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Abstract—In this paper we offer an alternative for classical 

floating-point (FP) units to solve faster and with less area the 
multiplication or division of two single-precision operands. Also, 
these operations are performed faster and more accurately than in 
previous works that used logarithmic arithmetic. All computations 
are fused in order to perform one single non-redundant addition in 
the critical path for finding the logarithm of the result. A second non-
redundant addition is used to produce the result in floating-point 
format. Using Matlab analysis, the conversion error was also 
diminished by using correction values in the content of look-up 
tables. 
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I. INTRODUCTION 
ROM the beginning, the floating-point (FP) units offered 
sufficient advantages for being significantly developed 

and widespread in time, and thus their performance has been 
continuously improved. However, compared to fixed-point 
arithmetic, the FP operations are more complex and imply 
more stages.  

The increase of integration density has permitted the 
development, as an alternative, of the logarithmic number 
system (LNS) processors out of which we mention [1], [2] and 
[3], but in these the main difficulty is to implement the 
addition and subtraction operations. 

Avoiding these disadvantages and at the same time keeping 
the qualities of both FP and LNS can be achieved through the 
design of a hybrid unit which combines the attributes of the 
FP processor with logarithmic arithmetic. Very interesting and 
attractive solutions in this direction were offered by Lai in [4], 
[5] and [6], where addition and subtraction were performed in 
FP and multiplication, division, square root and all the other 

operations in LNS. For the format conversions, a linear-
interpolation algorithm was implemented by using multipliers 
and non-redundant adders. This algorithm will be presented in 
section II of the paper.  
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However the redundant adders are useful when a series of 
additions occur in sequence, as happens in this case. The 
method of redundant summation of partial products with other 
inputs has already been used in [2] and [3] to implement the 
LNS addition and subtraction. Applying this method, one 
single non-redundant adder is required at the end of the 
interpolation. But this idea was never exploited to improve the 
data format conversions FP-LNS and LNS-FP in which 
special non-monotonic functions must be interpolated. 

Thus, in section III we present how we can obtain the 
logarithms of the two operands in carry-save form and the 
way in which we proceed in the case in which the second term 
of the linear interpolation is subtracted. 

In section IV we present a new ALU organization which 
supposes the using of one single non-redundant addition in the 
critical path instead of three as in [4], [5] and [6] for finding 
the logarithm of the result of multiplication or division.  

In section V we describe a method for reducing the format 
conversion error to half.  

Section VI will conclude the paper. 

II. DATA FORMAT CONVERSION ALGORITHMS 
A binary number A in FP system, in single-precision format 

is written: 
 

( ) ( ) 1272.011 −⋅+−= ES MA  ,            (1) 
 
where S represents the sign bit, M represents the normalized 
significand with 23 bits and E represents the biased exponent 
with 8 bits.  

In the LNS a binary number z is represented:  
 

( ) zz NSz 21 ⋅−= ,                 (2) 
 

where SZ  is the sign bit and NZ  is a fixed-point number  
having n bits, out of which i bits (i=8) for the integer part IZ, 
and f bits (f=23) for the fractional part FZ.  We have: 

fin +=     and    ZZZ FIN += .          
 (3) 

 

F 
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Considering the normalized significand (1+0.M, including 
the hidden bit) in the domain [1,2), the integer part of the 
logarithm of the number is given by the value of the unbiased 
exponent and the fractional part by the logarithm of the 
significand.  

In [4], [5] and [6] the calculation of logarithm and anti-
logarithm used the partition of the argument and the 
memorizing of only certain values for reducing the amount of 
memory and, in addition, it applied a correction method based 
on the memorization in the same points of the values of the 
function derivative, after which the linear interpolation was 
performed. Thus, it was noted y = 0.M and the significand y 
was partitioned in two parts: y1, containing the most 
significant 11 bits and y2, containing the least significant 12 
bits. The values of the function log(1+y)-y  in these 211 = 2048 
points were memorized in internal ROM (ROMA) as 
correction values Ey provided through the application of the 
address y1. 

Thus the following approximation was obtained: 
 

( ) 21log yEEyy yy ×±+≅+ Δ            

 (4) 
 

A second look-up table (ROMA’) was needed for the 
memorizing of the values of the derivative function ΔEy. 
Adopting for ΔEy a 12-bit representation, the complete 
conversion between the two formats was made through a 
reading in the look-up tables, a 12×12 bit multiplication and 
two 23-bit additions. FP-LNS format conversion is 
represented in Fig.1 

Fig.1  FP-LNS format conversion 
 
The calculation of the anti-logarithm was made in the same 

way. Considering C the result of finding the anti-logarithm, 
then: 

 
yEMEC 222 127.0127 ⋅== +++ ,            (5) 

 
where E represents the integer part in LNS format and M 
represents the fractional part.  

Y is partitioned in the same way and a ROM (ROMC) was 
used for memorizing the conversion error Ey in 2048 points, as 
well as the difference ΔEy (ROMC’). The final result of the 
conversion was:  

 

( ) 212 yEEy yy
y ×±−+≅ Δ .            (6) 

 
The correction values Ey, for both log(1+y)-y and (1+y)-2y are 
represented in Fig.2. 

log2(1+y)‐y (1+y)‐2y

Fig.2 Conversion errors between log(1+y) and y and respectively 
(1+y) and 2y. 

 
In (4) the product ΔEy × y2 must be added in the cases that 

correspond to the ascending portion of the representation 
log(1+y)-y and subtracted in the cases that correspond to the 
descending portion of the curve, while in (6) this product must 
be subtracted in the cases that correspond to the ascending 
portion of the representation (1+y)-2y  and added in the cases 
that correspond to the descending portion of this curve. 

The circuits for computing logarithms and anti-logarithms 
allowed the performing of the multiplication and division 
operations of two operands A and B by means of addition and 
subtraction operations:  

 
( ) ( BAantiBABA logloglogloglogexp )+=+=× ,   (7) 

 
( ) ( BAantiBABA logloglogloglogexp/ )−=−= .   

 (8) 
 

Implementing (4), (6), (7), and (8) led to a 6-stage pipeline 
structure [4], [5], which allowed a 100 MHz clock frequency, 
in 0.8 μm CMOS technology. Of course, the signal 
propagation speed through this structure depended on this 
process too, but, in our paper, we will refer only to the length 
of the critical path for the carry propagation. The critical 
stages were, on the one hand, those where the products  ΔEy × 
y2 from (4) and (6) were computed and, on the other hand, the 
stage where the final addition/subtraction from (4) and ALU 
operation - addition/subtraction from (7) and (8) - were 
performed. This happened because the speed advantage 
resulted from the vertical carry propagation in the 
multiplication area was diminished by the horizontal carry 
propagation in three non-redundant adders. Furthermore, ALU 
operated with data of any polarity, which complicated its 
control logic and led to a further delay. 
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Later on, the same author presented a new architecture in 
which the product Ey×ΔEy was calculated not with binary 
multipliers but with PLA circuits [6], which permitted a 
saving of area on the chip, maintaining however the same 
computation speed. In all variants the conversion error was 
maintained at 3×10-7 while the LSB in single-precision format 
had a weight of 1.19×10-7. 

III. NEW LOGARITHMIC UNIT ORGANIZATION 
In order to eliminate the disadvantages mentioned above we 

propose a new organization of the logarithmic unit that keeps 
in carry-save form the logarithms of operands A and B and 
thus, they could be memorized in the latch of a pipelined 
structure. 

Through this approach, the terms yA,, EyA, and yB, EyB which 
are added to the products ΔEyA × y2A and ΔEyB × y2B (see 
equation 4) will be introduced in the Wallace tree besides the 
12 initial partial products of each product.  

The problem which is still to be solved is that of the 
situation where in (4), the term ΔEy×y2 is negative and its 
two’s complement conversion, i.e. of all the 12 partial 
products, would be necessary. This happens starting from the 
address 907 to 2047 of ROMA and ROMA’, a situation which 
corresponds to the negative slope on the diagram of the 
function log(1+y)-y shown in Fig.2. We managed to avoid this 
shortcoming through an artifice, which allows the total 
elimination of the cases in which the product ΔEy×y2 must be 
subtracted. As shown in Fig.3, we can write the following 
equation: 

 

.

)1(

)(2)()1(

2)()1(2)()(

nnn

nnnn

EyyEyEy

yEyEyyEyEy

ΔΔ

ΔΔ

+×+=

=+×+=×−

+

+
      (9) 

 
The implementation of this equation leads to an 

arrangement of the partial products as they are presented in 
Fig.4. A generic presentation, with “qy” for the complemented 
“py” bits of y2, respectively with “pd” for the bits of ΔEY, was 
used. 

We can obtain the same result of the logarithm computation 
if we implement the right part of (9). Starting from the 
memory location corresponding to the address 907 of ROMA, 
instead of memorizing the value Ey(n), Ey(n+1) is memorized, 
i.e. exactly what should have been found at the next address. 
In each location a supplementary bit will be memorized, called 
the control bit, which takes the value 0 for addresses 0…906, 
and 1 for addresses 907…2047. If this bit is 1, then the 
generation of partial products will be done with y2 having the 
bits reversed, and another pseudo-partial product with a size 
equal to that of the least significant partial product, having the 
value ΔEy(n), will be added. If the control bit is 0, then the 
generation of partial products will be done with y2 un-
reversed, and the bits “pd” of the first pseudo-partial product 
from Fig.4 will all be 0. 

As we can see in Fig.5 the Wallace tree for one operand 
will  have 15 inputs and it will provide two data words: “sum” 
and “carry”. If in this stage we did the non-redundant addition 
of these, we would obtain the value of the logarithm of the 

significand of each input operand of both logarithm 
computation circuits working in parallel.  

ΔEy(n)×y2

y2+1 y2 Ey(n+1)

Ey(n)

_ 

ΔEy(n)×
×( y2+1) 

y×211

log(1+y)‐y

ΔEy(n) 

1 

2‐12

Fig.3  Negative slope segment achieved through linear interpolation 
between consecutive memorized values Ey. 

Fig.4   A section through the multiplication area after the 
implementation of (9). 

Fig.5  Hardware for computing the logarithm of the operand 
 in carry-save form. 
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Further on, the two fractional numbers obtained would be 
concatenated to the exponents of the two operands, in order to 
obtain the logarithms of the operands. Finally, the two 
logarithms would be applied to the ALU to be added or 
subtracted. However, in this case too, we would have two 
consecutive non-redundant additions, which slows down the 
result processing. 

To avoid this situation, we can also consider  the two pairs 
of data words “sum” and “carry” as inputs, and thus they are 
again introduced in a new reduction block. This will provide, 
on the end the final “sum” and “carry”, which will be added 
then, with the help of a fast adder. This final reduction block 
of the last pseudo-partial products will be included in the ALU 
as it should act under a control logic to allow the 
implementation of both addition and subtraction. 

The implementation of this method leads to the generating 
of a big Wallace tree with two branches, which has 30 inputs, 
4 levels of 4:2 compressor blocks and which has its lower end 
in the ALU. We used one single carry-save addition (CSA) 
block of 3:2 full adders on the first level of each branch of the 
tree. In Fig.6 we can see the arrangement of partial products 
and pseudo-partial products as well as that of intermediate 

results as inputs and outputs of all compressor blocks of one 
branch. 

 For the anti-logarithm computation circuit, the procedure 
applied is the same, the data words “sum” and “carry” being 
obtained after only 3 levels of compressors. They are then 
added with a fast non-redundant adder in order to obtain the 
significand of the final result. In this case too, we will take 
measures to avoid the subtraction of the term ΔEy×y2, but we 
also take into consideration the fact that in equation (6) the 
term Ey must be subtracted too. The product ΔEy×y2 is 
subtracted in the cases which correspond to the positive slope 
on the diagram of the function 1+y-2y, presented in Fig.2, 
while it is added in the other cases. As (9) can no longer be 
used, the sum of the two negative terms from (8) will be 
written as follows: 

 
( )

[ ]
.

)1(

)(2)()1(

2)()()(

2)()(2)()(

nnn

nnn

nnnn

EyyEyEy

yEyEyEy

yEyEyyEyEy

ΔΔ

ΔΔ

ΔΔ

+×+−=

=+×−+−=

=×+−=×−−

+

      (10) 

 

Fig.6  Arrangement of partial products, pseudo-partial products and intermediate results in the carry-save addition area 
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Thus, in the ROMC locations from the address 0 to the 
address 1082 the two’s complement of  the quantities Ey(n+1), 
which should have been found at the next address, as well as 
the value 1 for the control bit are memorized; from address 
1083 to address 2047 (when ΔEy×y2 is positive) the two’s 
complement of the values Ey(n), as well as the value 0 for the 
control bit will be memorized directly. 

The basic cell of the carry-save addition area is the 4:2 
compressor, but, in both extremities of a compressor block, 
full adders (3:2) and half adders (2:2) are used as well. The 
generalised name of “4:2 compressor” does not reflect exactly 
the features of this circuit because the sum of the 4 input bits 
of equal weight can’t be represented in all possible cases with 
the help of the two output bits. The circuit also provides a 
carry-out on a supplementary output line and thus needs an 
input for the introduction of the carry-in. In this way, there is 
a “4:2” vertical propagation path and a “1:1” horizontal 
propagation path. However, the horizontal propagation of the 
carry is practically limited to 1 bit, because the carry-out is 
generated in such a way that it does not depend on the carry-
in. The classical structure of a 4:2 compressor is presented in 
Fig.7. In Fig.8 we can see a section through a 4:2 compressor 
block. 

To increase the speed of the 4:2 compressor we proposed 
here an improved variant which reduces the fan-out 
requirements by driving no more than two inputs for all gates. 
At the same time, we do not use 3-input gates, but 2-input 
gates only.  

For both variants, the output Sum is generated by (11): 
 

inum CXXXXS ⊕⊕⊕⊕= 4321          (11) 
 

and (12) must be always satisfied: 
 

umoutarryin SCCCXXXX ++=++++ 4321 .    (12) 
 

The synthesis of the new circuit must respect the 
folowing rules: a) All possible combinations of input bits for 
which their sum is 0 or 1 have to lead to Carry = Cout = 0. b) All 
possible combinations of input bits for which their  sum is 2 or 
3 have to lead to  Carry= 1 and Cout = 0, or Carry= 0 and Cout = 
1.  In other words, all these possible combinations which 
produce either Carry= 1 or Cout = 1 have to be found in two 
disjointed areas. This possibility insures the redundant 
character of the outputs of the circuit. c) All possible 

 

Fig.7  Classical 4:2 compressor 

Fig. 8  Section through a 4:2 compressor block 
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combinations of input bits for which their sum is 4 or 5 have 
to lead to Carry = Cout = 1.  

Thus, we implemented the fast output Cout through the 
simple logical function: 

 
4321 XXXXCout +=               (13) 

 
and the output Carry by (14): 
 

.)(

)())((

432143

214321

XXXXXXC

XXCXXXXC

in

inarry

+⊕+

+⊕+⊕⊕=
    (14) 

 
The first three terms of the logical sum insures the 

fulfilment of the requirement b) related to Cout, while the 
fourth term insures the fulfilment of the requirement c) from 
the above list. We can also notice that the requirement a) is 
fulfilled by all four terms. The using of the equations De 
Morgan leads to the structure presented in Fig.9. 

For evaluating the real propagation speed of the carry in the 
most unfavourable case of each variant, we used an analogue 
simulator upon the layout of both circuits using MOSIS 
models of 0.25-μm TSMC process. The proposed variant was 
15% faster than the classical one. 

IV. ALU DESIGN 
In this approach we do not extract the bias value from the 

exponents of the two operands. For this, we extend the ALU  
with one bit to the left, while the bias value is extracted or 
added to the resulting exponent, depending on the performed 
operation, multiplication or division. The advantage is that 
ALU will operate with positive numbers. Obviously, the 
implementation of the square root operation supposes the 
extraction of the bias value from input data. 

When ALU performs a subtraction, the subtractor (the 
number which is subtracted from the other term) is 
represented by two reduced pseudo-partial products, whose 
non-redundant addition is no longer performed. This means 
that both terms must be converted into two’s complement 

code. To avoid the reconversion from two’s complement in 
sign-magnitude code of the result, in the case in which it is 
negative, we will use the same method as in [7], only modified 
for 4 operands. 

We note A1, A2, respectively B1, B2 the four final reduced 
pseudo-partial products, and A=A1+A2 represents the 
subtractend, while B=B1+B2 represents the subtractor, in the 
case in which a subtraction is performed. Now we can write 
the two terms which are simultaneously computed in the 
adder/subtracter circuit: 

 
1)1( 2121 +++++=− BBAABA ,        

 (15) 
  

0)1( 2121 +++++=− BBAAAB .        
 (16) 

 
Equation (16) can be checked in (17) as follows:  
 

1)( +−=−−=− ABABBA .           (17) 

When we replace the term ” AB − ” with the value given by  
(16), we retrieve (15).  

As we can see in Fig.10 we maintain the situation of initial 
carry-in 1, respectively that of initial carry-in 0 at the two 
adders which work in parallel, as in [7] and a carry-in equal 
with 1 at the last 4:2 compressor block, in the case of 
performing a subtraction. Obviously, this carry-in (bit line 
SOP) will be 0 in the case of addition. The carry-in is applied at 
the unused input Cin of the least significant 4:2 compressor. 

Further on, the length of the last block of the tree, included 
in the ALU, will be supplemented with 9 bits to the left, for 
the concatenation of the positive exponents (with the bias 
value of 127 included) which represent the biased integer 
parts of the logarithms of the two operands. The concatenation 
of the exponents will be done at the terms A1 and B1, obtaining 
the final pseudo-partial products A1 and B1, while in the 9-bit 
positions of the integer part corresponding to A2 and B2 of 

Fig.9  Proposed 4:2 compressor 
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fractional weight, it will be completed with zeros, obtaining A2 
and B2.  

Fig.10  Block diagram of the adder/subtracter circuit. 

The three blocks Inv./Pass will be transparent when an 
addition is performed and they will invert the bits of the data 
from the inputs when a subtraction is performed. The block 
Selector will select the result from Adder1 unchanged, in the 
case of addition, and in the case of subtraction it will select 
the result from Adder2 or from Adder1 inverted, depending on 
the MSB of  Adder2. 

Inv./Pass 

B1 

36-b Adder1 

36-b Adder2 

32-b Selector 

32-b Invert./Pass 

 SOP

0 

1

A1 

A +/‐ B 

MSB 

SOP 
⎯

36‐b 4:2 Compressor Block 

Inv./Pass

B2 A2 

Adder1 and Adder2 are 36-bit adders. The four least 
significant bits from the outputs of the two adders will be lost, 
and thus, at the output of the circuit, we will regain the single-
precision format plus one bit in the MSB position, which 
avoids the overflow due to the accumulation of bias values in 
the case of multiplication. The justification of the 36-bit 
length for the adders and the compressor block will be done in 
the next section. 

In our design and gate level simulation we used 2-level 
hybrid adders, with seven (1+3×2)  8-b carry look-ahead 
adders (CLA) plus in the most significant position two 4-b 
CLA on the 1st  level (with input carry 0 and 1 respectively) 
and a carry select mechanism on the 2nd level, as we can see in 
Fig.11. The inputs of the adder are two 36-b words, but 
because the simulator does not support a bus with more than 
32 bits, we used two buses of 32 bits and 4 bits for the lower 
and the upper sections respectively. The blocks of type 
CONECTOR permit only a dissociation of the  two 32-b input  
sections  in  four 8-b words. When the carry “c+” from the 
output of the first adder is known, it will select through the 
block SELECTOR1 the result from the adder of the first pair 

36‐b Adder1 

Fig. 11 Block diagram of the proposed 36-b adder 
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which had an input carry equal to “c+”. At the same time, the 
right output carry (provided by the same adder) is also 
selected. In its turn, this last signal will select through 
SELECTOR2 the right result and the right output carry from 
the second pair of adders, and so on. Because the “c+” type 
carry is obtained before the settling of all the output bits of a 
CLA adder type, the 4-b and 8-b groups of the final sum are 
obtained almost simultaneously. 

In Fig.12 we present the structure of an 8-b CLA whose 
basic cells are also modified comparatively to the classical 
variant in order to reduce the carry propagation time and their 
structure is shown in Fig.13. 

Fig.12 Block diagram of an 8-b CLA adder 

Fig.13  Structure of blocks A’, B’ and B’’ 
Following [8] and the assumptions regarding the carry 

propagation time through different logical gates, we 
considered the carry propagation time through an inverter or 
transmission gate like one unit (≈FO4) and subsequently, 2 
units for a 2-input NOR and NAND gate, 3.5 units for a XOR 
gate and 11 units for a 4:2 compressor. The propagation time 
through the Wallace tree which contains three levels of 4:2 
compressor blocks and a pseudo-partial product generator in a 
branch is 40 units. The gate level simulation of the new ALU 
in the most unfavourable case led to a carry propagation time 
of 40 units also, so this pipeline stage doesn’t slow down the 
logarithmic unit computing. The architecture of the 
logarithmic arithmetic unit is presented in Fig.14. In 
comparison with [4], [5] and [6] where an additional proper 
addition is included in both these stages, we can say that our 
variant, (keeping the 6-stage pipeline structure) is at least 
1.6÷1.7 times faster. 

Fig.14  Logarithmic unit architecture 

V. ERROR ANALYSIS AND CORRECTION 
Using Matlab analysis to estimate the errors introduced by 

implementing the algorithm described in [4] for the generation 
of binary logarithm and anti-logarithm, we had the 
confirmation of the value of 3×10-7 mentioned in [4] as the 
maximum conversion error. For the further minimization of 
this error, we suggest a correction of the look-up tables 
content, which will add correction values on certain address 
intervals of the ROMA and ROMC. Baring in mind that the 
error in floating-point single-precision format, i.e. the value of 
the least significant bit provided by any output of the ROMA 
or ROMC, is 1.19 × 10-7, it means that to the calculated values 
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of Ey we can add corrections of one or two LSB, after which 
they are directly memorized (ROMA), respectively, they are 
transformed in two’s complement and then memorized 
(ROMC). The correction value “cor” that must be operated in 
some memory locations depends on the minimum and 
maximum error in each of the 2048 intervals. It is given by the 
m

 

 (18) 

possible ones (in logarithm domain [0, 1)), shows us that the 

error is kept under 1.5×10-7 (Fig.15.c). 

atlab equation: 

10^*1.19*(2min(err))/+(err)round((max=Cor -7)).  

 
      For example, in Fig.15.a and b we present the error for the 
first 40960 values of the logarithm, before and after the 
correction is done. A more extended representation of the 
error, for the first 3,686,400 values of the total of 8,388,608 

Fig.15 The error for the first 40,960 values of the logarithm (a) 
before, (b) after the correction and (c) the error for the first 3,686,400 

values after the correction. 

     As far as the computation of the product ΔEy×y2 is 
concerned or, more generally, the interpolators using 
multipliers that truncate lesser-significant partial-product bits, 
they have received attention recently in [9]. We can notice 
from Fig.4, in which a section of the multiplication area is 
presented, that, if we perform the calculation of the truncation 
error in the most disadvantageous case, when all bits of a 
smaller or equal weight with “-28” (the bits of the right side of 
the vertical line) are equal to 1, we obtain the value 0.6×10-7. 
This value represents half of the representation error in single-
precision format. But, because each bit in the multiplication 
area represents a logical AND of two bits that can be 0 or 1 
with equal probability, the weight of all these bits is 
statistically 0.15×10-7 (i.e. 1LSB/8). According to [9], the 
removal of all bits from this area, i.e. the elimination of the 
hard structures from the whole Wallace tree and ALU, can be 
statistically compensated by adding a 1 in the column of 
weight   –26 next to the 11th partial product. As we observe in 
Fig.4 and Fig.6, we keep 27 bits for the fractional part of the 
logarithm (or anti-logarithm) that leads to a 36-b structure for 
the final sum. 

 

c. 

b. 

a. 

VI. CONCLUSIONS 
In this paper we describe a new organization of a 

logarithmic unit that accepts single-precision floating-point 
inputs/output and provides a result in 6×40=240FO4. The 
algorithm of the data format conversions FP-LNS and LNS-
FP was improved in comparison with other related works, i.e. 
it becomes roughly 1.6 times faster and almost twice as 
accurate. In a very recent work, [10], in which a conventional 
floating-point approach was used, a double-precision division 
lasted 453FO4. We can say that our proposal is comparable in 
terms of speed with this last one but implies less hardware and 
latency. 

Operations as multiplication and division are solved by 
using the same hardware. The presented architecture allows a 
very easy implementation of other operations as 
exponentiation for any positive base and any real exponent or 
the logarithm of a number to any base. As we have shown in 
[11], we can efficiently modify the CPU architectures 
analyzed and presented in [12] concerning the data 
processing. Applications such as those described in [13] and 
[14] can be very easily implemented by using the logarithmic 
core presented in this paper. 
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