KT is the torque constant, and is defined as follows:
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4
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where ψ∗rd denotes the command rotor flux.

And from eqn. (7) the slip frequency wsl can be expressed as
follows:

wsl = we − wr =
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τr

isq

ψrd
(11)

The dynamic equations (4) and (5) can be decoupled by
means of voltage decoupled control, choosing the inverter
output voltages such that:
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where the symbol ’*’ denotes command magnitudes.

III. VARIABLE STRUCTURE ROBUST SPEED CONTROL WITH
ADAPTIVE SLIDING GAIN

In general, the mechanical equation of an induction motor
can be written as:

Jẇm + Bwm + TL = Te (13)

where J and B are the inertia constant and the viscous friction
coefficient of the induction motor system respectively; TL is
the external load; wm is the rotor mechanical speed in angular
frequency, which is related to the rotor electrical speed by
wm = 2 wr/p where p is the pole numbers and Te denotes
the generated torque of an induction motor.

Substituting equation (9) in the equation (13) the mechanical
equation becomes:

ẇm + awm + f = b iqs (14)

where the parameter are defined as:

a =
B

J
, b =

KT

J
, f =

TL

J
; (15)

Now, we are going to consider the previous mechanical
equation (14) with uncertainties as follows:

ẇm = −(a +4a)wm − (f +4f) + (b +4b)iqs (16)

where the terms 4a, 4b and 4f represents the uncertainties
of the terms a, b and f respectively. It should be noted
that these uncertainties are unknown, and that the precise
calculation of its upper bound are, in general, rather difficult
to achieve.

Let us define define the tracking speed error as follows:

e(t) = wm(t)− w∗m(t) (17)

where w∗m is the rotor speed command.

Taking the derivative of the previous equation with respect
to time yields:

ė(t) = ẇm − ẇ∗m = −a e(t) + u(t) + d(t) (18)
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where the following terms have been collected in the signal
u(t),

u(t) = b iqs(t)− aw∗m(t)− f(t)− ẇ∗m(t) (19)

and the uncertainty terms have been collected in the signal
d(t),

d(t) = −4awm(t)−4f(t) +4b iqs(t) (20)

To compensate for the above described uncertainties that
are presented in the system, it is proposed a sliding adaptive
control scheme. In the sliding control theory, the switching
gain must be constructed so as to attain the sliding condition
[6]. In order to meet this condition a suitable choice of the slid-
ing gain should be made to compensate for the uncertainties.
For selecting the sliding gain vector, an upper bound of the
parameter variations, unmodelled dynamics, noise magnitudes,
etc. should be known, but in practical applications there
are situations in which these bounds are unknown, or at
least difficult to calculate. A solution could be to choose a
sufficiently high value for the sliding gain, but this approach
could cause a to high control signal, or at least more activity
control than it is necessary in order to achieve the control
objective. One possible way to overcome this difficulty is to
estimate the gain and to update it by some adaptation law, so
that the sliding condition is achieved.

The sliding variable S(t) is defined with an integral com-
ponent as:

S(t) = e(t) +
∫ t

0

(a + k)e(τ) dτ (21)

where k is a constant gain, and a is a parameter that was
already defined in equation (15).

and the sliding surface is defined as:

S(t) = 0 (22)

Now, we are going to design a variable structure speed
controller, that incorporates an adaptive sliding gain, in order
to control the AC motor drive.

u(t) = −k e(t)− β̂(t)γ sgn(S) (23)

where the k is the gain defined previously, β̂ is the estimated
switching gain, γ is a positive constant, S is the sliding
variable defined in eqn. (21) and sgn(·) is the signum function.

The switching gain β̂ is adapted according to the following
updating law:

˙̂
β = γ |S| β̂(0) = 0 (24)

where γ is a positive constant that let us choose the adaptation
speed for the sliding gain.

In order to obtain the speed trajectory tracking, the follow-
ing assumptions should be formulated:

(A 1) The gain k must be chosen so that the term (a + k)
is strictly positive. Therefore the constant k should
be k > −a.

(A 2) There exits an unknown finite non-negative switching
gain β such that

β > dmax + η η > 0

where dmax ≥ |d(t)| ∀ t and η is a positive
constant.

Note that this condition only implies that the uncer-
tainties of the system are bounded magnitudes.

(A 3) The constant γ must be chosen so that γ ≥ 1.
Theorem 1: Consider the induction motor given by equa-

tion (16). Then, if assumptions (A 1), (A 2) and (A 3) are
verified, the control law (23) leads the rotor mechanical speed
wm(t) so that the speed tracking error e(t) = wm(t)−w∗m(t)
tends to zero as the time tends to infinity.

The proof of this theorem will be carried out using the
Lyapunov stability theory.

Proof:Define the Lyapunov function candidate:

V (t) =
1
2
S(t)S(t) +

1
2
β̃(t)β̃(t) (25)

where S(t) is the sliding variable defined previously and
β̃(t) = β̂(t)− β

Its time derivative is calculated as:

V̇ (t) = S(t)Ṡ(t) + β̃(t) ˙̃
β(t)

=S · [ė + (a + k)e] + β̃(t) ˙̂
β(t)

=S · [(−a e + u + d) + (k e + a e)] + β̃ γ|S|
=S · [u + d + k e] + (β̂ − β)γ|S|
=S ·

[
−k e− β̂γ sgn(S) + d + k e

]
+ (β̂ − β)γ|S|

=S ·
[
d− β̂γ sgn(S)

]
+ β̂γ|S| − βγ|S|

=dS − β̂γ|S|+ β̂γ|S| − βγ|S| (26)
≤|d||S| − βγ|S|
≤ |d||S| − (dmax + η)γ|S|
= |d||S| − dmax γ|S| − η γ|S|
≤−η γ|S| (27)

then
V̇ (t) ≤ 0 (28)

It should be noted that in the proof the equations (21), (18),
(23) and (24) have been used , and the assumptions (A 2) and
(A 3).

Using the Lyapunov’s direct method, since V (t) is clearly
positive-definite, V̇ (t) is negative semidefinite and V (t) tends
to infinity as S(t) and β̃(t) tends to infinity, then the equilib-
rium at the origin [S(t), β̃(t)] = [0, 0] is globally stable, and
therefore the variables S(t) and β̃(t) are bounded. Since S(t)
is also bounded then it is deduced that e(t) is bounded.

On the other hand, making the derivative of equation (21)
it is obtained that,

Ṡ(t) = ė(t) + (a + k)e(t) (29)
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then, substituting the equation (18) in the equation (29),

Ṡ(t) = −ae(t) + u(t) + d(t) + (a + k)e(t)
= ke(t) + d(t) + u(t) (30)

From equation (30) we can conclude that Ṡ(t) is bounded
because e(t), u(t) and d(t) are bounded.

Now, from equation 26 it is deduced that

V̈ (t) = d Ṡ − β γ
d

dt
|S(t)| (31)

which is a bounded quantity because Ṡ(t) is bounded.

Under these conditions, since V̈ is bounded, V̇ is a
uniformly continuous function, so Barbalat’s lemma let us
conclude that V̇ → 0 as t →∞, which implies that S(t) → 0
as t →∞.

Therefore S(t) tends to zero as the time t tends to infinity.
Moreover, all trajectories starting off the sliding surface S = 0
must reach it in finite time and then will remain on this surface.
This system’s behavior once on the sliding surface is usually
called sliding mode [6].

When the sliding mode occurs on the sliding surface (22),
then S(t) = Ṡ(t) = 0, and therefore the dynamic behavior
of the tracking problem (18) is equivalently governed by the
following equation:

Ṡ(t) = 0 ⇒ ė(t) = −(a + k)e(t) (32)

Then, under assumption (A 1), the tracking error e(t) con-
verges to zero exponentially.

It should be noted that, a typical motion under sliding mode
control consists of a reaching phase during which trajectories
starting off the sliding surface S = 0 move toward it and
reach it in finite time, followed by sliding phase during which
the motion will be confined to this surface and the system
tracking error will be represented by the reduced-order model
(32), where the tracking error tends to zero.

Finally, the torque current command, i∗sq(t), can be obtained
directly substituting eqn. (23) in eqn. (19):

i∗sq(t) =
1
b

[
k e− β̂γ sgn(S) + aw∗m + ẇ∗m + f

]
(33)

Therefore, the proposed variable structure speed control
with adaptive sliding gain resolves the speed tracking problem
for the induction motor, with some uncertainties in mechanical
parameters and load torque.

IV. SIMULATION RESULTS
In this section we will study the speed regulation perfor-

mance of the proposed adaptive sliding-mode field oriented
control under reference and load torque variations by means
of simulation examples.

The block diagram of the proposed robust control scheme
is presented in figure 1.

The block ‘VSC Controller’ represents the proposed adap-
tive sliding-mode controller, and it is implemented by equa-
tions (21), (33) and (24). The blocks ‘dq → abc’ makes the
conversion between the synchronously rotating and stationary
reference frames, and is implemented by equation (2). The
block ‘i∗sdq → V ∗

sdq’ represents the voltage decoupled control
which transforms the stator current reference to the stator
voltage reference and it is implemented by equation (12). The
block ‘PWM Inverter’ is a six IGBT-diode bridge inverter
with 780 V DC voltage source. The block ‘Field Weakening’
gives the flux command based on rotor speed, so that the
PWM controller does not saturate. The block ‘i∗ds Calculation’
provides the current reference d-component from the rotor flux
reference through equation (6). The block ‘wsl calculation’
calculates the slip frequency and it is implemented by the
equation (11). The block ‘IM’ represents the induction motor.

The induction motor used in this case study is a 50 HP, 460
V, four pole, 60 Hz motor having the following parameters:
Rs = 0.087Ω, Rr = 0.228Ω, Ls = 35.5 mH , Lr =
35.5 mH , and Lm = 34.7 mH .

The system has the following mechanical parameters: J =
1.662 kg.m2 and B = 0.12 N.m.s. It is assumed that there
are an uncertainty around 20 % in the system parameters, that
will be overcome by the proposed adaptive sliding control.

The following values have been chosen for the controller
parameters: k = 25 and γ = 15.

In the example the motor starts from a standstill state and
we want the rotor speed to follow a speed command that starts
from zero and accelerates until the rotor speed is 120 rad/s.
The system starts with an initial load torque TL = 0 N.m,
and at time t = 1 s the load torque steps from TL = 0 N.m to
TL = 250 N.m and it is assumed that there is an uncertainty
around 70 % in the load torque.

Figure 2 shows the desired rotor speed (dashed line) and
the real rotor speed (solid line). As it may be observed, after
a transitory time in which the sliding gain is adapted, the rotor
speed tracks the desired speed in spite of system uncertainties.
However, at time t = 1 s a little speed error can be observed.
This error appears because of the torque increment at this
time, and then the control system lost the so called ‘sliding
mode’ because the actual sliding gain is too small to overcome
the new uncertainty introduced in the system due to the new
torque. But then, after a small time the sliding gain is adapted
so that this gain can compensate the system uncertainties and
so the rotor speed error is eliminated.

Figure 3 presents the time evolution of the estimated sliding
gain. The sliding gain starts from zero and then it is increased
until its value is high enough to compensate for the system
uncertainties. Then at time 0.21 s the sliding gain is remained
constant because the system uncertainties remain constant as
well. Later at time 1 s, there is an increment in the system
uncertainties caused by the rise in the load torque. Therefore
the sliding gain is adapted once again in order to overcome the
new system uncertainties. As it can be seen in the figure, after
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the sliding gain is adapted it remains constant again, since the
system uncertainties remains constant as well.

Figure 4 shows the motor torque. This figure shows that in
the initial state, the motor torque has a high initial value in the
speed acceleration zone because it is necessary a high torque
to increment the rotor speed owing to the rotor inertia, then
the value decreases in a constant region and finally increases
due to the load torque increment.
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V. CONCLUSION
In this paper a new adaptive sliding mode vector control

has been presented. Due to the nature of the sliding control
this control scheme is robust under uncertainties caused by
parameter error or by changes in the load torque. Moreover, the
proposed variable structure control incorporates an adaptive
algorithm to calculate the sliding gain value. The adaptation
of the sliding gain, on the one hand avoids the necessity
of computing the upper bound of the system uncertainties,
and on the other hand allows to employ as smaller sliding
gain as possible to overcome the actual system uncertainties.
Then the control signal of our proposed variable structure
control scheme will be smaller than the control signals of
the traditional variable structure control schemes, because in
the last one the sliding gain value should be chosen high
enough to overcome all the possible uncertainties that could
appear in the system along the time. Finally, by means of
simulation examples, it has been shown that the proposed
control scheme performs reasonably well in practice, and that
the speed tracking objective is achieved under uncertainties in
the parameters and load torque.

Acknowledgements: The authors are very grateful to the
Basque Country University for the support of this work
through the research projects 1/UPV 00146.363-E-16001/2004
and EHU 06/88. They are also grateful to the Basque Gov-
ernment and MEC by its partial support through project S-
PE06UN10 and projects DPI2006-01677 and DPI2006-00714,
respectively.

REFERENCES
[1] BARAMBONES, O. AND GARRIDO, A.J., 2004, A sensorless

variable structure control of induction motor drives, Electric
Power Systems Research, 72, 21-32.[2] BENCHAIB, A. AND EDWARDS, C., 2000, Nonlinear sliding
mode control of an induction motor, Int. J. of Adaptive Control
and Signal Procesing, 14, 201-221.[3] BOSE, B.K., 2001, Modern Power Electronics and AC Drives.,
Prentice Hall, New Jersey.[4] CHERN, T.L., CHANG, J. AND TSAI, K.L.,1998, Integral vari-
able structure control based adaptive speed estimator and resis-
tance identifier for an induction motor. Int. J. of Control, 69,
31-47.[5] LEHONHARD, W., 1996, Control of Electrical Drives. Springer,
Berlin.[6] UTKIN V.I., 1993, Sliding mode control design principles and
applications to electric drives, IEEE Trans. Indus. Electro., 40,
26-36.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Vol. 1, 2007                                                                         77



wsl

Calculation

i∗sdq → V ∗

sdq dq → abc

6

-- VSC
Controller

-

IM

PWM
Inverter

-V ∗

sabc

� isabc

V ∗

sdq

dq ← abc
isdq

+

+

Field
Weakening

i∗sd

Calculation
-

wr

-

i∗sq

i∗sd

ψ∗

rd

-
-

we

6

-

w∗

r

wr

−

+

i∗sq

e

ψ∗

rd

-
-

-

-

-
wsl

?

�

Fig. 1. Block diagram of the proposed adaptive sliding-mode control

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Vol. 1, 2007                                                                           78


	Manurcript Received January 3, 2007: 
	Revised  April 18, 2007: 


