

Abstract: - Verifying a pipelined Micro-Architectural (MA)
implementation against an Instruction-Set-Architecture (ISA)
specification is a common approach which still requires considerable
efforts because there is no meaningful point where the
implementation state and the specification state can be compared
easily. An alternative approach consists of verifying a pipelined
micro-architectural implementation against a sequential multi-cycle
implementation. Because both models are formalised in terms of
clock cycles, all synchronous intermediate states represent useful
points where the comparison could be achieved easily. Also, because
both models relate to the MA level, there is no need for a data
abstraction function, only a time abstraction function is needed to
map between the times used by the two models. A major advantage
of this elegant choice is the ability to carry out the proof by induction
within the same specification language rather than by symbolic
simulation through a proof tool which remains very tedious.
Furthermore, by decomposing the state, the overall proof
decomposes systematically into a set of verification conditions more
simple to reason about and to verify. The proposed proof
methodology is illustrated on both the pipelined and the superscalar
pipelined MIPS processors within Haskell framework.

Keywords: - Formal specification, Formal verification, Micro-
architectures, State functions.

I. INTRODUCTION

OST proof approaches attempt to validate processor
micro-architectural implementations against their

corresponding ISA specifications. However, if a sequential
MA implementation (which reveals the state after completing
each instruction) could be easily verified against an ISA
specification through a commutative diagram, this is not the
case for a pipelined MA implementation because of latency of
pipeline events. At any time, there may be several partially
executed instructions in the pipe, that make it difficult to
define a data abstraction function to map the partial results
into a meaningful visible state. In other words, it is impossible
to find a meaningful point where the comparison between the
pipelined MA implementation and the ISA specification can
be made easily. Burch and Dill [1] solved such problem by
simulating the effect of completing every instruction in the

Manuscript received March 31, 2008: Revised version received July 28, 2008.

S. Merniz is with Computer Science department, Mentouri University,
Constatntine, Algeria. (Phone: +213 772 85 84 64,
Email:s_merniz@hotmail.com).

M. Benmohammed is with computer Science Department, Mentouri
University, Constantine, Algeria. (Email: ibnm@yahoo).

pipe before doing the comparison. So, the natural way to
complete every instruction is to flush the pipe. After flushing,
they project the synchronised implementation state to the
specification state to extract only the observables. In their
original work, they proved the pipeline correctness diagram
by symbolically simulating the pipelined machine design in
their logic of uninterpreted functions with equalities.

Although the flushing method enhanced verification
techniques by using an automated decision procedure, it
presents on the other hand many drawbacks which are clearly
stated in many papers [2, 3]. Particularly, it makes the size of
the abstraction function and the number of examined cases
very large for deeper pipelines. The technique has been
extended thereafter by many researchers to handle more
complex designs such as superscalar [3, 4], and Out Of Order
execution [5, 6] designs. Unfortunately, the same correctness
criterion (proving the commutative diagram with respect to an
ISA specification) has been adopted by the extenders, and
consequently the same drawbacks persist. Moreover, as new
implementation features are introduced, such variants are
flawed. Other notions of correctness such as the one step
theorem [7, 8] and Well-founded Equivalence Bisimulation
[9], also, have been used to verify complex processor designs.
Both approaches prove the commutative diagram with respect
to an ISA specification.

This work suggests verifying a pipelined implementation
against a sequential multi-cycle implementation rather than
against an ISA specification. Because both models are
formalised in terms of clock cycles, all synchronous
intermediate states represent useful points where the
comparison between the two models could be achieved easily.
Furthermore, because both models relate to the MA level,
there is no need for a data abstraction function (which remains
very difficult to define for most approaches), only a time
abstraction function is needed to map between the times used
by the two models. One positive consequence of this elegant
choice is the ability to carry out the proof by induction within
the same specification language rather than by symbolic
simulation through a proof tool which remains very tedious.

To practically show the usefulness of our approach, we
have applied it to RISC processors within a functional
framework. RISC architectures are well structured and so,
they can be hierarchically built from the core architecture
implementing the basic instruction set to highly optimised
architectures [10]. Therefore, they suit elegantly the

Formal Verification of Superscalar Micro-
architectures: Functional approach

S. Merniz, and M. Benmohammed
LIRE Laboratory

 Computer Science Department, Mentouri University, Constantine, ALGERIA
s merniz@hotmail.com

M

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

56

incremental design approach. On the other hand, functional
frameworks provide beside their formal semantics definition
(to support formal reasoning), powerful features (function
composition, higher order functions, parallelism,
polymorphism, etc) that demonstrated their viability with
respect to complex hardware designs [11], [12],[13].

II. DESIGN APPROACH

Our view of formal verification of microprocessors follows
the vertical-horizontal layered design approach depicted in
figure 1. The highest level represents the Instruction-Set-
Architecture (ISA) Specification that describes the semantics
of the processor’s operations. The Micro-Architectural (MA)
level represents the top level design implementing the ISA
specification: It describes the structural features of the micro-
architectures implementing the processor’s operations. All
MA designs (which could be hierarchically built one over the
other) represent different implementations for the same ISA
specification. In this work, we will be interested on three MA
designs; the Sequential MA design (SMA), the pipelined MA
design (PMA), and the superscalar MA design (SSMA). The
SMA design whose proof could be easily performed against
an ISA specification represents the reference core architecture
over which will be hierarchically developed both the PMA
and the SSMA designs, and against which will be verified as
well (unlike other approaches where the PMA and the SSMA
designs are proved against an ISA specification). The lower
layers represent successive refinements.

In our context, all MA designs will be modelled in terms of
state functions (representing state machines) within a functional
framework using the functional language Haskell [14].

 Fig.1.The layered Vertical-Horizontal design approach

III. PRELIMINARIES

A. State function

Let S be a non empty set, called the state space. A state
function with an initial state c::S, and a next-state function: f ::
S → S, is recursively defined as follows:

 F :: (Int, S) → S
 F(0, c) = c
 F((n+1), c) = f (F(n,c))

Because the next state is always a function of the previous
state, a system modelled by the notion of state function is
deterministic. The transition between two adjacent observable
states is called a step. For instance, F(n,c) represents the state
after n steps, given an initial state c, and a next-state function f.
Its value is given by: F(n,c)= f n (c)

B. State decomposition
The distributed aspect of a machine state space over its
components requires decomposing the state and the next-state
functions into coordinates.
Let S =),...,(1 kSS be the state space distributed over k

components (the observables) where iS is the state of the
thi component, for 1 ≤ i ≤ k. Thus, the state and the next-state

functions will be decomposed as follows:
F(n, 1c ,.., kc) = (F 1 (n, 1c ,.., kc),….,F k (n, 1c ,.., kc))
And
f (1c ,…, kc) = (1f (1c ,..., kc),…, kf (1c ,..., kc)

where,
F i :: (Int, S) → Si
F i (0, 1c ,…, kc) = ic

F i (n, 1c ,.., kc)= if (F1 ((n-1), 1c ,.., kc),...,F k ((n-1), 1c ,.., kc))

And if :: S → iS , for 1 ≤ i ≤ k

In this way, each coordinate F i computes only the
thi component of the state function F, and each coordinate if

computes only the thi component of the next-state function f .

C. The observational aspect of the state function

Redefining F i as follows:

F i (n, 1c ,…, kc) =

if (F 1 ((n-1), 1c ,.., kc),...,F k ((n-1), 1c ,.., kc))

 = if (F ((n-1), 1c ,…, kc))
Then,

F(n, 1c ,.., kc) = (F 1 (n, 1c ,.., kc),...,F k (n, 1c ,.., kc))

= (1f (F ((n-1), 1c ,.., kc)),.., kf (F ((n-1), 1c ,.., kc)))

Taking the initial state into account, F will be redefined more
precisely as follows:

F :: (Int, S) → S

F(0, kcc 0
1
0 ,...,) = (kcc 0

1
0 ,...,)

F(n, kcc 0
1
0 ,...,) = let nc1 = 1f (F ((n-1), kcc 0

1
0 ,...,))

M
A

L

ev
el

Verification
Verification

Impl Impl
 SMA

 Implem-
 -entation

 Lower levels

 PMA

 Implem-
- entation

 SSMA

 Implem-
-entation

IS
A

L

ev
el

 ISA
Specification

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

57

 ⋮

n
kc = kf (F ((n-1), kcc 0

1
0 ,...,))

 in (k
nn cc ,...,1)

Rewriting F in such a form reveals many important
advantages, in particular:

- It suits naturally the parallel computations: All the fi
coordinates operate in parallel.

- It fits adequately the notion of observational equivalence
(very useful for complex systems, where someone is interested
to just some observations among many others)

- It fits also the incremental design approach: If we extend
the design by extra observables, we just have to define extra
next-state functions.

IV. MODELLING THE MA-STEP

At the micro-architectural level the notion of step, called MA-
step, will be implemented in terms of clock cycles. To be able
to observe the evolution of the state at each cycle, the MA-
Step function will be decomposed as follow:

ma = [f1, f2
 o (f1,…,f1

s), … , fs
 o…o (f1,…,f1

s)] (m1)

In such form, only the fi coordinates are transformers, while
all others are selectors (to read from one stage interface and
write into the next). In this way, all the component states
which are computed by the fi coordinates throughout the
different stages are captured as depicted in figure 2. To be
realistic, we have limited the observation to only one
observable by stage. For example, the multi-cycle MIPS
machine [15] updates the PC state at fetch stage, the memory
state at memory access stage, and the register file state at write
back stage. A functional implementation is shown in figure 3.

Fig. 2. MA-Step decomposition capturing the intermediate states

 Fig. 3. MA-Step Implementation capturing the intermediate states

V. MODELLING THE SEQUENTIAL MA MACHINE

A sequential MA machine will be defined by a recursive
state function that returns the MA state after executing n
instructions (by applying MA-step n times).

SMA:: (Int, W) → W
SMA(0, c0

1,…,c0
s) = (c0

1,…,c0
s)

SMA (n, (c0
1,…,c0

s)) = ma(SMA((n-1), c0
1,…,c0

s))
By infolding the ma function, the SMA definition rewrites as
follows:

Fig. 4. Functional Specification of the SMA model

VI. MODELLING THE PIPELINED MA MACHINE

Because the instruction level is not observable (instructions
are overlapped), the PMA model will be formalised at the
program level but still in terms of clock cycles. It starts
naturally from a flushed state, fills progressively the pipe and
then proceeds interminably (unlike the flushing approach), as
depicted in figure 5.

Fig. 5. Pipelined Model diagram

Cycle S Cycle 2

f2

f1

fs

Cycle 1

Regular computation
 starts with cycle S
next-state function = (f1,…,fs)

 Irregular computation
Fills progressively the pipe

fs-1

f1

fs

f1

f2f11
0c
2
0c

⋮

sc0

s
sc
1−s

sc

1
sc

1
1c
2
0c

⋮

sc0

s
sc 1+

 2
1+sc

1
1+sc

Cycle S+1

 SMA(n, scc 0
1
0 ,...,) =

 let 1
nc = f1(SMA((n-1), scc 0

1
0 ,...,)

 ⋮
 s

nc = (fs o ..o (f1,…,f1
s)) (SMA((n-1), scc 0

1
0 ,...,))

 in (s
nn cc ,...,1)

ma::W → W

ma(scc 0
1
0 ,...,) = let

 1
1c = f1 (

scc 0
1
0 ,...,)

 ⋮
 s

sc = (fs o…o (f1,…,f1
s)) (scc 0

1
0 ,...,)

in (1
1c ,… s

sc)

f2
s f1

s

ma=[f1, f2
 o (f1,..,f1

s),…, fs oo (f1,..,f1
s)]

Intermediate states are captured

Cycle SCycle 2 Cycle 1

fs

f2

f1 1
0c
2
0c
⋮

sc0

1
1c

2
2c

1
1
−
−
s
sc

1
1c
2
2c
⋮

1
1
−
−
s
sc
s
sc

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

58

 Again, the key solution for constructing the PMA model
consists of decomposing the PMA state. Let S, be the number
of pipelining stages, fi, for 1≤ i ≤ S, be the component
function that performs the functionality of the stage i, and

W=(W1,…,Ws), be the PMA state distributed over S
observables. Therefore, the construction of the PMA model
consists of two steps:
- The first step is an irregular computation: It allows to
progressively filling the pipe till cycle S-1. Thus, given an initial
state:

scc 0
1
0,..., , the state at cycle S-1, is computed as follows:

PMA ((s-1), scc 0
1
0,...,) = [(fs-1,…,f1) o…o (f2, f1) o f1](scc 0

1
0,...,)

- The second step which starts from the cycle S, is a regular
computation: It allows to recursively compute the PMA state
by repeatedly applying the next state function: f=(f1,…,fs),
which establishes automatically after S cycles. So, the PMA
state at cycle k≥S, is computed as follows:

PMA(k, scc 0
1
0 ,...,) = (f1,…,fs) (PMA((k-1), scc 0

1
0 ,...,))

Figure 6 shows the functional implementation of this regular form

Fig. 6. Functional Specification of the PMA model for k≥S

VII. VERIFICATION OF THE PIPELINED MA MACHINE

A. Synchronisation diagram
Because both the PMA and the SMA models are formalised in
terms of clock cycles, all synchronous intermediate states
represent useful points where the comparison could be
achieved easily. Indeed, at the end of each clock cycle, a PMA
design with S stages reveals S partial results; each one relates
to an instruction within the pipe. So, we can construct a
variant of the SMA model - called Component SMA Model -
which simulates the effect of computing the same results
sequentially as shown in figure 7.

Fig 7. Synchronisation between pipelined and sequential models

In case of no stalls, the synchronization is performed using the
following time function:

tn(k,j) =(k-j)*s +j (t1)

This means that we need (k-j)*S clock cycles to execute (k-j)
instructions sequentially by the SMA model, and we need j
clock cycles over, to reach the desired sequential state.
In case of stalls, the time function rewrites as follows:

ts(k,j,e) =((k-j)-e)*s +j (t2)

where e, is the number of stalls

B. CSMA Model for a pipelined MA design
The CSMA model that we propose here, inputs the same clock
cycle k, as the PMA model, unlike the SMA model which
inputs the number of instructions to execute (see sect 4). For
each clock cycle k≥s, it constructs S terms (upon the SMA
model); each one computes a partial result for one instruction
within the pipe as shown in figure 8.

Fig. 8. Functional Specification of the CSMA model for k≥S

C. Correctness criterion
Proving the correctness of the PMA model with respect to the
CSMA model requires proving the following equation:

∀ k :: Int, ∀ 1
0c :: W1, … sc0 :: Ws

PMA(k, scc 0
1
0 ,...,) = CSMA(k, scc 0

1
0 ,...,)

The proof of such equation decomposes systematically to the
proof of the following equations:

 f1 (PMA ((k-1), scc 0
1
0,...,)) = f1 (SMA((k-1), scc 0

1
0,...,) (e1)

 ⋮

∧ fs (PMA((k-1), scc 0
1
0,...,))=(fs o...o (f1,..,f1

s))(SMA((k-s), scc 0
1
0,...,)) (es)

D. Discussion
• The above equations are separately provable by induction
over clock cycles. This avoids the use of symbolic evaluation
which remains very tedious and insufficient for complex
designs [16]
• Also, such equations can be instantiated for any particular
architecture by just specifying the stage functions fi. Hence,
the proof methodology scales well as designs get complex.
• The number of equations to prove depends to the number
of observables. This means that, we can limit the proof only to

CSMA(k, scc 0
1
0 ,...,) =

 Let 1
kc =f1(SMA((k-1), scc 0

1
0 ,...,)

 ⋮
 s

kc = (fs o, ..,o (f1,…f1
s)) (SMA((k-s), scc 0

1
0 ,...,))

 in (s
kk cc ,...,1)

ikik-s+1

Cycle k≥s

fsf1 fs f1

fs

f1

s
kc

. .
1
kc

tn(k,s) = (k-s)*s +s

1
0c

⋮

sc0

tn(k 1) = (k-1)*s +1

PMA(k, scc 0
1
0 ,...,) =

 let 1
kc = 1f (PMA ((k-1), scc 0

1
0 ,...,))

 ⋮
 s

kc = fs (PMA ((k-1), scc 0
1
0 ,...,))

 in (s
kk cc ,...,1)

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

59

some observations on which someone is interested. This is
very useful for complex pipelined designs involving many
observations.

VIII. MODELLING THE SUPERSCALAR MA MACHINE

Superscalar designs extend pipelined designs by replicating
pipeline stages such that to issue multiple instructions per
cycle. In this work, we will limit ourselves only to in-order
execution designs where instructions are issued in there
original program order and results are written in the same
order as well (the application of our methodology to out-of-
order execution designs is still at hand). In this way, a SSMA
model will be built upon a PMA model as follows:
Let W=((W1

1 ,…,W1
s),…,(Wn

1,…,Wn
s)), be the SSMA state

distributed over n pipelines (each one with S stages), and
PMAi for 1 ≤ i ≤ n, be the function that performs the
functionality of the pipeline i. Thus, given an initial state:
((1

0
11
0 ,..., scc),…,(snn cc 0

1
0 ,...,)), the state of a SSMA design at

clock cycle k≥S, results from combining the states computed
by the different pipelines as follows:

Fig. 9. Functional Specification of the SSMA model for k≥S

IX. VERIFICATION OF THE SUPERSCALAR MA MACHINE

A. Synchronisation diagram
The synchronisation diagram for a SSMA model generalises
the synchronization diagram used for the PMA model. Fig. 11
depicts such synchronisation for a superscalar design involving
an arbitrary number of pipelines.
Let ji

kc = fj(PMAi((k-1), sii cc 0
1
0 ,...,), be the SSMA component

state produced by the stage function fj, of the pipeline i, at cycle k ≥S

 In case of no stalls, the time function is defined as follows:
tn(k,j,i)=(n*(k-j) +(i-1))*s +j (t3)

 where n, is the number of pipelines. The corresponding sequential
state is computed as follows:

j
ijkts),,(= (fj o … o (1f ,…,f1

s))(SMA((n*(k-j) +(i-1)), sii cc 0
1
0 ,...,))

 In case of stalls, the synchronization is performed using the
following time function:

ts(k,j,i,e)=(n*(k-j)+(i-1))-e)*s +j (t4)
where e, is the number of stalls.

B. CSMA model for a superscalar MA design

 The component sequential model for a superscalar design
will be built over the CSMA model used for a pipelined
design. We call it; CSSMA model. It inputs the same
parameters as the SSMA model, and outputs the expected state
against which the SSMA model will be compared. Figure 10
shows such model for. k≥ S

Fig. 10. Functional Specification of the CSSMA model for k≥S

C. Correctness criterion

Proving the correctness of the SSMA model with respect to the
CSSMA model requires proving the following equation:

∀ n, k :: Int, ∀ 11

0c ::W1
1 ,…, 1

0
sc :: W1

s, nc1
0 ::Wn

1,…, snc0 :: Wn
s

SSMA(n, k,(1
0

11
0 ,..., scc),..,(snn cc 0

1
0 ,...,)) =

 CSSMA(n, k, (1
0

11
0 ,..., scc),…,(snn cc 0

1
0 ,...,))

 The proof of such equation decomposes systematically to
the proof of the following equations:

 PMA1(k,
1

0
11
0 ,..., scc) = CSMA1(k,

1
0

11
0 ,..., scc)

 ⋮

∧ PMAn(k, snn cc 0
1
0 ,...,) = CSMAn(k, snn cc 0

1
0 ,...,)

Now, we can use the definitions of the PMA and the CSMA
models given so far to resolve such equations.

CSSMA (n, k, (1
0

11
0 ,..., scc),…,(snn cc 0

1
0 ,...,)) =

 let (111,..., s
kk cc) = CSMA1(k,

1
0

11
0 ,..., scc)

 ⋮

 (sn
k

n
k cc ,...,1) = CSMAn(k, snn cc 0

1
0 ,...,)

 in ((111,..., s
kk cc), …,(sn

k
n

k cc ,...,1)) SSMA(n, k, (1
0

11
0 ,..., scc),…,(snn cc 0

1
0 ,...,)) =

 let (111,..., s
kk cc) = PMA1(k,

1
0

11
0 ,..., scc)

 ⋮

 (sn
k

n
k cc ,...,1) = PMAn(k, snn cc 0

1
0 ,...,)

 in ((111,..., s
kk cc), …,(sn

k
n

k cc ,...,1))

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

60

Fig 11. Synchronisation between superscalar and sequential models

in*(k-s)+1 in*(k-s)+n

Cycle k≥s

fs

f1

f1

fs

f1 fsfsf1 fsf1 fs f1
in*(k-1)+n in*(k-1)+1

Pipeline n

11
0c
⋮

1
0
sc

.

.

.

nc1
0

⋮

snc0

1s
kc

. .
11
kc

sn
kc

. .
n

kc1

tn(k,s,1) = (n*(k-s)*s +s

tn(k,s,n)=(n*(k-s)+(n-1))*s +s tn(k,1,n)=(n*(k-1)+(n-1))*s +1

tn(k,1,1)=n*(k-1)*s +1

Pipeline 1

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

61

X. CASE STUDY

As a case study, we applied the proposed proof
methodology to the formal verification of two examples: the
pipelined and the dual issue superscalar pipelined MIPS
processors with respect to the non-pipelined version. All
functional models (PMA, SMA, SSMA, and CSMAs models)
were developed within Haskell framework. The correctness
proof was carried out manually (the proof is amenable to
mechanisation) by induction and was limited only to three
observations: The PC, The Memory and the register file states.
Therefore, three equations (each one relates to an observable)
have been stated. For each case, three types of instructions
(Register-type, Memory-type, and branch-type) have been
reasoned about and proved. Throughout the proof process,
different types of hazards (particularly branch hazards) were
discussed as well. The methodology gives each time the right
result. For each case the models are executed to compare the
results. Further details are given below.

A. Definition of the MA State

The observation is limited to three components: The program
counter, the register file, and the data memory (the instruction
memory remains unchanged). Such components are typed as
follows:

type Word = [Bit], type PC = Word, type RegFile =
[Word], type Dmem = [Word], type Imem = [Word]

The MA-state includes beside the observables, the pipeline
registers which temporarily hold information between the
different stages.

type PipeFD = (PC, IR)
type PipeDE = (PC, IR, RA, RB, RI)
type PipeEM = (IR, RB, Aluout, Cond)
type PipeMW = (IR, Aluout, Lmd)
type MA_state = (PipeFD, PipeDE, PipeEM, PipeMW, PC,
 RegFile, Dmem, Imem)

B. Specification of the MA Stages

The interfaces specifications of the different stages are given
below.

fe :: MA_state → PipeFD
de:: MA_state → PipeDE
ex:: MA_state → PipeEM
me:: MA_state → (Dmem, PipeMW)
wb:: MA_state → RegFile

To simulate a pipelined design, we also need selector
functions to copy the remaining unchanged component states
(which are needed later) from one pipe to the next.

fs:: MA_state → (PipeDE, PipeEM, PipeMW)
ds:: MA_state → (PipeFD, PipeEM, PipeMW)
es:: MA_state → (PipeFD, PipeDE, PipeMW)
ms:: MA_state → (PipeFD, PipeDE, PipeEM)
ws:: MA_state → (PipeFD, PipeDE, PipeEM, PipeMW)

C. Pipelined model

We will limit ourselves only to the regular phase (for k≥ 5)
involving all stages which are clocked in parallel. Of course,
the system begins first by progressively filling the pipes
before to stabilise. At the end of clock cycle k, the PMA
model shows five partial results each one relates to a separate
instruction within the pipe.
pma :: (Int, MA_state) → MA_state
pma(k, fd, de, em, mw, pc rf,, dm, im) =
Let (pc’, ir1) = fe(pma((k-1), fd, de, em, mw, pc rf, dm,im))
 (pc2,ir2,ra,rb,ri)=de(pma((k-1),fd,de,em, mw, pc, rf, dm,im))
 (ir3,rb2,aluout,cond)=ex(pma((k-1),fd,de, em, mw, pc,rf, dm,im))
 (dm’,ir4,aluout2,lmd)=me(pma((k-1),fd,de,em,mw,pc,rf,dm,im))
 rf ‘ = wb(pma ((k-1),fd, de, em, mw, pc,rf, dm,im))
in (fd’ = (pc’, ir1), de’ = (npc2, ir2, ra, rb, ri),
 em’ = (ir3, rb2, aluout, cond’), mw’ = (ir4, aluout2, lmd),

 pc’, rf ’, dm’, im)

D. Sequential Model

The sequential model returns the state after executing k
instructions
sma :: (Int, MA_state) → MA_state
sma (k, fd, de, em, mw ,pc, rf, dm,im) =
let (pc’ ir1) =
 fe (sma((k-1), fd, de, em, mw, pc,rf, dm,im))
 (npc2,ir2,ra,rb,ri)=
 (de.(fe,fs))(sma((k-1),fd,de,em,mw,pc,rf,dm, im))

 (ir3, rb2, aluout, cond) =
 (ex . (de,ds).(fe,fs)) (sma((k-1),fd,de,em,mw,pc,rf, dm,im))

 (dm’, ir4, aluout2, lmd) =
 (me .(ex, es) . (de,ds) . (fe,fs)) (sma((k-1),fd,de,em,mw, pc,rf,dm,im))

 rf ’=
 (wb. (me,ms). (ex,es). (de,ds). (fe,fs))(sma((k-1),fd,de,em,mw,pc,rf,dm,im))

in (fd’ = (pc’, ir1), de’ =(npc2, ir2, ra, rb, ri),
 em’ = (ir3, rb2, aluout, cond’), mw’ = (ir4, aluout2, lmd),
 pc’, rf ’, dm’, im)

E. Component Sequential model

The CSMA model which is defined in terms of the SMA
model returns the same five partial results computed by the
PMA model. At clock cycle k, each stage i, computes the
partial result relating to the instruction (k+1)-i. The
specification of the CSMA model simulating the pipelining
computation of the MIPS processor is given below.

csma :: (Int, MA_state) → MA_state
csma (k, fd, de, em, mw, pc, rf, dm, im) =
Let (pc’ ir1) =
 fe(sma((k-1), fd, de, em, mw,pc, rf, dm im))
 (npc2, ir2, ra, rb, ri) =
 (de . (fe, fs)) (sma((k-2), fd, de, em, mw, pc,rf,dm, im))
 (ir3, rb2, aluout, cond) =
 (ex . (de, ds) . (fe,fs)) (sma((k-3), fd, de, em, mw, pc,rf,dm, im))
 (dm’, ir4, aluout2, lmd) =
 (me . (ex,es) . (de,ds) . (fe,fs)) (sma((k-4),fd,de,em, mw, pc,rf,dm,im))
 rf ’ =
 (wb . (me,ms) . (ex,es) . (de,ds) . (fe,fs)) (sma((k-5),fd,de,em,mw,pc,rf,dm,im))
in (fd’ = (pc’, ir1), de’ = (npc2, ir2, ra, rb, ri),
 em’ = (ir3, rb2, aluout, cond), mw’ = (ir4, aluout2, lmd),

 pc’, rf ’, dm’, im)

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

62

F. Correctness criterion

According to section 7.3, the correctness proof of the
pipelined MIPS processor is ensured if the following
equations are satisfied:

 fe(pma((k-1), ma_state)) =
 fe(sma((k-1), ma_state) (a1)

∧ de(pma((k-1), ma_state)) =
 (de . (fe, fs)) (sma((k-2), ma_state)) (a2)

∧ ex(pma((k-1),ma_state))=
 (ex . (de, ds) . (fe,fs))(sma((k-3),ma_state)) (a3)

∧ me(pma((k-1), ma_state))=
 (me . (ex,es) . (de,ds) . (fe,fs))(sma((k-4),ma_state)) (a4)

∧ wb(pma((k-1), ma_state)) =
 (wb . (me,ms) . (ex,es) . (de,ds).(fe,fs)) (sma((k-5),ma_state)) (a5)

Although it is possible to prove the functionalities of all
stages, we will limit the correctness proof only to three
observations: The program counter, the register file, and the
memory. Therefore, we also need to project out the pc and the
memory states, after being updated by the fetch and memory
stages respectively. Such projection function is omitted for the
register file state as it is the only component state that can be
observed at the write back stage.

projPc :: MA_state → PC
projMr :: MA_state → Dmem

In case of absence of hazards or in case of presence of hazards
that could be resolved using forwarding mechanisms (no
stalls), the correctness proof of the pipelined MIPS processor
is ensured if the following equations are satisfied.

 projPc(fe(pma((k-1), ma_state))) =
 projPc (fe(sma((k-1), ma_state))) (b1)

∧ projMr(me(pma((k-1),ma_state))) =
 projMr ((me. (ex,es). (de,ds). (fe,fs))(sma((k-4),ma_state))) (b2)

∧ wb(pma ((k-1),ma_state)) =
 (wb . (me,ms). (ex,es). (de,ds). (fe,fs))(sma((k-5),ma_state)) (a5)

In case of taken branch (requiring stalls) the verification
condition of the PC state rewrites as follows

projPc(fe(pma((k-1), ma_state))) =
 projPc (fe(sma(((k-1)-i), ma_state))) (b3)

Where, i, is the number of clock cycles for which the system
must be stalled.

Notice that, the equations (b1) and (b2) are consequent of the
equations (a1) and (a4). If (a1) and (a4) are satisfied then (b1)
and (b2) follow systematically.

 Now, it becomes easier to reason about each verification
condition separately. Furthermore, we can reason either about
individual instructions or about groups of instructions such as
register-type, memory-type, or branch-type instructions

G. Correctness proof

The proof will be carried out by induction over clock cycles.
The base case is implicit because both models start from the
same initial state. So, we will consider only the inductive case.
To ease the proof we will consider for each stage function
only the input parameters which are necessary for the
computation of the corresponding output state (the remaining
parameters are necessary only for the correct typing of the
stage functions)

- Pc state

• R-type and M-type instructions: To compute the next PC
For these types of instructions, the fetch stage function of the
pipelined model requires as active parameter, only the result
previously produced by the same stage as shown in figure 12.

Now, we assume that equation (a1) holds for cycle k, and we
try to prove it for cycle k+1, as well.

fe (pma(k, ma_state)) =
fe(fe(pma(k-1),ma_state)) definition of pma (one active parameter)
 = fe(fe (sma(k-1), ma_state)) inductive case

 = fe (sma(k, ma_state)) definition of sma
Consequently,

projPc(fe (pma(k, ma_state))) = projPc (fe (sma(k, ma_state)))

Which, quickly terminates the proof

• Branch Instructions: For the branch instructions, the fetch
stage activity depends on the result produced by the execute
stage (see [23], p.A33).

Let (ir3’, rb’,aluout’,cond’) = ex(pma((k-1), ma_state))

 Two cases will be discussed

- Case 1: cond = False (untaken Branch)
In this case the execution continues in sequence, and the PC is
updated (incremented) using only the fetch stage result.
Therefore the proof is straightforward because this case is
similar to the one discussed above.

Case 2: cond = True (taken branch)
In this case, the pc is updated using the execute stage result
(as active parameter) of cycle k. Hence,

fe(pma(k,ma_state))

 = fe(ex(pma(k-1),ma_state)) definition of pma

 = fe ((ex . (de,ds) . (fe,fs)). (sma((k-3),ma_state))) inductive case

 = fe(sma((k-2),ma_state)) sma with time function t2, (2 stalls)

Consequently,
projPc(fe (pma(k, ma_state))) = projPc(fe(sma((k-2), ma_state)))

This means that we need to stall for two cycles before to
update the pc with the branch address (the two last
instructions are ignored as shown in figure 13). According to
the equation (b3), the approach gives us the right result.

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

63

Fig 12. Correctness diagram of the fetch stage for R-type and M-type

 Fig 13. Correctness diagram of fetch stage for taken branch
 In this case the system Stalls for 2 cycles

- Data memory state

• R-type instructions: For R-type instructions, the memory-
access stage function inputs as active parameter only the
execute stage result and just passes it from the EX/MEM
pipeline register to the MEM/WB pipeline register. So, the
proof is very easy.

• M-type instructions: The memory stage inputs the execute
stage and the memory stage results.

me (pma(k, ma_state))

 = me [me(pma((k-1),ma_state)), ex(pma((k-1), ma_state))

= me[(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4),ma_state)), 1st parameter
 (ex.(de,ds).(fe,fs)) (sma((k-3),ma_state))] 2d parameter

= me[(es.(de,ds).(fe,fs))(sma((k-3),ma_state)), 1st parameter at end
 (ex.(de,ds).(fe,fs))(sma((k-3),ma_state))] 2d parameter, the same

= me[((ex,es) .(de,ds).(fe,fs))(sma((k-3),ma_state))] factoring

Consequently,
projMr(me (pma(k, ma_state))) =
 projMr((me.(ex,es) .(de,ds).(fe,fs)) (sma((k-3),ma_state)))

which establishes the proof

- Register file state

• R-type and load instructions: The write-back stage activity
is the same for both R-type and load instructions [23, p.A32].
It inputs two active parameters: the result produced by the
memory stage of the same instruction and the result produced
by the write-back stage of the previous instruction, and
updates the register file.

wb(pma(k,ma_state)

= wb [me (pma((k-1),ma_state)), wb(pma ((k-1),ma_state))]

= wb [(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state)), 1st param
 (wb.(me,ms).(ex,es).(de,ds).(fe,fs))(sma((k-5),ma_state))] 2d param

 = wb [(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state)), 1st param, same
 (ms.(ex,es).(de,ds).(fe,fs)) (sma((k-4),ma_state))] 2d param,at end

= wb [((me,ms).(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state))] factoring

which terminates the proof.

XI. CONCLUSIONS

A methodological approach for the formal specification and
verification of RISC processor micro-architectures within a
functional framework has been presented. The approach brings
many contributions with respect to previous works
- It produces accurate functional MA models (representing
functional programs) that could be used for both formal
verification and simulation (real designs are validated by
mixing these two techniques [17], [18], [19]). Moreover, by
decomposing the state, the overall proof decomposes
systematically into a set of verification conditions more simple
to reason about and to verify. In particular, we can reason
about the inter-instruction dependency such as the different
types of hazards that can occur during the execution, unlike the
flushing technique where such reasoning is impossible.
Furthermore, it is possible to reason either about individual
instructions or about groups of instructions such as register-
instructions, memory-instructions and branch-instructions
- Because both the reference and the pipelined models relate
to the MA level, there is no need for a data abstraction
function, only a time abstraction function is used to map
between the times used by the two models. Moreover, such
synchronization requires few cases with respect to those used
by alternative approaches [2, 4].
- The ability to instantiate the set of equations for any
particular architecture, offers a better scalability for the
verification of future highly-optimised designs
- The key strength of the proposed proof methodology is the
ability to carry out the proof by induction over clock cycles,
within the same specification language rather than by symbolic
evaluation through a proof tool which still requires
considerable efforts

 C k C k+1

Exec state captured at the
end of the instruction

me wb

Stall for 2 cycles

Pc =Aluout

 de ex
 fe

 i
gn

or
ed

 fe
 de

 fe

 fe

 fe fe de ex

Tn (k,3)
Ts (k+1),1,2)

Se
qu

en
tia

lm
od

el
Pi

pe
lin

ed
m

od
el

 ex

 C k C k+1

Pi
pe

lin
ed

m
od

el

 fe
 fe

Fetch state captured at the
 end of the instruction

 fe wb me de fe
Se

qu
en

tia
lm

od
el

(Tn(k,1) Tn((k+1), 1)

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

64

REFERENCES

[1] J.Burch, and D.Dill. Automatic Verification of pipelined microprocessor

control. CAV’94, LNCS 818, June 1994.
[2] R.M.Hosabettu, M.Srivas, and G.Gopalakrishnan, Decomposing the Proof

of Correctness of Pipelined Microprocessors, CAV’98, LNCS 1427,
June1998.

[3] M.Velev and R.Bryant. Formal verification of superscalar
microprocessors with multicycle functional units, exceptions, and
branch prediction, DAC’00, June 2000

[4] J. R. Burch, Techniques for Verifying Superscalar Microprocessors.
DAC’96, June 1996.

[5] M.N.Velev, Using rewriting rules and positive equality to formally verify
wide-issue out-of-order microprocessors with a reorder buffer. DATE’02,
March 2002

[6] S. K. Lahiri, S. A. Seshia, and R. E. Bryant, Modeling and verification of
out-of-order microprocessors, FMCAD’02, LNCS 2517, Nov 2002.

[7] A.C.J. Fox. An algebraic framework for verifying the correctness of
hardware with input and output: A formalization in HOL, CALCO 2005,
LNCS, 3629, 2005.

[8] A.C.J Fox. Verifying the ARM Block Data Transfer Instructions, DCC
2004, Barcelona, 2004.

[9] P. Manolios, Correctness of pipelined machines. In W.A. Hunt, and S. D.
Johnson editors, FMCAD 2000.

[10] S. Tahar and R. Kumar, A Practical Methodology for the Formal
Verification of RISC Processors, Formal Methods in Systems Design,
13(2), September 1998.

[11] K.C. Claessen, An Embedded Language Approach to Hardware
Description and Verification, PhD thesis, Chalmers University of
technology. 2001.

[12] J.R. Matthews: Algebraic specification and verification of processor
Micro-architectures PhD thesis, Oregon Graduate Institute of science
and Technology, 2000.

[13] S. Merniz, M. Benmohammed, A Methodology for the Formal
Verification of RISC Microprocessors A Functional Approach,
AICCSA’07, Amman, Jordan, May 2007

[14] S L. Peyton Jones et al, Haskell 98: A non strict,, purely functional
language. Revised; February 1999. Available at:
http://www.haskell.org/onlinereport

[15] J.L.Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach. 3rd Edition, Morgan Kaufmann Publishers Inc,
San Francisco CA, 2003.

[16] R.E. Bryant, S.K. Lahiri,, S.A. Seshia. Convergence testing in term level
bounded model checking. CHARME 2003.

[17] G. Fabbri, E. Nistico, E. Santini, Building Simulation Modeling
Environments, WSEAS transactions on circuits and systems, Issue 9,
Volume 4, September 2005

[18] L. Jie, H. Kewei, Z. Shengxian, F. Ningjun, H. Guanglin, Design and
Simulation of a New Isolated Feedback Circuit for Flyback Charging
Circuit, WSEAS transactions on circuits and systems, Issue 2, Volume 6,
February 2007

[19] T.H. Chiang, L.R. Dung, Hybrid Verification Technique for High-Level
Synthesis of Dataflow Algorithms, WSEAS transactions on circuits and
systems, Issue 3, Volume 6, March 2007

INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL PROCESSING
Issue 1, Volume 2, 2008

65

