
 
  

Abstract— In this paper an algorithm is presented for the 
stabilization of a non linear and multi-inputs system: a blower 
temperature described by a multimodel. The originality of this 
work lies on the fact that the applied control is quantified. In the 
first stage, a synthesis of a multiobserver, stabilized 
polyquadratically, with proper characteristic values situated in a 
disc inside unit circle is presented. The command law, stabilized 
polyquadratically, is based on the multiobserver and tracing of 
poles. In a second stage, the computed control can not be directly 
applied to the plant because of the quantification imposed by the 
heating resistors. To go over this problem, the variation of the 
ventilation’s speed can compensate for the errors of the 
command due to the quantification of the heated power. The 
choice of the optimal ventilation’s speed is based on the 
minimization of a criterion evaluating the distance between the 
measured output and the desired output. 
Keywords— multimodel, multiobserver, polyquadratic D-
stability, quantified commands, switching criterion 

 
I. INTRODUCTION 

n article published in 1985 was written by Takagi and 
al [10] dealing with the possibility of describing a non 

linear system by a group of aggregated linear systems 
opened new horizons for the command theory of this kind 
of systems. 

The considerable progress seen during the last decades 
in solving linear matrix inequalities LMI, contributed to 
apprehend described systems by multimodel with more 
pertinence for the synthesis of the stabilizing command 
law. 
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Many works [11],[13],[22],[21]have shown the 
possibility of stabilizing a multimodel by quadratic 
approach which focuses on the use of a unique Lyapunov 
matrix defined positive as it guarantees the stability of 
each local model.   

 
In order to reduce the conservatism of the quadratic 

approach, other researchers become more interested in the  
construction of  Parameter Dependant Lyapunov Functions 
[20], [4, ][19]. In this field, the polyquadratic stability 
concept, in the case of discrete system having variable 
parameters in time, is demonstrated by J. Daafouz and J. 
Bernussou[9].  

 
This paper is divided into six parts. In the second part, 

we start with a technical presentation of the drying system 
and the multimodel retained to describe the evolution of 
the internal temperature in relation with the heating power 
and the ventilation speed. Under the hypothesis of the 
observability of this system, the third part of this paper is 
interested in the polyquadratic stabilization by using a 
multiobserver through pole localizing. In the fourth part, 
the synthesis of output feedback dynamic command law is 
presented to guarantee the polyquadratic stability of the 
multimodel. The poles localization techniques are used 
during this synthesis. In the fifth part, an algorithm of 
quantified power choice and ventilation speed value is 
presented. In fact, the problem of the command 
quantification is brought about by the fact that each 
resistor activated or deactivated, doesn't allow the direct 
application of the calculated command at each discrete 
instant k. the choice is, then, about the nearest quantified 
power and an algorithm of real-time calculation which will 
permit to choose the adequate ventilation to compensate 
the mistake caused by quantification. The last part of this 
paper presents the obtained results through the use of an 
already presented algorithm in the fifth part.  

II. THE MODELING OF THE DRYING SYSTEM 

A. Presentation of the blower 
Drying is the treatment which aims at eliminating, partly 
or wholly, water from an incorporated body so as to ensure 
its preservation. It's an operation which is encountered in 
many industrial sectors (wood treatment, agro 
alimentary…).  

The blower used in our application is like an 
aerothermic channel supported by 12 resistors of heating 
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able to deliver a power of 1,5 Kw each, a central of vapor 
to control dampness inside the channel and a ventilator 
carried by an asynchronous engine to control the 
emanating air during the drying operation. 

The control of the heating resistors, of the central 
vapor and the ventilation speed is ensured by a 
programmable logic controller linked to a computer 
carrying a program of control and supervision. 

The blower is a multivariable system with the heating 
power, the vapor quantity and the ventilation speed like 
inputs and temperature, and dampness like outputs (Fig.1). 

 

 

 

 

 

Fig 1 Inputs and outputs of the plant 
 
We are limiting ourselves, in this paper, to control 

temperature by action on the heating power and ventilation 
speed. 

B. Modeling of the blower 
Preliminary experiments have demonstrated that the 
evolution of temperature is non linear in relation with the 
heating power and the ventilation speed. The idea is to 
apprehend the non linear behavior of this system through a 
group of local models either linear or affine [1]. Each local 
model characterizes the system's behavior in a particular 
functioning zone. Local models are then aggregated by 
specific interpolation laws [14], [11], [10], [17]. 

The blower, non linear discrete time system, can be 
represented by the following discrete multimodel 

( 1) ( ) ( )( ( ), ,
1 1

( ) ), ,

( ) ( ) ( ) ( ), ,
1 1

⎧
⎪ + = +
⎪ = =⎪⎪ + +⎨
⎪
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=⎪
⎪ = =⎩

∑ ∑

∑ ∑

N M
x k A x kj v j i T j i

j i
B u k dj i j i

N M
y k C x kj v j i T j i

j i

µ ξ µ ξ

µ ξ µ ξ

    (1) 

Where x(k) nx1∈ℜ is the state vector, u(k) m∈ℜ is the 

heating power, y(k) p∈ℜ output vector. 

, ∈ℜnxnA j i , , ∈ℜnxmB j i , , ∈ℜpxnC j i and

1
, ∈ℜnxd j i are respectively  the state matrix, input 

matrix, output matrix and a vector depending on the 
operating point of local model (j,i) depending on the 
temperature and speed ventilation. Tξ is the vector 
decision depending on the measurable states, temperature 
in this case. vξ  is the vector decision depending on the 
inputs of plant and the speed of ventilation.  

The activating functions ( ), 1...=j Nj vµ ξ , have the 

following properties: 
 

( ) 1
1
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⎧
=⎪⎪

⎨ =
⎪ ≤ ≤ ∀ =⎪⎩

∑
N

j v
i

j Nj v

µ ξ

µ ξ

                                   (2) 

 
These functions are known in real-time and used to 

establish a command law by varying the ventilation speed. 
The activating functions ( ), 1... ,, =i Mj i Tµ ξ have the 

following properties: 
 

( ) 1 1... ,,
1

0 ( ) 1 1... , 1... ,,
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⎨ =
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µ ξ
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             (3) 

 
These functions are known in real-time but can't be 

directly modified by the command because they are 
depending on the internal non measurable states. 

The number of models N and M is depending on the 
complexity of the non linear system, the desired precision 
and the structure of activating functions [2]. 

III. CONSTRUCTION AND STABILIZATION OF 
MULTIOBSERVER 

A. Global control law 
When certain components of the state vector are non 
measurable and the system is observable, it's possible to 
construct a multiobserver associated to a multimodel 
described by (4) as follows: 
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   (4)  

 
Where ˆ ˆ( ) and ( )x k y k design respectively the estimation 
produced by the observer of the state vector and the 
estimation of the output; Lj,i design the gain of the 
observation  matrix associated to the model (j,i). We 
define the state error observation as follows: 
 

ˆ( ) ( ) ( )= −k x k x kε                                                   (5) 
 
The command u(k), in case of dynamic output 

feedback,  based on the multiobserver (4), is : 
 

ˆ( ) ( ) ( ) ( )( )= + ∞u k K k x k N yc                                 (6) 
 
Taking into account (4), (5) and (6) the augmented 
equation of the system is then: 

 

Blower 

Heat power 

Vapor quantity 

Speed ventilation  

Temperature 

Humidity 
Blower 
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Equality (7) can be written also as follows: 
 

( 1)
( ) ( ),( 1) 1 1

( ), , , , , ,
0 ( ) 0, , ,

+⎛ ⎞
=⎜ ⎟+⎝ ⎠ = =

⎛ + −⎛ ⎞ ⎞⎛ ⎞⎛ ⎞⎜⎜ ⎟ ⎟+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎟⎜ ⎟⎜ − ⎝ ⎠ ⎝ ⎠⎠⎝ ⎠⎝

∑ ∑
N Mx k

j v j i Tk j i

A B K B K dx kj i j i j i j i j i j i
A L C kj i j i j i

µ ξ µ ξ
ε

ε

(8) 

 
Since the matrix of augmented system is a superior 
triangular, the instantaneous characteristics values of 
augmented system are those of matrices 

( ) ( )( ), , , ,
1 1

+
= =
∑ ∑
N M

A B Kj v j i T j i j i j i
j i
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( ) ( )( ), , , ,
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−
= =
∑ ∑
N M

A L Cj v j i T j i j i j i
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It's important to notice that the calculation of the gains 
K(k) and L(k) poses on the use of following relations: 
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B. Stabilization of the multiobserver 

B.1 polyquadratic Stabilization  
In this part we start with citing the theorem of Daafouz 
and Bernussou [9] about the polyquadratic stability of the 
uncertain dynamic system. 

An uncertain dynamic system can be described as 
follows: 

 
( 1) ( ( )) ( )+ =x k A k x kξ                                          (11) 

With ∈ℜnx is the state vector, ∈Ξ ⊂ ℜpξ is unknown 
parameter, time variable but bounded. The dynamic matrix 
A is written as follows: 

( ( )) ( ) ,
1

( ) 0, ( ) 1.
1

=
=

≥ =
=

∑

∑

N
A k k Ai i

i
N

k ki i
i

ξ ξ

ξ ξ

                                     (12) 

 
Theorem 1 (Daafouz and Bernussou, 2001): 
There exists a Lyapunov function ,with a polytopic 

structure, whose difference is negative definite proving 
asymptotic stability of the system (11) if and only if there 

exist N symmetric matrices S1…SN  and N matrices G1...GN 
satisfying :  

 

0

1,..., 1,..., .

⎛ ⎞+ −⎜ ⎟ >
⎜ ⎟
⎝ ⎠
∀ = ∀ =

T T TG G S G Ai ii i i
A G Si i j

i N et j N

                                    (13) 

 
The PDLF is given by   : 
 

1( ) ( )
1

−=
=
∑
N

P k k Si i
i

ξ                                                   (14) 

B.2 Poles Localization 
In case of multimodel where state matrix is variable in 
each period of sampling, the use of command by poles 
localization guarantees the desired performances of 
different controllers [21] and observers [3]. 

An effective way of determining the dynamic 
characteristics of a system is to localize poles inside a disc  
Dα,r contained in the unit circle,  α is the center of the disc 
and r its ray [5], which is equivalent to the fact of placing 
characteristic values of auxiliary system ( ) /−A I rα  in 
the unit circle [5]. 
 
Definition 1: (Granado, 2004) 

A matrix A is known as D-stable if his characteristic 
values belong to the disc D(α,r) 
 
Lemma1: (Furuta et Kim 1987) :A matrix A is D-stable if 
and only if ∀ Q = QT >0 the following equality:  
 

( ) ( ² ²) 0− + + − + =T TA PA A P PA r P Qα α              (15) 
 
has a symmetric definite positive matrix solution  P. 

 
This is equivalent to test if the following inequality has 

a definite positive solution [5] [12]: 
 

0− −⎛ ⎞ ⎛ ⎞ − <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

TA I A IP P
r r
α α                                  (16) 

 
The belonging of characteristic values to the disc Dα,r 

is then equivalent to the belonging of characteristic values 
of the auxiliary plant ( ) /= −A A I rα to the unit disc 
[8][7][6]. 
The resolution of poles localization in a disc can be taken 
back to the stability of the auxiliary system A , we can 
conclude the following theorem: 
 

Theorem 2 
The error state estimation between the multimodel 

described by (1), and the multiobserver described by (4), is 
polyquadratically D-stabilizable by gains Li, if and only if 
there exist a symmetric definite matrices Si and Sj and 
matrices Fi and Gi which satisfies the following 
inequalities: 
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( )
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1The observers gains are calculated by ( )−= TL F Gi i i  

Proof: It's possible to get the conditions of theorem 1 
by substituting Ai by 

    

( )⎛ ⎞− −⎜ ⎟=
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⎝ ⎠

TA L C Ii i iAi r
α

                                        (18) 

 

= TF L Gi ii                                                                     (19) 

 

Because
( )⎛ ⎞− −⎜ ⎟

⎜ ⎟
⎝ ⎠

TA L C Ii i i
r

α
and

( )− −⎛ ⎞
⎜ ⎟
⎝ ⎠

A L C Ii i i
r

α
 

have the same characteristic values, the existence of 
1−Gi is guaranteed by the following inequality: 

 

0+ > >TG G Si ii                                                         (20) 

IV. SYNTHESIS OF STATE FEEDBACK CONTROL LAW 
We look to calculate the gain K(k), at each period of 
sampling, by state feedback allowing to ensure the 
polyquadratic D-stability of multimodel (1). By making 
the following substitutions in theorem 1: 
 

+ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

A B K Ii i iAi r
α

                                             (21) 

 
=R K Gi i i                                                                    (22) 

 
We can cite the following theorem: 
 
Theorem 3: 

The multimodel (1) is polyquadratically D-stabilisable 
by state feedback, if and only if there exists a symmetric 
definite matrices Si and Sj and matrices Gi and Ri of 
appropriate dimensions solutions of the following LMIs: 

 

( )
0

for 1... and 1...

⎛ ⎞+ − •⎜ ⎟
⎜ ⎟ >−⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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The state feedback gains are calculated as follows: 

1−=K R Gi i i                                                            (24) 

V. THE COMMAND QUANTIFICATION 

A. The command Algorithm  
The calculated command, at each period of sampling, is: 
 

ˆ( ) ( )( ( )) ( )( )= + ∞u k K k x k N y c                             (25) 
 
K(k) verify equality  (9) 
 

( ) ( ) ( ( )) ), ,
1 1

=
= =
∑ ∑
N M

d k k dj v j i T j i
j i

µ ξ µ ξ                  (26) 

 
The static gain N is defined like by: 
 

( ) ( ( )) ( ( )) ( (, , ,
1 1

11( ))), ,
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∑ ∑
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N C I Aj v j i T j i j i
j i

B K Bj i j i

µ ξ µ ξ
 

                                                                                       (27) 
 
This command cannot be applied directly to the plant 
because the available command values are quantified. So 
we have to choose between the nearest inferior or the 
nearest superior quantified commands: 
 

min max
( )≤ ≤u u k uQ Q                                                  (28) 

 
It's noted that quantified commands are multiple of 

1500 Watts. For example if the generated command from 
the control and supervision program is of 6739 Watts, we 
are obliged to choose between 6000 Watts and 7500 
Watts. 

To compensate the quantification effects, we have 
chosen to action the ventilation speeds. In fact, the 
changes of ventilation can increase or decrease the 
temperature. The determination of the best ventilation 
speed is ensured by the minimization of the following 
criterion: 

( , ) ( , )
ˆ ˆ( ) ( ( 1) ) ( ( 1) )( , ) = + − + −

u uv v
TJ k y k y I y k yv u e c p e cξ ξ

(29) 
with v: speed of ventilation obtained from the decision 
vector vξ  . 
 

{ }min max,=u u uQ Q                                                      (30) 

 

( , )
ˆ ( 1)+uv
y ke ξ

is the estimation of the output, at the 

discrete time k+1, it depends on the inputs speed 
ventilation v and the command u: 

 

( , ) ( , )
ˆ ˆ( 1) ( ) ( ) ( 1), ,

1 1
+ = +

= =
∑ ∑u uv v

N M
y k C x ke j v j i T j i e

j i
ξ ξ

µ ξ µ ξ  

                                                                                       (31)                    
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( , )
ˆ ( 1)+uv
x ke ξ

is the estimated state , at the discrete time 

k+1, it depends on the inputs speed ventilation v and the 
command u: 

( , )
ˆ ˆ( 1) ( ) ( )( ( ), ,

1 1
ˆ( ) ( ( ) ( ))), , , ,

+ =
= =

+ + + −

∑ ∑uv

N M
x k A x ke j v j i T j i

j i
B u k d L C x k x kj i j i j i j i

ξ
µ ξ µ ξ

(32) 

 
The control algorithm is then: 

 
step 0 : Initialisation  
• calculate  the gains Ki,j and Li,j using LMIs (17) and 

(24) 
• apply the maximum value of power heat 
• apply the maximum value of speed  ventilation  
 
step 1 : Determination of the actual model and 
computing of u(k) 
• measure the internal temperature of the blower 
• evaluate the  decision vector ( )kTξ  
• deduce A, B, C and d 
• calculate L(k ) using (10)  
• deduce ˆ ( )x k using (4) 
• calculate K(k) using (9) 
• deduce u(k) using  (25) 
 
step 2 : quantification problem resolution 
• calculate 

min max
u et uQ Q  

• calculate 
( , )

ˆ ( 1)+uv
x ke ξ

 using (32) 

• calculate 
( , )

ˆ ( 1)+uv
y ke ξ

 using (31) 

• calculate ( )( , )J kv u  using(29) 

• deduce and apply  ( )
,

min( ( , ))
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭v

u k u
u

J u v
ξ

 

• deduce and apply ( )
,

min( ( , ))
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭v

kv v
u

J u vξ ξ
ξ

 

• back to step 1  

B. Results  
The application of the control law generated by the 

proposed algorithm allows the stabilization of temperature 
with an error less than two degrees in the bad cases figure 
(2, 3 and 4) despite the power quantification 

VI. CONCLUSION 
In this paper we have presented a modelisation of a 
multivariable non linear system by a multimodel. The 
synthesis of a multiobserver with localized poles by D-
stability approach which is useful for the development of 
control law making a variety of the heating power and the 
speed of ventilation. An algorithm has been proposed to 
lessen the impact of quantification of control. The results 
were incentive for completing the control of this system 
taking into consideration humidity. 

80  
90 

95

100

60 80 100
120

140

-2

-1

0

1

2

time in minutesYc 

Y
-Y

c  
 

Fig.2 Evolution of errors for different Yc 
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Fig.3 Evolution of temperature, heating power and 
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