
 

 

  
Abstract— Kernels play a role in time-frequency (TF) analysis of 

signals. Various types of kernels have been introduced in TF analysis. 
Usually, different types of kernels (i.e., kernels in different function 
form) correspond different types of TF distributions (TFDs). From a 
view of pattern matching, however, different TFDs may achieve the 
similar TFD result for a same signal if the used kernels are arranged 
such that they are similar in pattern under a certain condition. Essential 
issues in this regard are 1) which kernels may be similar in pattern and 
2) under what conditions their patterns are similar. The answers to 
those issues are meaningful in TF analysis. 
    As a stage work, this paper gives an experimental analysis of the 
pattern similarity between two types of kernels, the typical 
Born-Jordan kernel (i.e., Sinc kernel) and the Bessel one. Correlation 
coefficient is used to measure the pattern similarity. We present the 
correlation curve between two and propose the quantitative conditions 
that both kernels are similar and dissimilar. The analysis shows that the 
maximum similarity between them may reach 0.987 when the value of 
a scaling factor of Bessel kernel equals to 0.18. On the other hand, the 
minimum of the correlation between them is less than or equal to 0.55 
when the scaling factor is less than or equal to 0.01. Hence, this paper 
suggests that Bessel kernel is more flexible than the typical 
Born-Jordan’s in TF analysis. A case study is demonstrated. 
 

Keywords— Time-frequency analysis, Born-Jordan distribution, 
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I. INTRODUCTION 
IME-frequency (TF) analysis is a powerful tool in analyzing 
non-stationary signals [1-5, 22, 23]. The general 

representation of TF distribution (TFD) of a signal in the 
Cohen’s class is given by 

GTFD(t, ω) = 
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where f(t) is a signal to be analyzed, Φ(u, τ) is a transform 
kernel, and ∗ the complex conjugate. The following is called 
ambiguity function of f(t), 

A(u, τ) ( ) ( )
2 2

juxf x f x eτ τ
+∞

∗

−∞

= + −∫ dx.                            (2) 

From (1) and (2), one may obtain GTFD(t, ω) given by 
GTFD(t, ω) = F[A(u, τ)Φ(u, τ)],                                  (3) 

where F stands for the operator of the Fourier transform. 
Suppose f(t) is real. Then, expanding it into a Fourier series 
yields 

f(t) = ΣAncos(nω1t + ϕn),                                             (4) 
where An and ϕn denote the amplitude and the initial phase of the 
nth harmonic, respectively. Because 

f(t + τ/2)f(t − τ/2)  
= ΣAncos[nω1(t + τ/2) + ϕn]ΣAncos[nω1(t − τ/2) + ϕn], (5) 

A(u, τ) contains both auto-terms being useful information we 
expect and cross-terms being harmful as they may obscure the 
auto-terms. For instance, if f(t) = 10sin(3π/44) as shown in Fig. 
1 (a), one will observe some cross-terms contained in the 
product 

f(t + τ/2)f(t − τ/2), 
see Fig. 1 (b). 
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Fig. 1. Observation of cross-terms. (a) f(t) = 10cos(3π/22).  
(b) f(t + τ/2)f(t − τ/2). 

Experimental Analysis of Pattern Similarity 
between Bessel Kernel and Born-Jordan Kernel 

Ming Li 1, Xue-Kang Gu 2, and Wei Zhao 3 

T

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007                                                                 150



 

 

 
To suppress cross-terms as many as possible, a kernel is 

utilized. However, when a kernel is used, auto-terms may 
probably be sacrificed as a side effect of cross-terms 
suppressing. For that reason, great efforts have been made in 
studying different types of kernels, see e.g., [3, 7-16]. Utilizing 
different types of kernels yields different types of TFDs. For 
instance, 

ΦW(u, τ) = 1 
corresponds to the Wigner’s distribution [1, 5]. The 
Choi-Williams’ distribution takes the following Gaussian 
function as its kernel (CWK) 

ΦCW(u, τ) =
2 2u

e
τ

σ
−

(σ > 0), 
where σ is a scaling factor [7]. For the typical Born-Jordan 
distribution (Born-Jordan distribution or BJD for short) [1, 8], 
the kernel (BJK) is given by 

ΦBJ(u, τ) = Sinc(uτ),                                                    (6) 
where 

Sinc(x) = sin( ) .x
x

  

For the Bessel distribution (BD), its kernel (BK) is written by 

ΦB(u, τ) = 1(2 ) ,J u
u

πα τ
πα τ

                                              (7) 

where J1 is the first kind Bessel function of order one and α > 0 
is a scaling factor [3]. When 0 < α ≤ 0.5, BD preserves the TF 
support properties [3]. Figs. 2 (a) ~ (b) indicates BK and BJK, 
respectively. 

BK  
(a) 

BJK  
(b) 

Fig. 2. Illustrations of BK and BJK. (a) Bessel kernel for α = 0.10. (b) 
Born-Jordan kernel. 

 
As known, a TFD is signal-dependent [11, 15]. On the other 

hand, it is also kernel-dependent. Consequently, each type of 
kernel is considered to be suitable for a specific class of signals. 
The patterns of two different kernels in function form may be 
significantly different from each other (e.g., WK and CWK) or 
similar under a certain condition as discussed in this paper. 
Though various types kernels have been studied, the report 
about pattern similarity of kernels that are different in function 
form is rarely seen. Radical issues in this regard are 1) which 
kernels may be similar and 2) under what conditions the selected 
kernels that are different in function form are similar or 
dissimilar in pattern. Obviously, the answers to those issues are 
meaningful in TF analysis. 

This paper, a stage work though, is a substantial extension of 
our early work [6]. It shows that BD and BJD for a same signal 
may be similar if BK is arranged such that it is similar to BJK in 
pattern though two kernels are different in function form. It also 
shows that BD and BJD for a same signal may be dissimilar if 
BK is arranged such that it significantly differs from BJK in 
pattern. The experimental analysis presented in this paper 
suggests that BK is more flexible than BJK in TF analysis. The 
analysis method discussed in this paper can be extended to study 
pattern similarities among other kernels. 

The rest of paper is organized as follows. Section 2 
introduces the measure of pattern similarity. Section 3 discusses 
the pattern similarity between BK and BJK. A case study is 
demonstrated in section 4 and conclusions are given in Section 
5. 

II. A SIMILARITY MEASURE 

Denote Φ1 a kernel. Define its inner product by L2 norm as 
<Φ1, Φ1> = 1 2Φ .                                                      (8) 

Let H1 be the space containing all kernels. Then, H1 is a 
pre-Hilbert space [19]. According to the properties of kernels, 
for a kernel Φ, there is a sequence Φn such that Φn → Φ for n → 
∞. Thus, combining all limit points of kernels with H1 yields a 
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Hilbert space and we still denote it as H1 without confusion 
causing. 

Let Φ2 ∈ H1 be another kernel differing from Φ1 ∈ H1. Then, 
there is a distance between Φ1 and Φ2. The distance is denoted 
as ||Φ1 − Φ2||. Theoretically speaking, there are many measures 
for characterizing the distance, see e.g., [17, 21, 22]. However, 
correlation is a commonly used technique in pattern matching, 
see e.g., [17] and our early work [18, 19, 24]. According to the 
Cauchy-Schwarz inequality, one has 

1 2 1 22 2 2 .Φ ⋅Φ ≤ Φ ⋅ Φ                                    (9) 

Denote 

1 2

1 2 2
,

1 22 2

.ρΦ Φ

Φ ⋅Φ
=

Φ ⋅ Φ
                                       (10) 

Then, 0 ≤
1 2,ρΦ Φ ≤ 1. According to the correlation theory, if Φ1 

= λΦ2, where λ is a real, one has 
1 2,ρΦ Φ = 1, implying that the 

pattern of Φ1 is exactly similar to that of Φ2 [17]. As far as 
pattern analysis of kernels is concerned, we normalize kernels 
such that Φmax = 1. Thus, here and below, we consider λ = 1 
without the generality losing for studying 

1 2, .ρΦ Φ  

In practical terms, it is unnecessary to require 
1 2,ρΦ Φ = 1 due 

to errors (e.g., errors in digital signal processing). In the 
engineering sense, the pattern of Φ1 is quite accurately similar to 
that of Φ2 if 

1 2,ρΦ Φ ≥ 0.9, 

see e.g. [18, 21]. Therefore, we take 
Φ1 ≈ Φ2 for 

1 2,ρΦ Φ ≥ 0.9. 

Accordingly, ||Φ1 − Φ2|| ≈ 0 in this case. 

III. EXPERIMENTAL SIMILARITY ANALYSIS OF BK AND BJK 
A BJK has no scaling factor, see (1.6), but there is a scaling 

factor in BK, which can be used to control its shape, see Fig. 2 
(a) and Fig. 3. Since the case of α → 0 is trivial in our study, we 
consider α ∈ [0.01, 0.5] in what follows. Compute the 
correlation coefficient between two kernels yields a correlation 
curve as shown in Fig. 4, where ρ(α) denotes that the correlation 
coefficient varies with α. 

BK  
(a) 

BK  
(b) 

Fig. 3. Bessel kernel. (a) BK with α = 0.18. (b) BK with α = 0.49. 
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Fig. 4. Correlation curve between BJK and BK. 

 
From Fig. 4, we obtain the maximm of the correlation 

coefficient 
ρ(α)|max = 0.987. 

It occurs at α = 0.18. The condition for 
ρ(α) ≥ 0.8 

is 
α ∈ [0.05, 0.5] 

while the condition for 
ρ(α) < 0.8 

is 
α ∈ [0.01, 0.05]. 

The minimum is 
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ρ(α)|min = ρ(0.01) = 0.55. 
Thus, from a view of pattern matching, BK has the functionality 
of BJK but not vice versa. 

IV. A CASE STUDY 
Suppose a signal to be analyzed is 

( ) cos(3 / 22) cos(14 /11)f t t tπ π= +  
see Fig. 5. 
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Fig. 5. Waveform of a signal. 

 
Denote  

BD = F[A(u, τ)ΦB(u, τ)]  
and  

BJD = F[A(u, τ)ΦBJ(u, τ)]  
as the Bessel distribution and Born-Jordan distribution of f(t), 
respectively. Fig. 6 indicates the BJD of f(t) and Fig. 7 the BD 
for α = 0.18. The correlation coefficient between Fig. 6 and Fig. 
7 is 0.961, which is slightly less than 0.987. This may be caused 
by errors in digital computations. As a comparison, we gives the 
BD for α = 0.49 in Fig. 8. By eye, one may see the obvious 
difference between Fig. 8 (α = 0.49) and Fig. 6 (BJD). The 
correlation coefficient between Fig. 6 and Fig. 8 is 0.80. 

BJD  
Fig. 6. Born-Jordan distribution 

of ( ) cos(3 / 22) cos(14 /11).f t t tπ π= +  

BD  
Fig. 7. Bessel distribution of ( ) cos(3 / 22) cos(14 /11)f t t tπ π= + for 

α = 0.18. 

BD  
Fig. 8. Bessel distribution of ( ) cos(3 / 22) cos(14 /11)f t t tπ π= + for 

α = 0.49. 
 

V. CONCLUSION 
This paper has experimentally analyzed the pattern similarity 

between two kernels used in TF analysis. One is BK and the 
other BJK. The analysis method has been discussed and 
demonstrated. The analysis result shows that ρ(α)|max = ρ(0.18) 
= 0.987 and ρmin ≤ 0.55 for α ≤ 0.01. In addition, ρ(α) ≥ 0.8 for 
α ∈ [0.05, 0.5]. Thus, BK is more flexible than BJK in TF 
analysis from a view of pattern matching in general. BK has the 
functionality of BJK but not vice versa. 
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