
Single-precision logarithmic arithmetic unit
with floating-point input/output data

Lucian Jurca, Aurel Gontean, Florin Alexa, and Daniel I. Curiac

Abstract—In this paper we offer an alternative for classical

floating-point (FP) units to solve faster and with less area the
multiplication or division of two single-precision operands. Also,
these operations are performed faster and more accurately than in
previous works that used logarithmic arithmetic. All computations
are fused in order to perform one single non-redundant addition in
the critical path for finding the logarithm of the result. A second non-
redundant addition is used to produce the result in floating-point
format. Using Matlab analysis, the conversion error was also
diminished by using correction values in the content of look-up
tables.

Keywords—4:2 compressor, floating point, logarithmic number
system, partial product, redundant adder.

I. INTRODUCTION
ROM the beginning, the floating-point (FP) units offered
sufficient advantages for being significantly developed

and widespread in time, and thus their performance has been
continuously improved. However, compared to fixed-point
arithmetic, the FP operations are more complex and imply
more stages.

The increase of integration density has permitted the
development, as an alternative, of the logarithmic number
system (LNS) processors out of which we mention [1], [2] and
[3], but in these the main difficulty is to implement the
addition and subtraction operations.

Avoiding these disadvantages and at the same time keeping
the qualities of both FP and LNS can be achieved through the
design of a hybrid unit which combines the attributes of the
FP processor with logarithmic arithmetic. Very interesting and
attractive solutions in this direction were offered by Lai in [4],
[5] and [6], where addition and subtraction were performed in
FP and multiplication, division, square root and all the other

operations in LNS. For the format conversions, a linear-
interpolation algorithm was implemented by using multipliers
and non-redundant adders. This algorithm will be presented in
section II of the paper.

Manuscript received December 31, 2008.
L. Jurca is with the Applied Electronics Department, “Politehnica”

University of Timisoara, B-dul Vasile Parvan nr.2, Timisoara, Romania (e-
mail: lucian.jurca@etc.upt.ro).

A. Gontean is with the Applied Electronics Department, “Politehnica”
University of Timisoara, B-dul Vasile Parvan nr.2, Timisoara, Romania (e-
mail: aurel.gontean@etc.upt.ro).

F. Alexa is with the Telecommunications Department, “Politehnica”
University of Timisoara, B-dul Vasile Parvan nr.2, Timisoara, Romania (e-
mail: florin.alexa@etc.upt.ro).

D. I. Curiac is with the Automation and Applied Informatics Department,
“Politehnica” University of Timisoara, B-dul Vasile Parvan nr.2, Timisoara,
Romania (e-mail: daniel.curiac@aut.upt.ro).

However the redundant adders are useful when a series of
additions occur in sequence, as happens in this case. The
method of redundant summation of partial products with other
inputs has already been used in [2] and [3] to implement the
LNS addition and subtraction. Applying this method, one
single non-redundant adder is required at the end of the
interpolation. But this idea was never exploited to improve the
data format conversions FP-LNS and LNS-FP in which
special non-monotonic functions must be interpolated.

Thus, in section III we present how we can obtain the
logarithms of the two operands in carry-save form and the
way in which we proceed in the case in which the second term
of the linear interpolation is subtracted.

In section IV we present a new ALU organization which
supposes the using of one single non-redundant addition in the
critical path instead of three as in [4], [5] and [6] for finding
the logarithm of the result of multiplication or division.

In section V we describe a method for reducing the format
conversion error to half.

Section VI will conclude the paper.

II. DATA FORMAT CONVERSION ALGORITHMS
A binary number A in FP system, in single-precision format

is written:

() () 1272.011 −⋅+−= ES MA , (1)

where S represents the sign bit, M represents the normalized
significand with 23 bits and E represents the biased exponent
with 8 bits.

In the LNS a binary number z is represented:

() zz NSz 21 ⋅−= , (2)

where SZ is the sign bit and NZ is a fixed-point number
having n bits, out of which i bits (i=8) for the integer part IZ,
and f bits (f=23) for the fractional part FZ. We have:

fin += and ZZZ FIN += .
 (3)

F

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 189

Considering the normalized significand (1+0.M, including
the hidden bit) in the domain [1,2), the integer part of the
logarithm of the number is given by the value of the unbiased
exponent and the fractional part by the logarithm of the
significand.

In [4], [5] and [6] the calculation of logarithm and anti-
logarithm used the partition of the argument and the
memorizing of only certain values for reducing the amount of
memory and, in addition, it applied a correction method based
on the memorization in the same points of the values of the
function derivative, after which the linear interpolation was
performed. Thus, it was noted y = 0.M and the significand y
was partitioned in two parts: y1, containing the most
significant 11 bits and y2, containing the least significant 12
bits. The values of the function log(1+y)-y in these 211 = 2048
points were memorized in internal ROM (ROMA) as
correction values Ey provided through the application of the
address y1.

Thus the following approximation was obtained:

() 21log yEEyy yy ×±+≅+ Δ

 (4)

A second look-up table (ROMA’) was needed for the
memorizing of the values of the derivative function ΔEy.
Adopting for ΔEy a 12-bit representation, the complete
conversion between the two formats was made through a
reading in the look-up tables, a 12×12 bit multiplication and
two 23-bit additions. FP-LNS format conversion is
represented in Fig.1

Fig.1 FP-LNS format conversion

The calculation of the anti-logarithm was made in the same

way. Considering C the result of finding the anti-logarithm,
then:

yEMEC 222 127.0127 ⋅== +++ , (5)

where E represents the integer part in LNS format and M
represents the fractional part.

Y is partitioned in the same way and a ROM (ROMC) was
used for memorizing the conversion error Ey in 2048 points, as
well as the difference ΔEy (ROMC’). The final result of the
conversion was:

() 212 yEEy yy
y ×±−+≅ Δ . (6)

The correction values Ey, for both log(1+y)-y and (1+y)-2y are
represented in Fig.2.

log2(1+y)‐y (1+y)‐2y

Fig.2 Conversion errors between log(1+y) and y and respectively
(1+y) and 2y.

In (4) the product ΔEy × y2 must be added in the cases that

correspond to the ascending portion of the representation
log(1+y)-y and subtracted in the cases that correspond to the
descending portion of the curve, while in (6) this product must
be subtracted in the cases that correspond to the ascending
portion of the representation (1+y)-2y and added in the cases
that correspond to the descending portion of this curve.

The circuits for computing logarithms and anti-logarithms
allowed the performing of the multiplication and division
operations of two operands A and B by means of addition and
subtraction operations:

() (BAantiBABA logloglogloglogexp)+=+=× , (7)

() (BAantiBABA logloglogloglogexp/)−=−= .

 (8)

Implementing (4), (6), (7), and (8) led to a 6-stage pipeline
structure [4], [5], which allowed a 100 MHz clock frequency,
in 0.8 μm CMOS technology. Of course, the signal
propagation speed through this structure depended on this
process too, but, in our paper, we will refer only to the length
of the critical path for the carry propagation. The critical
stages were, on the one hand, those where the products ΔEy ×
y2 from (4) and (6) were computed and, on the other hand, the
stage where the final addition/subtraction from (4) and ALU
operation - addition/subtraction from (7) and (8) - were
performed. This happened because the speed advantage
resulted from the vertical carry propagation in the
multiplication area was diminished by the horizontal carry
propagation in three non-redundant adders. Furthermore, ALU
operated with data of any polarity, which complicated its
control logic and led to a further delay.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 190

Later on, the same author presented a new architecture in
which the product Ey×ΔEy was calculated not with binary
multipliers but with PLA circuits [6], which permitted a
saving of area on the chip, maintaining however the same
computation speed. In all variants the conversion error was
maintained at 3×10-7 while the LSB in single-precision format
had a weight of 1.19×10-7.

III. NEW LOGARITHMIC UNIT ORGANIZATION
In order to eliminate the disadvantages mentioned above we

propose a new organization of the logarithmic unit that keeps
in carry-save form the logarithms of operands A and B and
thus, they could be memorized in the latch of a pipelined
structure.

Through this approach, the terms yA,, EyA, and yB, EyB which
are added to the products ΔEyA × y2A and ΔEyB × y2B (see
equation 4) will be introduced in the Wallace tree besides the
12 initial partial products of each product.

The problem which is still to be solved is that of the
situation where in (4), the term ΔEy×y2 is negative and its
two’s complement conversion, i.e. of all the 12 partial
products, would be necessary. This happens starting from the
address 907 to 2047 of ROMA and ROMA’, a situation which
corresponds to the negative slope on the diagram of the
function log(1+y)-y shown in Fig.2. We managed to avoid this
shortcoming through an artifice, which allows the total
elimination of the cases in which the product ΔEy×y2 must be
subtracted. As shown in Fig.3, we can write the following
equation:

.

)1(

)(2)()1(

2)()1(2)()(

nnn

nnnn

EyyEyEy

yEyEyyEyEy

ΔΔ

ΔΔ

+×+=

=+×+=×−

+

+
 (9)

The implementation of this equation leads to an

arrangement of the partial products as they are presented in
Fig.4. A generic presentation, with “qy” for the complemented
“py” bits of y2, respectively with “pd” for the bits of ΔEY, was
used.

We can obtain the same result of the logarithm computation
if we implement the right part of (9). Starting from the
memory location corresponding to the address 907 of ROMA,
instead of memorizing the value Ey(n), Ey(n+1) is memorized,
i.e. exactly what should have been found at the next address.
In each location a supplementary bit will be memorized, called
the control bit, which takes the value 0 for addresses 0…906,
and 1 for addresses 907…2047. If this bit is 1, then the
generation of partial products will be done with y2 having the
bits reversed, and another pseudo-partial product with a size
equal to that of the least significant partial product, having the
value ΔEy(n), will be added. If the control bit is 0, then the
generation of partial products will be done with y2 un-
reversed, and the bits “pd” of the first pseudo-partial product
from Fig.4 will all be 0.

As we can see in Fig.5 the Wallace tree for one operand
will have 15 inputs and it will provide two data words: “sum”
and “carry”. If in this stage we did the non-redundant addition
of these, we would obtain the value of the logarithm of the

significand of each input operand of both logarithm
computation circuits working in parallel.

ΔEy(n)×y2

y2+1 y2 Ey(n+1)

Ey(n)

_

ΔEy(n)×
×(y2+1)

y×211

log(1+y)‐y

ΔEy(n)

1

2‐12

Fig.3 Negative slope segment achieved through linear interpolation
between consecutive memorized values Ey.

Fig.4 A section through the multiplication area after the
implementation of (9).

Fig.5 Hardware for computing the logarithm of the operand
 in carry-save form.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 191

Further on, the two fractional numbers obtained would be
concatenated to the exponents of the two operands, in order to
obtain the logarithms of the operands. Finally, the two
logarithms would be applied to the ALU to be added or
subtracted. However, in this case too, we would have two
consecutive non-redundant additions, which slows down the
result processing.

To avoid this situation, we can also consider the two pairs
of data words “sum” and “carry” as inputs, and thus they are
again introduced in a new reduction block. This will provide,
on the end the final “sum” and “carry”, which will be added
then, with the help of a fast adder. This final reduction block
of the last pseudo-partial products will be included in the ALU
as it should act under a control logic to allow the
implementation of both addition and subtraction.

The implementation of this method leads to the generating
of a big Wallace tree with two branches, which has 30 inputs,
4 levels of 4:2 compressor blocks and which has its lower end
in the ALU. We used one single carry-save addition (CSA)
block of 3:2 full adders on the first level of each branch of the
tree. In Fig.6 we can see the arrangement of partial products
and pseudo-partial products as well as that of intermediate

results as inputs and outputs of all compressor blocks of one
branch.

 For the anti-logarithm computation circuit, the procedure
applied is the same, the data words “sum” and “carry” being
obtained after only 3 levels of compressors. They are then
added with a fast non-redundant adder in order to obtain the
significand of the final result. In this case too, we will take
measures to avoid the subtraction of the term ΔEy×y2, but we
also take into consideration the fact that in equation (6) the
term Ey must be subtracted too. The product ΔEy×y2 is
subtracted in the cases which correspond to the positive slope
on the diagram of the function 1+y-2y, presented in Fig.2,
while it is added in the other cases. As (9) can no longer be
used, the sum of the two negative terms from (8) will be
written as follows:

()

[]
.

)1(

)(2)()1(

2)()()(

2)()(2)()(

nnn

nnn

nnnn

EyyEyEy

yEyEyEy

yEyEyyEyEy

ΔΔ

ΔΔ

ΔΔ

+×+−=

=+×−+−=

=×+−=×−−

+

 (10)

Fig.6 Arrangement of partial products, pseudo-partial products and intermediate results in the carry-save addition area

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 192

Thus, in the ROMC locations from the address 0 to the
address 1082 the two’s complement of the quantities Ey(n+1),
which should have been found at the next address, as well as
the value 1 for the control bit are memorized; from address
1083 to address 2047 (when ΔEy×y2 is positive) the two’s
complement of the values Ey(n), as well as the value 0 for the
control bit will be memorized directly.

The basic cell of the carry-save addition area is the 4:2
compressor, but, in both extremities of a compressor block,
full adders (3:2) and half adders (2:2) are used as well. The
generalised name of “4:2 compressor” does not reflect exactly
the features of this circuit because the sum of the 4 input bits
of equal weight can’t be represented in all possible cases with
the help of the two output bits. The circuit also provides a
carry-out on a supplementary output line and thus needs an
input for the introduction of the carry-in. In this way, there is
a “4:2” vertical propagation path and a “1:1” horizontal
propagation path. However, the horizontal propagation of the
carry is practically limited to 1 bit, because the carry-out is
generated in such a way that it does not depend on the carry-
in. The classical structure of a 4:2 compressor is presented in
Fig.7. In Fig.8 we can see a section through a 4:2 compressor
block.

To increase the speed of the 4:2 compressor we proposed
here an improved variant which reduces the fan-out
requirements by driving no more than two inputs for all gates.
At the same time, we do not use 3-input gates, but 2-input
gates only.

For both variants, the output Sum is generated by (11):

inum CXXXXS ⊕⊕⊕⊕= 4321 (11)

and (12) must be always satisfied:

umoutarryin SCCCXXXX ++=++++ 4321 . (12)

The synthesis of the new circuit must respect the
folowing rules: a) All possible combinations of input bits for
which their sum is 0 or 1 have to lead to Carry = Cout = 0. b) All
possible combinations of input bits for which their sum is 2 or
3 have to lead to Carry= 1 and Cout = 0, or Carry= 0 and Cout =
1. In other words, all these possible combinations which
produce either Carry= 1 or Cout = 1 have to be found in two
disjointed areas. This possibility insures the redundant
character of the outputs of the circuit. c) All possible

Fig.7 Classical 4:2 compressor

Fig. 8 Section through a 4:2 compressor block

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 193

combinations of input bits for which their sum is 4 or 5 have
to lead to Carry = Cout = 1.

Thus, we implemented the fast output Cout through the
simple logical function:

4321 XXXXCout += (13)

and the output Carry by (14):

.)(

)())((

432143

214321

XXXXXXC

XXCXXXXC

in

inarry

+⊕+

+⊕+⊕⊕=
 (14)

The first three terms of the logical sum insures the

fulfilment of the requirement b) related to Cout, while the
fourth term insures the fulfilment of the requirement c) from
the above list. We can also notice that the requirement a) is
fulfilled by all four terms. The using of the equations De
Morgan leads to the structure presented in Fig.9.

For evaluating the real propagation speed of the carry in the
most unfavourable case of each variant, we used an analogue
simulator upon the layout of both circuits using MOSIS
models of 0.25-μm TSMC process. The proposed variant was
15% faster than the classical one.

IV. ALU DESIGN
In this approach we do not extract the bias value from the

exponents of the two operands. For this, we extend the ALU
with one bit to the left, while the bias value is extracted or
added to the resulting exponent, depending on the performed
operation, multiplication or division. The advantage is that
ALU will operate with positive numbers. Obviously, the
implementation of the square root operation supposes the
extraction of the bias value from input data.

When ALU performs a subtraction, the subtractor (the
number which is subtracted from the other term) is
represented by two reduced pseudo-partial products, whose
non-redundant addition is no longer performed. This means
that both terms must be converted into two’s complement

code. To avoid the reconversion from two’s complement in
sign-magnitude code of the result, in the case in which it is
negative, we will use the same method as in [7], only modified
for 4 operands.

We note A1, A2, respectively B1, B2 the four final reduced
pseudo-partial products, and A=A1+A2 represents the
subtractend, while B=B1+B2 represents the subtractor, in the
case in which a subtraction is performed. Now we can write
the two terms which are simultaneously computed in the
adder/subtracter circuit:

1)1(2121 +++++=− BBAABA ,

 (15)

0)1(2121 +++++=− BBAAAB .
 (16)

Equation (16) can be checked in (17) as follows:

1)(+−=−−=− ABABBA . (17)

When we replace the term ” AB − ” with the value given by
(16), we retrieve (15).

As we can see in Fig.10 we maintain the situation of initial
carry-in 1, respectively that of initial carry-in 0 at the two
adders which work in parallel, as in [7] and a carry-in equal
with 1 at the last 4:2 compressor block, in the case of
performing a subtraction. Obviously, this carry-in (bit line
SOP) will be 0 in the case of addition. The carry-in is applied at
the unused input Cin of the least significant 4:2 compressor.

Further on, the length of the last block of the tree, included
in the ALU, will be supplemented with 9 bits to the left, for
the concatenation of the positive exponents (with the bias
value of 127 included) which represent the biased integer
parts of the logarithms of the two operands. The concatenation
of the exponents will be done at the terms A1 and B1, obtaining
the final pseudo-partial products A1 and B1, while in the 9-bit
positions of the integer part corresponding to A2 and B2 of

Fig.9 Proposed 4:2 compressor

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 194

fractional weight, it will be completed with zeros, obtaining A2
and B2.

Fig.10 Block diagram of the adder/subtracter circuit.

The three blocks Inv./Pass will be transparent when an
addition is performed and they will invert the bits of the data
from the inputs when a subtraction is performed. The block
Selector will select the result from Adder1 unchanged, in the
case of addition, and in the case of subtraction it will select
the result from Adder2 or from Adder1 inverted, depending on
the MSB of Adder2.

Inv./Pass

B1

36-b Adder1

36-b Adder2

32-b Selector

32-b Invert./Pass

 SOP

0

1

A1

A +/‐ B

MSB

SOP
⎯

36‐b 4:2 Compressor Block

Inv./Pass

B2 A2

Adder1 and Adder2 are 36-bit adders. The four least
significant bits from the outputs of the two adders will be lost,
and thus, at the output of the circuit, we will regain the single-
precision format plus one bit in the MSB position, which
avoids the overflow due to the accumulation of bias values in
the case of multiplication. The justification of the 36-bit
length for the adders and the compressor block will be done in
the next section.

In our design and gate level simulation we used 2-level
hybrid adders, with seven (1+3×2) 8-b carry look-ahead
adders (CLA) plus in the most significant position two 4-b
CLA on the 1st level (with input carry 0 and 1 respectively)
and a carry select mechanism on the 2nd level, as we can see in
Fig.11. The inputs of the adder are two 36-b words, but
because the simulator does not support a bus with more than
32 bits, we used two buses of 32 bits and 4 bits for the lower
and the upper sections respectively. The blocks of type
CONECTOR permit only a dissociation of the two 32-b input
sections in four 8-b words. When the carry “c+” from the
output of the first adder is known, it will select through the
block SELECTOR1 the result from the adder of the first pair

36‐b Adder1

Fig. 11 Block diagram of the proposed 36-b adder

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 195

which had an input carry equal to “c+”. At the same time, the
right output carry (provided by the same adder) is also
selected. In its turn, this last signal will select through
SELECTOR2 the right result and the right output carry from
the second pair of adders, and so on. Because the “c+” type
carry is obtained before the settling of all the output bits of a
CLA adder type, the 4-b and 8-b groups of the final sum are
obtained almost simultaneously.

In Fig.12 we present the structure of an 8-b CLA whose
basic cells are also modified comparatively to the classical
variant in order to reduce the carry propagation time and their
structure is shown in Fig.13.

Fig.12 Block diagram of an 8-b CLA adder

Fig.13 Structure of blocks A’, B’ and B’’
Following [8] and the assumptions regarding the carry

propagation time through different logical gates, we
considered the carry propagation time through an inverter or
transmission gate like one unit (≈FO4) and subsequently, 2
units for a 2-input NOR and NAND gate, 3.5 units for a XOR
gate and 11 units for a 4:2 compressor. The propagation time
through the Wallace tree which contains three levels of 4:2
compressor blocks and a pseudo-partial product generator in a
branch is 40 units. The gate level simulation of the new ALU
in the most unfavourable case led to a carry propagation time
of 40 units also, so this pipeline stage doesn’t slow down the
logarithmic unit computing. The architecture of the
logarithmic arithmetic unit is presented in Fig.14. In
comparison with [4], [5] and [6] where an additional proper
addition is included in both these stages, we can say that our
variant, (keeping the 6-stage pipeline structure) is at least
1.6÷1.7 times faster.

Fig.14 Logarithmic unit architecture

V. ERROR ANALYSIS AND CORRECTION
Using Matlab analysis to estimate the errors introduced by

implementing the algorithm described in [4] for the generation
of binary logarithm and anti-logarithm, we had the
confirmation of the value of 3×10-7 mentioned in [4] as the
maximum conversion error. For the further minimization of
this error, we suggest a correction of the look-up tables
content, which will add correction values on certain address
intervals of the ROMA and ROMC. Baring in mind that the
error in floating-point single-precision format, i.e. the value of
the least significant bit provided by any output of the ROMA
or ROMC, is 1.19 × 10-7, it means that to the calculated values

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 196

of Ey we can add corrections of one or two LSB, after which
they are directly memorized (ROMA), respectively, they are
transformed in two’s complement and then memorized
(ROMC). The correction value “cor” that must be operated in
some memory locations depends on the minimum and
maximum error in each of the 2048 intervals. It is given by the
m

 (18)

possible ones (in logarithm domain [0, 1)), shows us that the

error is kept under 1.5×10-7 (Fig.15.c).

atlab equation:

10^*1.19*(2min(err))/+(err)round((max=Cor -7)).

 For example, in Fig.15.a and b we present the error for the
first 40960 values of the logarithm, before and after the
correction is done. A more extended representation of the
error, for the first 3,686,400 values of the total of 8,388,608

Fig.15 The error for the first 40,960 values of the logarithm (a)
before, (b) after the correction and (c) the error for the first 3,686,400

values after the correction.

 As far as the computation of the product ΔEy×y2 is
concerned or, more generally, the interpolators using
multipliers that truncate lesser-significant partial-product bits,
they have received attention recently in [9]. We can notice
from Fig.4, in which a section of the multiplication area is
presented, that, if we perform the calculation of the truncation
error in the most disadvantageous case, when all bits of a
smaller or equal weight with “-28” (the bits of the right side of
the vertical line) are equal to 1, we obtain the value 0.6×10-7.
This value represents half of the representation error in single-
precision format. But, because each bit in the multiplication
area represents a logical AND of two bits that can be 0 or 1
with equal probability, the weight of all these bits is
statistically 0.15×10-7 (i.e. 1LSB/8). According to [9], the
removal of all bits from this area, i.e. the elimination of the
hard structures from the whole Wallace tree and ALU, can be
statistically compensated by adding a 1 in the column of
weight –26 next to the 11th partial product. As we observe in
Fig.4 and Fig.6, we keep 27 bits for the fractional part of the
logarithm (or anti-logarithm) that leads to a 36-b structure for
the final sum.

c.

b.

a.

VI. CONCLUSIONS
In this paper we describe a new organization of a

logarithmic unit that accepts single-precision floating-point
inputs/output and provides a result in 6×40=240FO4. The
algorithm of the data format conversions FP-LNS and LNS-
FP was improved in comparison with other related works, i.e.
it becomes roughly 1.6 times faster and almost twice as
accurate. In a very recent work, [10], in which a conventional
floating-point approach was used, a double-precision division
lasted 453FO4. We can say that our proposal is comparable in
terms of speed with this last one but implies less hardware and
latency.

Operations as multiplication and division are solved by
using the same hardware. The presented architecture allows a
very easy implementation of other operations as
exponentiation for any positive base and any real exponent or
the logarithm of a number to any base. As we have shown in
[11], we can efficiently modify the CPU architectures
analyzed and presented in [12] concerning the data
processing. Applications such as those described in [13] and
[14] can be very easily implemented by using the logarithmic
core presented in this paper.

REFERENCES
[1] D.M. Lewis, “114 MFLOPS LNS Arithmetic Unit for DSP

Applications”, IEEE Journal of Solid-State Circuits, vol.30,No.12,
pp.1547-1553, Dec.1995.

[2] J.N. Coleman, E.Chester, C. Softley, and J.Kadlec “Arithmetic on the
European Logarithmic Micro-processor”, IEEE Transactions on
Computers, Special Edition on Computer Arithmetic, Vol. 49, No. 7,
pp.702-715, July 2000.

[3] M. Arnold, “A Pipelined LNS ALU”, Workshop on VLSI, Orlando, FL,
pp. 155-161, April 19-20, 2001.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 197

[4] F. Lai, “A 10-ns Hybrid Number System Data Execution Unit for Digital
Signal Processing Systems”, IEEE Journal of Solid-State Circuits, Vol.
26, No. 4, pp. 590-599, Apr. 1991.

[5] F. Lai and C.F.E. Wu, “A Hybrid Number System Processor with
Geometric and Complex Arithmetic Capabilities”, IEEE Transactions on
Computers, Vol. 40, No.8, pp. 952-961, Aug.1991.

[6] F. Lai, “The Efficient Implementation and Analysis of a Hybrid Number
System Processor”, IEEE Transactions on Circuits and Systems, Vol.
46, No. 6 ICSPE5, pp. 382-392, June 1993.

[7] H. Fuji et al., “A Floating-Point Cell Library and a 100-MFLOPS Image
Signal Processor”, IEEE Journal of Solid-State Circuits, Vol.27, No.7,
pp.1080-1088, July 1992.

[8] J. Mori et al., “A 10-ns 54×54-b Parallel Structured Full Array
Multiplier with 0.5-µm CMOS Technology”, IEEE Journal of Solid-
State Circuits, Vol.26, No.4, pp. 600-605, April 1991.

[9] E. G. Walters III and M. J. Schulte, “Efficient Function Approximation
Using Truncated Multipliers and Squarers”, Proc. 17th IEEE Symposium
on Computer Arithmetic (ARITH'05), pp. 232-239, 2005.

[10] H. Nikmehr, B. Phillips, and C. C. Limm, “A Fast Radix-4 Floating-
Point Divider with Quotient Digit Selection by Comparison Multiples”,
The Computer Journal, Vol. 50 Issue 1, pp.81-92, Jan.2007, Oxford
University Press.

[11] L. Jurca, A. Gontean, F. Alexa, C. Vasar, “Hybrid Architecture for a
Single-Precision Arithmetic Processor”, Annals of DAAAM for 2008 &
Proceedings of the 19th International DAAAM Symposium, pp. 344,
Published by DAAAM International, Vienna, Austria 2008.

[12] N. Baek and H. Lee, “A Study on the CPU Architectures and their
Performance”, WSEAS Transactions on Computers, Issue 11, Volume 6,
pp. 1147-1152, November 2007.

[13] S. Li, L. Jing, and X. Gao, “Digital Image Scrambling Approaches Using
Multi-Dimensional Orthogonal Transform and Fast Realization”,
WSEAS Transactions on Signal Processing, Issue 11, Volume 3, pp.
459-466, November 2007.

[14] S. Bahmanpour, M. Bashooki, and M. H. Refan, “Real-Time Monitoring
and Diagnosis in Dynamic Systems using Particle Filtering Methods”,
WSEAS Transactions on Signal Processing, Issue 2, Volume 3, pp. 233-
241, February 2007.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 2, 2008 198

