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Abstract�The Gibbs phenomenon refers to the lack of uni-
form convergence which occurs in many orthogonal basis approx-
imations to piecewise smooth functions. This lack of uniform
convergence manifests itself in spurious oscillations near the
points of discontinuity and a low order of convergence away
from the discontinuities. Here we describe a numerical procedure
for overcoming the Gibbs phenomenon called the inverse wavelet
reconstruction method. The method takes the Fourier coef�cients
of an oscillatory partial sum and uses them to construct the
wavelet coef�cients of a non-oscillatory wavelet series.

Index Terms�Gibbs phenomenon, Inverse wavelet reconstruc-
tion, Inverse polynomial reconstruction.

Fourier and orthogonal polynomial series are known for
their highly accurate expansions for smooth functions. In
fact it is known that the more derivatives a function has,
the faster the approximation will converge. However, when a
function possesses jump-discontinuities the approximation will
fail to converge uniformly. In addition, spurious oscillations
will cause a loss of accuracy throughout the entire domain.
This lack of uniform convergence is known as the Gibbs phe-
nomenon. Methods for post-processing approximations which
suffer from the Gibbs phenomenon include the Gegenbauer
reconstruction method of Gottlieb and Shu [7,9], the method
of Pade approximants due to Driscoll and Fornberg [2], the
method of spectral molli�ers due to Gottlieb and Tadmor
[8] and Tadmor and Tanner [18, 19], the inverse polynomial
reconstruction method of Shizgal and Jung [13,14,15,16,17],
and the Freund polynomial reconstruction method of Gelb and
Tanner [6]. These reconstruction methods can be combined
with an effective method for edge-detection developed by
Gelb and Tadmor [3,4,5,6], to yield an exponentially accurate
reconstruction of the original function. In this paper we
describe a new numerical method for overcoming the Gibbs
phenomenon following the work of Shizgal and Jung, called
the Inverse Wavelet Reconstruction method.
We begin with a brief review of the essential de�nitions

of wavelets which we will need. Recall that a wavelet is a
function  2 L2 (R) satisfying:Z 1

�1
 (x) dx = 0 (1)
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�1
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where b here is the Fourier transform of  . The function  is
also known as an analyzing wavelet or a mother wavelet since
any function f 2 L2 (R) can be expressed as a continuous
sum of translations and dilations involving  according to
the continuous wavelet transform. The continuous wavelet
transform is given by

(W f) (b; a) = jaj�1=2
Z 1

�1
f (t) 

�
t� b
a

�
dt

and the inverse continuous wavelet transform is given by

f (x) =
1

C 

Z 1

�1
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where

 b;a (t) = jaj
�1=2
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C =

Z 1
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A discrete wavelet series is given for �xed constants a0; b0 by

f (x) =

1X
j=�1

1X
k=�1

cj;k j;k (x) (4)

where the discrete wavelet series coef�cients are given by

cj;k = (W f)

 
b0k

aj0
;
1

aj0

!
and

 j;k (x) = a
j=2
0  

�
aj0x� b0k

�
.

In general the wavelet functions  j;k do not constitute an
orthonormal basis. Instead they constitute what is known as
a frame. The family of functions  j;k is a frame if

A kfk2 �
1X

j=�1

1X
k=�1

��
f;  j;k��� � B kfk2

for positive constants A and B: When A = B the functions
 j;k are known as a tight frame. For more information see
Daubechies [1]. The inverse wavelet reconstruction method
makes use of wavelet bases and frames.
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I. THE INVERSE WAVELET RECONSTRUCTION METHOD
A. Inverse Polynomial Reconstruction
An effective technique for dealing with the problem of the

Gibbs phenomenon is the inverse polynomial reconstruction
method of Shizgal and Jung. Their inverse method is itself
an alternative approach to the original direct Gegenbauer
reconstruction method of Gottlieb and Shu [7, 9]. In the
inverse method, one solves a system of linear equations for the
Gegenbauer polynomial reconstruction coef�cients in terms
of the given Fourier coef�cients, from an expansion which
suffers from the Gibbs phenomenon. The inverse polynomial
reconstruction method begins with a Fourier partial sum

SNf (x) =
NX

n=�N

bf (n) e�i�nx: (5)

The function also has a Gegenbauer-� expansion given by

f (x) =
1X
m=0

bf� (m)C�m (x)
where

bf� (m) = 1

h�m

Z 1

�1
f (x)C�m (x)

�
1� x2

���1=2
dx (6)

and

h�m = �1=2
� (m+ 2�)

m!� (2�)

�
�
�+ 1

2

�
� (�) (m+ �)

:

The Fourier coef�cients bf (n) can be expressed in terms of
Gegenbauer-� coef�cients as follows.

bf (n) =
1

2

Z 1

�1
f (x) e�i�nxdx

=
1

2

Z 1

�1

1X
m=0

bf� (m)C�m (x) e�i�nxdx
=
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bf� (m)�1
2
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C�m (x) e
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�
=
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The connection coef�cients c�m;n are given by

c�m;n =
1

2

Z 1

�1
C�m (x) e

�i�nxdx (8)

and can be computed numerically. An explicit formula for
c�m;n was derived by this author, a form of which appeared in
Greene [10], and is given by:
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; m even

0; m odd.
(10)

The inverse polynomial reconstruction procedure is obtained
by truncating the in�nite series above and solving the system
of equations

bf (n) = 2NX
m=0

bf� (m) c�m;n, n = �N:::N: (11)

One then computes the reconstruction approximation

S�2Nf (x) =
2NX
m=0

bf� (m)C�m (x) : (12)

The authors show that this �nal polynomial approximation
does not depend on the choice of �:

B. Inverse Wavelet Reconstruction
We explore here an analogous approach which seeks to

reconstruct the original function in terms of wavelets. We
begin with a Fourier partial sum as before and assume that
the function f (x) can also be expressed as a discrete wavelet
series:

f (x) =
1X

m=�1

1X
l=�1

cm;l m;l (x)

where
cm;l =

Z 1

�1
f (x) m;l (x)dx

and
 m;l (x) = a

�m=2
0  (am0 x� b0l) :

We now derive a formula expressing the Fourier coef�cients
in terms of wavelet coef�cients.
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cm;lb m;l (n) (13)

The inverse wavelet reconstruction method is obtained by
truncating the doubly in�nite sum described above and solving
for the wavelet coef�cients. We suggest solving the following
system of equations.

bf (n) = M�1X
m=�M

L�1X
l=�L

cm;lb m;l (n) (14)

where
n = �N:::N � 1; and N = 2ML (15)

for the wavelet coef�cients cm;l: One then computes the
wavelet reconstruction approximation

SM;Lf (x) =
M�1X
m=�M

L�1X
l=�L

cm;l m;l (x) : (16)
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The terms b m;l (n) are the nth Fourier coef�cients of
 m;l (x) : Since we are solving a system of 2N equations
in (2M) (2L) = 4ML unknown wavelet coef�cients, in order
for the system to be invertible we must have 2N = 4ML or
N = 2ML: It is this convention which we will use for our
numerical implementation below.
Numerical experiments indicate that the invertibility con-

dition can be relaxed and fewer wavelet coef�cients can be
computed if one solves the overdetermined system in a least
squares sense using Matlab's backslash operator. This is also
illustrated below.

II. NUMERICAL RESULTS
Numerical experiments show that the inverse wavelet re-

construction approach does yield rapidly converging uniform
approximations for a variety of wavelet families. We illustrate
our method with several wavelet families. We use the Mexican
hat wavelets [1] p. 75

 (x) =
2p
3�1=4

�
1� x2

�
e�x

2=2; (17)

the Morlet wavelets [1] p. 76

 (x) = cos (5x) e�x
2=2; (18)

the Poisson wavelets [12] p. 22

 (x) =
1

� (1 + x2)
; (19)

and the second order Battle-Lemarie wavelets whose inverse
Fourier transform is given by [1] pp. 146-148.

b (�) =

r
3

2�
ei�=2

sin4 (�=4)

(�=4)
2 (20)

�
�

1 + 2 sin4 (�=4)

(1 + 2 cos2 (�=2)) (1 + 2 cos2 (�=4))

�1=2
:

We consider the test functions f1(x) = tan�1(x), f2 (x) =
sin (cos (4x)) and f3 (x) = cos (1:4� (x+ 1)). The functions
f1 and f3 both experience the Gibbs phenomenon at x =
�1: The function f3 is naturally oscillatory and its inverse
polynomial reconstruction was studied in [16]. The periodic
extension of the function f2 is continuous at x = �1,
however its �rst derivative is discontinuous resulting in a
slowly converging Fourier series.
We implement the inverse wavelet reconstruction method

by computing Fourier coef�cients for the test functions in
question using trapezoidal rule quadrature. This makes our
Fourier series a pseudospectral series. For the method to
be accurate we compute the coef�cients b m;l (n) using the
same trapezoidal rule quadrature. Results reported previously
[11] were less accurate because they were implemented using
Matlab's built in quadl function.
Rather than display semilogarithmic error plots for each

choice of wavelet and each choice of the parameters a0 and
b0, which would be cumbersome, we choose instead to display
in the tables below the base 10 logarithm of the maximum
absolute error of the reconstruction. This gives the order of
the approximation in the uniform norm. To re�ect the fact

that the accuracy of the approximation throughout the interval
is typically better than the maximum error, we also display
the logarithm of the median absolute error.
No attempt has been made to optimize the parameters a0

and b0: There may be wavelet families as well as choices for
a0 and b0 which signi�cantly outperform the choices displayed
here. Our goal has simply been to illustrate that the method
works and yields highly accurate results.
In the tables below we consider 16, 36, 64, 100, and 144

Fourier coef�cients and solve for an equal number of wavelet
coef�cients. The sequence is generated by setting M = L so
that the number of coef�cients is given by 2N = 4M2 for
m = 2; 3; 4; 5; and 6. It turns out that one need not be bound
by this invertibility condition. The method is apparently stable
when the number of Fourier coef�cients is greater than the
number of wavelet coef�cients, when one solves the system
in a least squares sense using Matlab's backslash operator.
This is illustrated below where 20; 40; 80 and 160 Fourier
coef�cients are taken and only 16, 36, 64, and 100 wavelet
coef�cients are computed.

log10 Maximum Absolute Error for f1(x)=tan-1(x)
Inverse Wavelet Reconstruction 16 36 64 100 144
Mexican Hat, a0=2,b0=1 -4.84 -8.9914 -10.9972 -10.9631 -12.588
Mexican Hat, a0=2,b0=0.25 -4.9156 -10.2833 -11.8902 -13.1775 -13.7196
Morlet, a0=2,b0=1 -3.9121 -8.7181 -11.2578 -11.0254 -13.1388
Morlet, a0=2,b0=0.25 -5.892 -9.1638 -12.004 -13.5823 -12.8753
Poisson, a0=2,b0=1 -3.2565 -5.7543 -7.3808 -7.5916 -8.6967
Poisson, a0=2,b0=0.25 -5.5509 -8.7931 -11.2796 -13.3344 -3.938
2nd Order Battle Lemarie, a0=2,b0=1 -3.8206 -10.1097 -11.9395 -11.8116 -12.293
Fourier pseudospectral series 0.1893 0.1931 0.1944 0.195 0.1954

A comparison of the maximum absolute error for several
choices of wavelets illustrating apparent uniform

convergence for f1 (x) :

log10 Median Absolute Error for f1(x)=tan-1(x)
Inverse Wavelet Reconstruction 16 36 64 100 144
Mexican Hat, a0=2,b0=1 -9.0001 -11.8381 -12.5455 -12.5417 -14.2855
Mexican Hat, a0=2,b0=0.25 -8.7112 -11.6824 -13.9538 -14.555 -14.5877
Morlet, a0=2,b0=1 -7.3297 -12.8633 -12.5719 -13.1682 -14.2033
Morlet, a0=2,b0=0.25 -9.3298 -12.9685 -14.774 -14.2578 -14.4954
Poisson, a0=2,b0=1 -7.2088 -9.2784 -9.2843 -9.6009 -9.7216
Poisson, a0=2,b0=0.25 -9.1974 -11.0949 -13.383 -14.5198 -14.5473
2nd Order Battle Lemarie, a0=2,b0=1 -7.5116 -14.1383 -14.5578 -14.1937 -14.2257
Fourier pseudospectral series -1.4117 -1.7933 -2.0207 -2.4057 -2.4135

A comparison of the median absolute error for several
choices of wavelets illustrating the typical error

throughout the interval for f1 (x) :

log10 Maximum Absolute Error for f2(x)=sin(cos(4x))
Inverse Wavelet Reconstruction 16 36 64 100 144
Mexican Hat, a0=2,b0=1 0.9898 -2.3417 -5.976 -8.5293 -10.1221
Mexican Hat, a0=2,b0=0.25 0.7013 -2.6089 -6.0476 -7.6671 -9.0327
Morlet, a0=2,b0=1 -0.985 -4.0548 -5.859 -7.987 -10.0634
Morlet, a0=2,b0=0.25 0.0273 -3.1678 -6.3026 -8.8611 -9.8097
Poisson, a0=2,b0=1 -1.6189 -2.5051 -5.0994 -5.1191 -5.8211
Poisson, a0=2,b0=0.25 -0.8827 -4.3545 -6.9964 -7.1556 1.6162
2nd Order Battle Lemarie, a0=2,b0=1 -0.9911 -3.4192 -6.6519 -7.9922 -10.263
Fourier pseudospectral series -1.2601 -1.6061 -1.9629 -3.9202 -2.5102

A comparison of the maximum absolute error for f2 (x) :

log10 Median Absolute Error for f2(x)=sin(cos(4x))
Inverse Wavelet Reconstruction 16 36 64 100 144
Mexican Hat, a0=2,b0=1 -3.2975 -5.564 -7.8135 -10.1354 -11.0672
Mexican Hat, a0=2,b0=0.25 -3.8393 -4.8392 -8.1026 -8.9621 -10.2115
Morlet, a0=2,b0=1 -3.8083 -7.3558 -8.5049 -10.1315 -11.4999
Morlet, a0=2,b0=0.25 -4.143 -7.0308 -8.5074 -9.7811 -11.0248
Poisson, a0=2,b0=1 -4.1257 -4.7126 -6.6713 -7.2824 -6.873
Poisson, a0=2,b0=0.25 -4.189 -7.1595 -7.3685 -8.7552 -8.8962
2nd Order Battle Lemarie, a0=2,b0=1 -4.2246 -8.1494 -8.8989 -10.3668 -11.6132
Fourier pseudospectral series -2.1506 -2.8629 -3.3601 -3.9206 -4.0905

A comparison of the median absolute error for f2 (x) :
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sense.

It is apparent that as the number of Fourier coef�cients
increases the error of the reconstruction initially decreases
rapidly, but soon levels off at around 10�14 regardless of how
many Fourier coef�cients are used. This is due to the fact
that the linear system is ill-conditioned and machine epsilon
here is approximately 2:2 � 10�16: All the wavelets shown
perform comparably well, although some do slightly better
than others. The results for the inverse wavelet reconstruction
method in all cases appear comparable to the results reported
for the inverse polynomial reconstruction method.

III. CONCLUSIONS AND FUTURE WORK

Numerical results indicate that the inverse wavelet recon-
struction method yields an accurate and uniformly converging
reconstruction approximation for a variety of wavelets. Work
in progress includes reconstruction involving the use of scaling
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functions, reconstruction from series other than Fourier series,
such as orthogonal polynomials or wavelets, a comparison
with other methods, and a proof of convergence.
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