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Abstract— This paper presents a new control family of fixed-
camera visual servoing for planar robot manipulators. The me-
thodology is based-on energy shaping methodology in order to
derive regulators for position-image visual servoing. The control
laws have been composed by the gradient of an artificial potential
energy plus a nonlinear velocity feedback. For a static target we
characterize the global closed loop attractor using the dynamic
robot and vision model, and prove the local asymptotic stability
of the position control scheme using the Lyapunov theory. Inverse
kinematics is used to obtain the angles of the desired position and
those of the position joint from computed centroid. Experimental
results on a two degrees of freedom of direct drive manipulator
are presented.

Index Terms— Visual servoing, control, robot manipulator,
direct drive, Lyapunov function, global asymptotic stability.

I. INTRODUCTION
The positioning problem of robot manipulators using visual
information has been an area of research over the last 30 years.
In recent years, attention to this subject has drastically grown.
The visual information into feedback loop can solve many
problems that limit applications of current robots: automatic
driving, long range exploration, medical robotics, aerial robots,
etc.

Visual servoing is referred to closed-loop position control
for a robot end-effector using direct visual feedback [1].
This term was introduced by Hill and Parkin 1979 [2]. It
represents an attractive solution to position and motion control
of autonomous robot manipulators evolving in unstructured
environments.

On visual-servoing Weiss et al. [3] and William et al. [4]
have categorized two broad classes of vision-based robot con-
trol: position-based visual servoing, and image-based visual
servoing. In the past, features are extracted from an image
and used to estimate the position and orientation of the target
with respect to the camera. Using these values, an error signal
between the current and the desired position of the robot is
defined in the joint space; while in the latter the error signal
is defined directly in terms of image features to control the
robot end-effector in order to move the image plane feature
measurements to a set of desired locations. In both classes of
methods, object feature points are mapped onto the camera
image plane, and measurements of these points, for example
a particularly useful class of image features are centroid used
for robot control [3]–[5].

In the configuration between camera and robot, a fixed-camera
or a camera-in-hand can be fastened. Fixed-camera robotic
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systems are characterized in that a vision system fixed in the
world coordinate frame, captures images of both the robot
and its environment. The control objective of this approach
is to move the robot end-effector in such a way that it
reaches a desired target. In the camera-in-hand configuration,
often called an eye-in-hand, generally a camera is mounted in
the robot end-effector and provides visual information of the
environment. In this configuration, the control objective is to
move the robot end-effector in such a way that the projection
of the static target be always at a desired location in the image
given by the camera [4]–[6].

Since the first visual servoing systems were reported in the
early 80’s the last few years have seen an increase in published
research results. An excellent overview of the main issues
in visual servo control of robot manipulators is given by
Corke [6]. However, few rigorous results have been obtained
incorporating the nonlinear robot dynamics. The first explicit
solution of the problem formulated in this paper was due
to Miyazaki and Masutani in 1990, where a control scheme
delivers bounded control actions belonging to the Transpose
Jacobian-based family, philosophy first introduced by Takegaki
and Arimoto [7]. Malis et al. (1999) proposed a new approach
to vision-based robot control, called 2-1/2 D visual servo-
ing [8]. The visual servoing problem is addressed by coupling
the nonlinear control theory with a convenient representation
of the visual information used by the robot in 1999 by
Conticelli et al. [9]

Park and Lee (2003) present in [10] a visual servoing control
for a ball on a flat plate to track its desired trajectory.
Kelly et al. propose in [5] a novel approach, they address
the application of the velocity field control philosophy to
visual servoing of the robot manipulator under a fixed-camera
configuration. Malis and Benhimane (2005) present a generic
and flexible system for vision-based robot control, their system
integrates visual tracking and visual servoing approaches in a
unifying framework [11].

Kelly addresses the visual servoing of planar robot manipula-
tors under the fixed-camera configuration in [12]. Schramm
et al. present a novel visual servoing approach, aimed at
controlling the so-called extended-2D (E2D) coordinates of
the points constituting a tracked target and provide simulation
results [13].

In this paper we address the positioning problem with fixed-
camera configuration to position-based visual servoing of
planar robot manipulators. The main contribution is the de-
velopment of a new position-based visual controller family
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supported by rigorous local asymptotic stability analysis, tak-
ing into account the full nonlinear robot dynamics, and the
vision model. The objective concerning the control is defined
in terms of joint coordinates which are deduced from visual
information.

This paper is organized as follows: in section 2, we present the
robotic system model, the vision model and the formulation
of the control problem, then the proposed visual controller is
introduced and analyzed. Section 3 presents the experimental
set-up. The experimental results are described in section 4.
Finally, we offer some conclusions in section 5.

II. ROBOTIC SYSTEM MODEL

The robotic system considered in this paper is composed by
a direct drive robot and a CCD-camera placed in the robot
workspace in the fixed-camera configuration.

II-A. Robot dynamics

The dynamic model of a robot manipulator plays an important
role for simulation of motion, analysis of manipulator struc-
tures, and design of control algorithms. The dynamic equation
of a n degrees of freedom robot in agreement with the Euler-
Lagrange methodology [15], is given for:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ R
n×1 are vectors of joint displacements,

velocities and accelerations respectively, M(q) ∈ R
n×n is

the symmetric positive definite manipulator inertial matrix,
C(q, q̇) ∈ R

n×n is the matrix of centripetal and Coriolis
torques and g(q) ∈ R

n×1 is the vector of gravitational torques
obtained as the gradient of the robot potential energy.

It is assumed that the robot links are joined together with re-
volute joints. Although the equation of motion (1) is complex,
it has several fundamental properties which can be exploited
to facilitate the control system design. For the new control
scheme, the following important property is used:

Property 1: Considering all revolute joints, the inertial ma-
trix M(q) is lower and upper bounded by [8], [9]:

µ1(q)I ≤M(q) ≤ µ2(q)I (2)

where I stands for the m × n Identity matrix. We should
consider that M(q) it is symmetric positive definite inertial
matrix.

Property 2: The matrix Ṁ(q) − 2C(q, q̇) ≡ 0 is skew-
symmetric, that is [8], [9],

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (3)

Furthermore, the matrix C(q, q̇) is linear on q̇ and bounded
on q, hence for some kc ∈ R+ [8], [9]:

‖C(q, q̇)‖ ≤ kc(q)‖q̇‖. (4)

Property 3: The generalized gravitational forces vector

g(q) =
∂U(q)

∂q
(5)

satisfies [8], [9]:
∥

∥

∥

∥

∂g(q)

∂q

∥

∥

∥

∥

≤ kg (6)

for some kg ∈ R+, where U(q) is the potential energy is
supposed to be bounded from below [8], [9].

II-A.1. Model of Direct kinematic: Direct kinematics is a
vectorial function that relate joint coordinates with Cartesian
coordinates f : R

n → R
m where n is the number of degrees

of freedom, and m represents the dimension of the Cartesian
coordinate frame.

The position xR ∈ R
3 of the end-effector with respect to the

robot coordinate frame in terms of the joint positions is given
by: xR = f(q)

II-B. Vision model

The goal of a machine vision system is to create a model of
the real world from images. A machine vision system recovers
useful information on a scene from its two-dimensional pro-
jections. Since images are two-dimensional projections of the
three-dimensional world, this recovery requires the inversion
of a many-to-one mapping (see figure 1).
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Fig. 1. Fixed-Camera configuration
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Let ΣR = {R1, R2, R3} be a Cartesian frame attached to the
robot base, where the axes R1, R2 and R3 represent the robot
workspace. A CCD type camera has a ΣC = {C1, C2, C3}
Cartesian frame, whose origin is attached at the intersection
of the optical axis with respect the geometric center of ΣC .
The description of a point in the camera frame is denoted by
xC . The position of the camera frame with respect to ΣR is
denoted by oC = [oC1

, oC2
, oC3

]T .

The acquired scene is projected on to the CCD. To obtain
the coordinates of the image at the CCD plane a perspective
transformation is required. We consider that the camera has a
perfect aligned optical system and free of optical aberrations,
therefore the optical axis intersects at the geometric center of
the CCD plane. Finally the image of the scene on the CCD is
digitalized, transferred to the computer memory and displayed
on the computer screen. We define a new two dimensional
computer image coordinate frame ΣD = {u, v}, whose origin
is attached to the upper left corner of the computer screen.
Therefore the vision system model is given by:

[

u

v

]

=
λ

λ+ x
C3

[

αu 0
0 −αv

] [

x
C1

x
C2

]





xC1

xC2

xC3



 = RT (θ)[x
R
− oc

R
]

(7)

where αu > 0, αv > 0 are the scale factors in pixels/m, λ > 0

is the focal length of the camera and
λ

λ+ x
C3

< 0.

II-C. A new position-based visual servoing scheme for fixed-
camera configuration

In this section, we present the stability analysis for the
position-based visual servoing scheme. The robot task is
specified in the image plane in terms of image feature values
corresponding to the relative robot and object positions. It is
assumed that the target resides in the plane R1−R2, depicted
in Figure 1. Let [ud vd]

T be the desired image feature vector
which is assumed to be constant on the computer image frame
ΣD. The desired joints qd are estimated from inverse kinematic
in function of [ud vd]

T .

The control problem in visual servoing for fixed-camera con-
figuration consists in to designing a control law τ in such a
way that the actual image feature

[

u v
]T

reaches the de-
sired image feature

[

ud vd

]T
of the target. The image fea-

ture error is defined as
[

ũ ṽ
]T

=
[

ud − u vd − v
]T

,
therefore the control aim is to assure that:

ĺım
t→∞

[

q̃1

q̃2

]

=

[

qd1
− q1

qd2
− q2

]

→ 0 (8)

The control problem is solvable if a joint motion qd exists
such that:

[

ud

vd

]

=







αuλ

λ+ xC3

0

0
−αvλ

λ+ xC3






R(θ)

T













[

xR1
(qd)

xR2
(qd)

]

−

[

oc
R1

oc
R2

]













(9)

In order to solve the visual servoing control problem, we
present the next control scheme with gravity compensation:

τ = ∇Ua(Kp, q̃)− fv(Kv, q̇) + g(q) (10)

where q̃ = qd − q ∈ R
n×1 is the error position vector; qd ∈

R
n×1 is the desired position vector; Kp ∧Kv ∈ R

n×n are the
proportional and derivative matrices, respectively; ∇Ua(kp, q̃)
represents the artificial potential energy, being a positive
definite function, and fv(kv, q̇) denotes the damping function,
which is a dissipative function, that is, q̇T fv(kv, q̇) > 0.

Proposition: Consider the robot dynamic model (1) together
with the control law (10), then the closed-loop system is global
asymptotically stable, and the visual positioning aim

ĺım
t→∞

[

q̃1 (t)
q̃2 (t)

]

= 0 ∈ R
2 (11)

is achieved.

Proof: The closed-loop system equation obtained by com-
bining the robot dynamic model (1) and control scheme (10)
can be written as:

d

dt

[

q̃

q̇

]

=

[

−q̇

M (q)
−1

[∇Ua (Kp, q̃)− fv (Kv, q̇)− C (q, q̇) q̇]

]

(12)

which is an autonomous differential equation, and the origin
of the state space is a equilibrium point. To carry out the
stability analysis of equation (12), the following Lyapunov
function candidate is proposed:

V (q̃, q̇) =
1

2
q̇TM (q) q̇ + Ua (Kp, q̃) , (13)

the first term of V (q̃, q̇) is a positive definite function with
respect to q̇ because M(q) is a positive definite matrix. The
second one of the Lyapunov function candidate (13), can be
interpreted as a potential energy induced by the control law,
and is also a positive definite function with respect to the
position error q̃, because the term Kp is a positive definite
matrix. Therefore, V (q̃, q̇) is both a positive definite and
radially unbounded function.
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The time derivative of the Lyapunov function candidate (13)
along the trajectories of the closed-loop equation (12), and
after some algebra and considering property 1, can be written
as:

V̇ (q̃, q̇) =
1

2
q̇TM (q) q̈ −

1

2
q̇T Ṁ (q) q̇ +∇Ua (Kp, q̃)

T
q̇

V̇ (q̃, q̇) = q̇T∇Ua (Kp, q̃)− q̇T fv (Kv, q̇)− C (q, q̇) q̇

+q̇T Ṁ (q) q̇ −∇Ua (Kp, q̃)
T
q̇

V̇ (q̃, q̇) = −q̇T fv (Kv, q̇) ≤ 0
(14)

which is a negative semidefinite function and therefore, it is
possible to conclude stability in the equilibrium point. In order
to prove local asymptotic stability, the autonomous nature
of the closed-loop equation (12) is exploited to apply the
LaSalle’s invariance principle [14] in the region Ω:

Ω =



























q̃1

q̃2

q̇



 ∈ R
2n : V̇ (q̃, q̇) = 0

q̃ = q̇ = 0 ∈ R
n×1 : V̇ (0, 0) = 0

(15)

since V̇ (q̃, q̇) ≤ 0 ∈ Ω, V (q̃(t), q̇(t)) is a decreasing function
of t. V (q̃, q̇) is continuous on the compact set Ω, it is
bounded from below on Ω. For example, it satisfies 0 ≤
V (q̃ (t) , q̇ (t)) ≤ V (0, 0). Therefore, the trivial solution is
the only solution of the closed-loop system (12) restricted to
Ω. Consequently it is concluded that the origin of the state
space is locally asymptotically stable.

II-D. Examples of application

The purpose of this section is to exploit the methodology
described above with the objective to derive new regulators.

We present control scheme with gravity compensation:

τ = Kp tanh (q̃)−Kv tanh (q̇) + g (q) (16)

Proof: The closed-loop system equation obtained by com-
bining the robot dynamic model (1) and control scheme (15)
can be written as:

[

˙̃q
q̈

]

=

[

−q̇

M (q)−1 [Kp tanh (q̃)−Kv tanh (q̇)− C (q, q̇) q̇]

]

(17)

which is an autonomous differential equation, and the origin
of the state space is a equilibrium point.

To make the stability proof of the equation (16), we proposed
the following Lyapunov’s candidate function based in the
energy shaping’s methodology [10], [11]:

V (q̇, q̃) =
q̇TM(q)q̇

2
+











√

ln(cosh(q̃1))
√

ln(cosh(q̃2))
...

√

ln(cosh(q̃n))











T

Kp











√

ln(cosh(q̃1))
√

ln(cosh(q̃2))
...

√

ln(cosh(q̃n))











. (18)

The first term of V (q̇, q̃) is a positive define function with
respect to q̇ because M(q) is a positive definite matrix. The
second one of Lyapunov’s candidate function (18) is a positive
definite function with respect to error position q̃, because Kp

is a positive definite matrix.

Therefore V (q̇, q̃) is a globally positive definite and radially
unbounded function. The time derivative of Lyapunov’s can-
didate function (18) along the trajectories of the closed-loop
(17):

V̇ (q̇, q̃) = q̇TM(q)q̈ +
q̇T Ṁ(q)q̇

2

+











√

ln(cosh(q̃1))
√

ln(cosh(q̃2))
...

√

ln(cosh(q̃n))











T

Kp

[

tanh q̃
√

ln(cosh(q̃))

]

˙̃q

(19)

and after some algebra and using the property 2 it can be
written as:

V̇ (q̃, q̇) = −q̇TKv











tanh (q̇1)
tanh (q̇2)

...
tanh (q̇n)











≤ 0 (20)

which is a negative semidefinite function, therefore we con-
cluded that the equilibrium point is stable. In order to prove
the asymptotic stability in a global way, we make use of the
autonomous nature of closed-loop (17) when we applied the
LaSalle’s invariance principle:

V̇ (q̇, q̃) < 0. (21)

In the region

Ω =

{[

x̃

q̇

]

∈ Rn : V (q̃, q̇) = 0

}

(22)

the unique invariant is
[

q̃T q̇T
]T

= 0 ∈ R2n.
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III. EXPERIMENTAL SET-UP

An experimental system for research of robot control algo-
rithms is a direct-drive robot of two degrees of freedom (see
Figure 2). The experimental robot consists of two links made
of 6061 aluminum actuated by brushless direct-drive servo
actuators from Parker Compumotor in order to drive the joints
without gear reduction. Advantages of this type of direct-drive
actuator includes freedom from backlashes and significantly
lower joint friction compared to actuators composed by gear
drives.

Fig. 2. Direct-drive robot of two degrees of freedom

The motors used in the robot are listed in Table I. The
servos are operated in torque mode, so the motors act as
a torque source and they accept an analog voltage as a
reference of torque signal. Position information is obtained
from incremental encoders located on the motors. The standard
backwards difference algorithm applied to the joint positions
measurements was used to generate the velocity signals.

TABLE I
SERVO ACTUATORS OF THE EXPERIMENTAL ROBOT

Link Model Torque p/rev
Shoulder DM1050A 50 1,024,000

Elbow DM1004C 4 1,024,000

The manipulator workspace is a circle with a radius of 0.7
m. Besides position sensors and motor drivers, the robot also
includes a motion control board, manufactured by Precision
MicroDynamics Inc., which is used to obtain the joint posi-
tions. The control algorithm runs on a Pentium host computer.

With reference to our direct-drive robot, only the gravitational
torque is required to implement the new control scheme (16),
which is available in [8]:

g(q) =

[

38,46 sin (q1) + 1,82 sin (q1 + q2)
1,82 sin (q1 + q2)

]

[Nm]. (23)

IV. EXPERIMENTAL RESULTS

To support our theoretical developments, this Section presents
experimental results of the proposed controllers on a planar
robot for the fixed-camera configuration.
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Fig. 3. Fixed-Camera configuration

Three black disks were mounted on the shoulder, elbow and
end-effector, respectively. A big black disk for shoulder, a
medium black disk on elbow, and a small one for the end-
effector.
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The joint coordinates were estimated from predictable centroid
using inverse kinematics as is shown in Figure 4:

l1 =

√

(u2 − u1)
2
+ (v2 − v1)

2

l2 =

√

(u3 − u2)
2
+ (v3 − v2)

2

(24)

and

q2 = arc cos

(

(u3 − u2)
2
+ (v3 − v2)

2
− l21 − l22

2l1l2

)

q1 =
(π

2

)

− arctan

(

v2 − v1

u2 − u1

)

− arctan

(

l2 sin (q2)

l1 + l2 cos (q2)

)

(25)

where l1, l2 represent the link longitude respectively, u and v

are visual information from equation (24) using in figure 4.

The centroids of each disc were selected as object feature
points. We select in all controllers the desired position in
the image plane as [ud; vd]

T = [198; 107]T [pixels] and the
following initial position [u(0); v(0)]T = [50; 210]T [pixels],
this q1(0), q2(0) = [0; 0]T and q̇(0) = 0 [degrees/sec].
The evaluated controllers have been written in C language.
The sampling rate was executed at 2.5 ms, while the visual
feedback loop was at 33 ms. The CCD camera was placed in
front of the robot and its position with respect to the robot
frame ΣR was OR

c = [0R
c1
, 0R

c2
, 0R

c3
]T = [−0,5,−0,6,−1]T

meters, the rotation angle θ = 0 degrees. We use MATLABr

version 2007a, applying, the Simulinkr module to carry out
the imagine processing. The video signal from the CCD-
camera has a resolution of 320x240 pixels in RGB format.

PSfrag replacements

50

45

40

35

30

25

20

15

10

5

0
0 1 2 3 4 5

Time [s]

E
rr

or
[d

eg
re

es
]

q2

q1

Fig. 5. Error position

PSfrag replacements
30

25

20

15

10

5

0
0 1 2 3 4 5

τ2

τ1

Time [s]

To
rq

ue
[N

m
]

Fig. 6. Torque

The figure 5 and 6 shows the experimental results of the
controller (16), the proportional and derivative gains were
selected as:

Kp =

[

26,0 0
0 1,8

]

Kv =

[

12,0 0
0 1,2

]

(26)

and ud = 198 y vd = 107. The transient response with around
3 seconds is fast. The components of the feature position error
tend asymptotically close to zero. The experimental results for
the controller (16) are shown in figures 5 and 6. The transient
response was around 3 seconds. The components of the feature
position error tend asymptotically.

The second one structure used to carry out a position-based
visual servoing control is:

τ = Kp arctan (q̃)−Kv arctan (q̇) + g (q) (27)

The control structure has a stability proof using Lyapunov
theory, the figure 7 and 8 shows the experimental results of
the controller structure. The proportional and derivative gains
were selected as:

Kp =

[

17,3 0
0 1,2

]

Kv =

[

6,6 0
0 1,2

]

(28)

and ud = 198 y vd = 107. The transient response is fast by
around 1 second. The components of the feature position error
tend asymptotically to a neighborhood close to zero.
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The experimental results for the controller (27) are shown
in figures 7 and 8. The transient response was around 1
second. The components of the feature position error tend
asymptotically.

V. CONCLUSION

In this paper we have presented a new methodology to design
position-based visual servoing for planar robots in fixed-
camera configuration. It should be emphasized both that the
nonlinear robot dynamics and the vision model have been

included in the stability analysis. The class of controllers are
energy-shaping based, and they are described by control laws
composed of the gradient of an artificial potential energy plus
a linear velocity feedback. Experimental results with a two
degrees of freedom planar robot, using three feature points
were presented to illustrate the performance of the control
scheme.
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