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Augmented Automatic Choosing Control of Filter
Type Using ABC Algorithm and Its Application
to Electric Power Systems

Tomohiro Hachino and Hitoshi Takata

Abstract—This paper presents a state feedback control using auto-
matic choosing control and nonlinear filter for nonlinear systems with
noise measurement. The unknown state variables are estimated by
the nonlinear filter. A given nonlinear system is linearized piecewise,
so that the theory of linear optimal control can be applied to each
divided subsystem. The resulting controls on the subsystems are
smoothly united into a single nonlinear feedback control by automatic
choosing functions. Since the formula of the proposed control is
of a structure-specified type, the design parameters included in the
controller and filter are appropriately determined using artificial bee
colony algorithm. This control is applied to the transient stability
problem of a single-machine power system, whose simulation results
show that the proposed controller can expand the stable region
considerably.

Keywords—Artificial bee colony algorithm, augmented automatic
choosing control, electric power system, filter, nonlinear control.

I. INTRODUCTION

HE problem of transient stability has been one of the
most important themes in electric power systems. If the
expansion of the stable region of generators is ensured, we can
operate the power systems under severer conditions to increase
the power output of generators. This problem becomes a
control design for nonlinear systems with nonlinear noise
measurements by appropriate selection of state variables and
output variables.
In general, most controllers are synthesized by linearizing
a given nonlinear system so that the linear estimation and
control theory are applicable when some of the state variables
of the system are not measurable. One of them is based on
a truncation at the first order of the Taylor expansion [1]-
[4]. This linear optimal control (LOC) is easy to implement
to many practical nonlinear systems. As an application of
this LOC, the transient stability problem of electric power
systems with excitation control has been reported [1], [2].
The LOC is quite useful for this kind of nonlinear control
problem owing to its simplicity, but it is generally only useful
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in a small region or in almost linear ones. Controllers based
on a change of coordinates in differential geometry [5], [6]
are effective in wider region, but not easy to implement to
practical systems. Controllers based on fuzzy reasoning [7]—
[10] are more practical, but usually need a lot of divisions
which make up a complicated control formula.

This paper is concerned with a nonlinear feedback controller
using the automatic choosing functions and the linear control
theory for nonlinear systems with noisy measurement. The
control is designed by piecewise linear controls which are
smoothly united into a single nonlinear feedback control by the
automatic choosing function. The state estimation mechanism
by a nonlinear filter is added to this augmented automatic
choosing control. This is called an augmented automatic
choosing control of filter type (AACCF). The AACCF formula
is of a structure-specified type and includes some parameters
such as the adjusting parameters of the automatic choosing
function, Taylor expansion points and so forth. Since the
stable region for this controller greatly depends on these
parameters, in this paper, the use of artificial bee colony
(ABC) algorithm is proposed to determine these parameters
properly. ABC algorithm is an optimization algorithm inspired
by an intelligent behavior of honeybee swarms and has high
potential for both global and local optimizations [11]. Many
applications of this algorithm have been also reported for
vehicle routing problem [12] and prediction of electric power
damage by typhoons [13]. ABC algorithm finds the best solu-
tion through search by the three types of bees; the employed
bees, the onlooker bees, and the scout bees. This algorithm
consists of only the basic arithmetic operations and does not
require complicated coding and genetic operations such as
crossovers and mutations of genetic algorithm. Moreover, the
performance of ABC algorithm is better than or similar to
those of other population-based algorithms in spite of a few
setting parameters [11], [14], [15]. These advantages suggest
that the use of ABC algorithm increases efficiency when the
AACCEF is synthesized.

This paper is organized as follows. In Sect. II, the problem
is formulated. In Sect. III, the AACCF formula that consists of
the designs of the controller and the filter is given. In Sect. IV,
the determination of design parameters included in the AACCF
formula is presented using ABC algorithm. In Sect. V the
proposed controller is applied to the transient stability problem
of a single-machine power system by simulation. Finally some
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conclusions are remarked in Sect. VI.

II. STATEMENT OF THE PROBLEM

Consider a plant described by a nonlinear dynamic equation
and a nonlinear measurement equation:

z(t) = f(x(t)) + Bu(t), z=(t) €D C R" 0
y(t) = h(z(t)) + v(t)
where x(t) = [1(t), -+, z,(t)]T is an n-dimensional state
vector, u(t) = [u(t),- -+, u,(t)]T is an r-dimensional control
vector, y(t) = [y1(t), -+, ym(t)]T is an m-dimensional mea-

surement vector, f : D — R™ and h : D — R™ are nonlinear
vector-valued functions with f(0) = 0 and are continuously
differentiable, B is an n X r constant driving matrix, and
v(t) € N(v(t) : 0, V) is a white Gaussian noise whose mean
value vector is 0 and covariance matrix is V. D C R"™ is a
compact domain whose interior contains 0 € R™.

The aim of the paper is to design a nonlinear feedback
control u(t) for the given system (1) under the assumption
that the measurement of the plant is not perfect and noisy.

III. SYNTHESIS OF AACCF
A. Design of Control

Considering the nonlinearity of f, introduce a vector-valued
function C : D — R that defines the separative variables
{C;(x(t))}, where C = [C;-+-Cj---Cr]T is continuously
differentiable. Let D be a domain of C~!. For example, if
x2(t) is the element that has the highest nonlinearity of system
(1), then

C(z(t)) =z2(t) e DCR (L=1).

The domain D is divided into some subdomains: D =
UM, D;, where D)y = D — UMS'D; and C1(Dy) > 0.
D; (i=0,1,---M — 1) endowed with a lexicographic order
is the Cartesian product D; = H]L:1 [aij, bij], where a;; < bjj.

We here introduce the following automatic choosing func-
tion of sigmoid type. This function has excellent properties: it
is analytic, it has a formula with a few parameters and only
uses {a;j,b;j, N} on each subdomain, and it is an extension
of trapezoid type [16]. This is approximation of the function
taking values 1 on D; and 0 on D — D; (i = 0,1,--- M),
namely, of a partition of unity, as shown in Fig. 1. This
function is described by
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Fig. 1

Automatic choosing function (N = 3.0,6.0)

in which N is of positive real value, —oo < a;; < b;; < oc.
The nonlinear function f of (1) is linearized by the Taylor

expansion truncated at the first order about a point x; €

C1(D;) and xo = 0 on each subdomain D; (see Fig. 2):

Flx(t) =~ f(x:) + Ai(z(t) — x:)

= A,m(t) + w; @)

where A; = Of (x(t)) /02" (t)|w(t)=x.» and w; = f(Xi) —
AiXi-
Introduce a stable zero dynamics [17]:

i'n+1 (t) = —0&nt1(t)

. 5)
(Znt1(0)~1, 0<o <)

where the value of ¢ shall be selected so that ¢ =
—Epy1/Eppy < —@p/xp holds for all k (k = 1,---,n).
This tries to keep #,4+1(t) ~ 1 for a good while when the
system (1) is not on C~1(Dy). Then the nonlinear function
f is approximated using (5) as follows:

flx) ~ Ajx(t) + w; ~ Ajx(t) + wiZpi1(t)  (6)

Assume that the control is designed using (2) as

M
14n:§:umﬂxﬂn) (7)

Substituting (6) and (7) into (1), the dynamic equation be-
comes

a(t)

~

(Asz(t) + widnss () + Bui(®)Li(z() O

M-

I
=)

2

because Z?io I;(xz(t)) = 1. Consider a special case of
Il(w(t)) =1 in which N = —Qi; = bij — o0 in 3).

j=1 ) The augmented system by (5) and (8) is written as
-1
In(z(t)) =1- Y Li(x(t) on Dy X(t) = A; X (t) + Bu(t) ©)
i=0
where where
N — 1 X(t) = [z (t), #nt1 ()]
) = G N Gy @) — )
1 _ Al w; _ B
TTrep{ NG Em) b)) ) A= 9 n]oe=[ 7]
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Fig. 2 Sectionwize linearization

To get the feedback gain matrix F;, we apply the LQ control
theory. When the following cost function:

1 o0
Ji=g / (XT(HQX () + ul () Rus(t))dt (1)
0
is introduced and the linear optimal control theory [3] is
applied to (9), the controller u;(t) on each subdomain is

calculated as follows:
w;(t) = —F; X (¢t
0 =-RX(® W
F,=R'B' P,

where the (n + 1) x (n + 1) matrix P; satisfies the Riccati
equation:

PA +A'P,+Q—-PBR'B"P,=0 (12

Here, @ = QT > 0 and R = R > 0 which denote positive
symmetric matrices. Then the augmented automatic choosing
controller u(t) is synthesized by substituting (110 into (7).

B. Design of Filter

We here design a filter for state estimation by an approach of
linearization around the estimate. The control u(¢) is assumed
to be known. If the nonlinear equations of (1) are linearized
by the Taylor expansion about an assumed known optimal
estimate x(t) = &(t), then

{iwzf@U»+F®@@%dﬂD+BMﬁ
y(t) = h(&(t) + H(t) (@(t) - (1)) + v(t)
where F(t) = 0f(@(t)/02" (Olaza. H() =

Oh(x(t))/0x™ (t)]w(t)=a()- Let the filter equation be given
by

(13)

2(t) = £(&(1)) + Bu(t) + K(t)(y(t) — h(&(t)))

with initial value &(0) = &o. From (13) and (14), the
difference equation e(t) (t) — &(t) is derived as

=z
é(t) = (F(t) — K(t)H(t))e(t) — K(t)v(t)

(14)

(15)
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So the covariance S(t) = Ele(t)eT (t)] with E[e(t)] = 0
becomes
S(t) = (F(t) — K()H(t)S(t)
)

+S(t)(F(t) - K(t)H ()T + Kt)VKT(t) (10

when supposed E[e(t)vT (t)] = 0, with initial value S(0) =
So. We find K (t) such as to minimize an index

J(#) = t(S(1)) (17)
where t,.(-) denotes the trace operator. Thus we have
K{t)=St)H (t)V!
S(t) = F(t)S(t) + S(t)FT () (18)

~SHOHT(H)VIH(t)S(t)

as the minimum error variance. Therefore, the filter algorithm
is obtained by (14) and (18).

C. AACCF Formula

On the basis of the formulations in the above sections III.
A and III. B, we have the AACCF formula as follows.

[AACCF formula]
2(t) = f(&(t) + Bu(t) + K(t)(y(t) — h(2(1))) (19)
£(0) = 2
M
w(t) = wi(t)Ti(&(t)) (20)
=0
u(t) = —F,»:)A((t) o
X (t) = [&"(t), Zna (1)]T
Li(2(t))
L
1
N Jl;[l {1 "~ T+exp 2N (C;(2(t) — aiy)}
1
" 1+exp {=2N (C;(2(t)) — bij)}
(22)

The new AACCEF controller u(t) is rewritten in detail as

M
w(X (1) = Y wi( X (1) Ti(#(t))
i:OM (23)
=-> R'B'PX(t)Ii(&(t))
=0

A~

Note that this u(X(t)) is analytic or a smooth infinite-
time differentiable function with respect to X (£), because
I;(Z(t)) is so by (2). Thus the total differential equation
of X = [2T(t),2T(t),2,11(t)]T € R>™*! is made by the
nonlinear continuous differential functions from (1), (5), and
(19).
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IV. DETERMINATION OF PARAMETERS BY ABC
ALGORITHM

A. Outline of ABC Algorithm

ABC algorithm is an optimization algorithm inspired by
the behavior of real honeybees [11]. In this algorithm, the
colony of artificial bees consists of the three groups of bees;
the employed bees, the onlooker bees, and the scout bees. The
roles of these groups are as follows:

1) Employed bees

The employed bees determine a food source within the
neighborhood of the food source in their memory. The size of
the employed bees is half of the colony size. Every employed
bee works on only one food source. Therefore, the number of
the employed bees is equal to the number of the food sources.
The employed bees evaluate the profitability of the food
sources such as the nectar amount, and share their information
with the onlooker bees in the hive. A employed bee that has
worked on abandoned food source is differentiated into a scout
bee.
2) Onlooker bees

The onlooker bees waiting in the hive select one food source
through the information obtained from the employed bees’
dances and search in the neighborhood of the selected food
source. This selection is implemented by the “roulette-wheel”
slots weighted in proportion to the profitability of the food
source. Therefore the onlooker bees are likely to search around
more profitable food sources. The size of the onlooker bees is
also half of the colony size.
3) Scout bees

The scout bee differentiated from the employed bee searches
a new food source randomly.

In the optimization problem, the positions of the food
sources correspond to the candidates of the solution and
the profitability of the food source shows the fitness value
that represents the goodness of the solution. The suboptimal
solution is obtained by repeating search by the employed,
onlooker, and scout bees.

B. Determination Algorithm by ABC

Since the AACCF formula is of a structure-specified type,
each parameter included in the above equations must be
properly selected so that the feedback control system (1) by
AACCEF could stabilize globally. Some of a set of parameters
such as @ = {M,N,a;j,bi;,X},0, Q,R, &0, So} may be
suboptimally chosen by optimizing a cost function or fitness
value function with the aid of ABC algorithm. In this paper
the fitness value function

PI = {|max z5(0) — min z(0)]

:21(0) = 23(0) = 0,z(00) =0} P

is maximized so as to expand a stable region (see Sect. V). The
proposed algorithm for parameter determination is as follows:

step 1: Parameter selection

Issue 5, Volume 7, 2013

Choose €2 C € to be optimized and rewrite @ = {Q; : j =
17 27 e 7Z}
step 2: Initialization
(2-1) Generate an initial population of Ny bees with random

positions of the food sources Qp; (i = 1,2,--+,N,) from
(25):

Qij = Qmimj + ’I"CLTLd[O, 1] . (Qmaamj — Qmin,j)

where N, denotes the size of the employed bees or onlooker
bees and €2;; is the jth element of the vector €2f;). Qi ; and
Qmae,; are the minimum and maximum values for €;;, re-
spectively. rand[0, 1] is uniformly distributed random number
with amplitude in the range [0, 1].

(2-2) Set the iteration counter [ to 1.

(2-3) Set the counter for abandonment trial; to 0. The counter
trial; shows the number of times that the solution €2[; is not
improved by the employed and onlooker bees.

step 3: Synthesis of AACCF

Design 2(t)[; and wu(t)(;) for Q; using (19) and (20) (i =
1727"'7NS)'
step 4: Fitness value calculation

Calculate the fitness value F;(€2p;)) from (24) as F;(Qp;) =
PI(Q).
step 5: Search by the employed bees
(5-1) Determine the new positions of the food sources Vi
around ;) for the employed bees from (26):

V;'j = Qi]’ + rand[—l, 1] . (Q” — ij)

where V;; is the jth element of the vector V; and k is a

random integer selected from {1,2,---, Ny}, where k # i.

(5-2) Design 2(t)}; and u(t)};) for V}; using (19) and (20)

(1=1,2,---,Ng).

(5-3) Calculate the fitness value Fj(V;) from (24) as

F;(Viy) = PI(Vjy).

(5-4) If F;(Qy) < Fi(Viy), update ;) and F3(Qp;) by Vi

and F;(V};), respectively, and set trial; = 0. Otherwise set

trial; = trial;+1. This procedure is called “greedy selection”.
The search by the employed bees is depicted in Fig. 3.

step 6: Search by the onlooker bees

(6-1) Choose one position of the food source for each onlooker
bee from Qp; (i = 1,2,---,N;) through “roulette-wheel”
slots weighted in proportion to the fitness value of the em-
ployed bee. Namely each onlooker bee selects one position of
the food source with probability of F;(€2;;)/ Zg;l Fp(p))-
(6-2) Calculate the new positions of the food sources Vi
corresponding to the selected positions €2[; from (26).

(6-3) Design 2(t)}; and u(t)};) for V}; using (19) and (20)
(1=1,2,---, Ng).

(6-4) Calculate the fitness value Fj(Vy;) from (24) as
(Vi) = PI(Vy).

(6-5) Carry out the greedy selection with the same way of step
5(5-4).
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Fig. 5 Search by the scout bees

The search by the onlooker bees is depicted in Fig. 4.

step 7: Search by the scout bees

If the counter for abandonment trial; is greater or equal
to the prespecified number limit, carry out the following
procedure.

(7-1) Differentiate the corresponding employed bee into the
scout bee and generate the new position of the food source
Qy;) for the scout bee randomly from (25).

(7-2) Design &(t); and wu(t)[; for corresponding €2f;) using
(19) and (20).

(7-3) Calculate the fitness value Fj(€2;)) from (24) as
Fi(Q) = PI(Qy).

This step means that if the solution is not improved limit
times through search by the employed and onlooker bees, the
corresponding employed bee gives up to search around his
food source and transforms himself to the scout bee to search
around randomly selected food source. Since the number limit

Issue 5, Volume 7, 2013
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is usually set to be the product of the employed bee size and
the dimension of the search space [11], this number is taken
to be limit = N, x £ in this paper.

The search by the scout bees is depicted in Fig. 5.
step 8: Repetition

Set the iteration counter to ! =+ 1 and go to step 5 until
the prespecified iteration number /4.

Finally, at the termination of this algorithm when [ = [,,,4,
the suboptimal parameter vector €2 is determined by the best
position of the food source.

V. NUMERICAL EXAMPLE

Consider a field excitation control problem of single ma-
chine power system, which is the Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan as shown in Fig. 6.
This system is assumed to be described by

( Mb+ D(6)6 + P.(6) = P;
Pe (5) = E%Yil CcOSs 011 + E[‘7Yv12 COS(912 - 5)

Er + TaE! = Eyq
Er = E, + (Xq — X)14(5)

Id((S) = —E[Y11 sin 011 - ‘7}/12 sin(012 - (S) (27)
_ ~_(T" (XI _XII) )
D —12 do d d 2
6=V {7()(& X! sin“é
T (X — X"
T(Xe—Xy) q)cos25
N (Xq + Xe)2

The output is supposed to be given by P.(§) and § which
are easily measurable. E¢4 is a control variable. Here, ¢ is
p~}1ase angle, § the rotor speed, M the inertia coefficient,
D(6) the damping coefficient, P;, the mechanical input power,
P, (§) the generator output power, V the reference bus voltage,
Er the open circuit voltage, F¢q the field excitation voltage,
X, the direct axis synchronous reactance, X é the direct axis
transient reactance, X, the external impedance, Y7, /6, the
self-admittance of the network, Y75 /65 the mutual admittance
of the network, and I;(d) the direct axis current of the

machine.
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Put 13=[CU1,2172,2173]T=[E] - E1,6 - So,S]T and u = Epq —
E¢4, so that

T1 fi(z) by
T3 f3(x) 0
oy | ] (@)
v=|nl=1hi ] @

where
n=3 r=1 m=2

1 ~ ~

fi(z) = _Wull() (551 + Er — Efd)

X, — X)VY, R

+Mw3 COS (912 — T2 — 60)
k

f2(x) = z3

VY, N R
f3(x) = — AA;Q (331 + EI) cos (912 — Ty — 50)

ety 5)° 2@, P
M R M M
hi(x) = Y1) cosby(z1 + Er)?
+‘~/Y12(a:1 + EI) cos(ba — o — 50)
ha(x) = 3

~ < [T (X=X} .
_ 2 )Lao\Ada=Aq) . o
D(x)=V { (X7 +X,)? sin (2172 +60)

Tih (X, —X!') ]

1
b1 = T k=1 + (Xd _X(Ii) Y11 sin011
kT3,

The system parameters are given as follows:

M= 0016095[pu] T}, = 5.09907[sec]

V= 1.0[pu] P, = 1.2[pu]

Xi= 0.875[pu] X,=0.422[pu]

Yii = 1.04276[pu]  Yi» = 1.03084[pu]

911 = —156495[}7”] 012 = 156189[}7”]

X, = 1.15[pu] X = 0.238[pu]

X, = 0.6[pu] Xy = 0.3[puy]

T = 00299[pu] Tl = 0.02616[pu]
The steady-state values are as follows:

Er= 152243[pu] by =  48.57°

bo= 0.0[deg/sec] Esq= 1.52243[pu]
Set X = [2T,2]7 = [21,29,23,34]T, Clx) = )

T2
L=1M~=1x0 =0, R :Al, Q = diag(l 1,1,1),

X(0) = [0,22(0),23(0), 1], X(0) = [0,#2(0),0,1]",
1 1 0

SO)=|1 5 10 |,and V = diag(0.1,0.1).
0 10 50

In this simulation, the performance (24) is maximized so as
to expand a stable region of phase angle §. We suboptimally
select the parameters Q@ = {N,ay, X1,0} C €, which are N
and a; of the automatic choosing function, Taylor expansion
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15 = = 'Loc

x,(0) [rad /5]

x,(0) [rad]

Fig. 7 Stable region

point y; and zero dynamics coefficient o, by ABC algorithm.
The setting parameters of ABC algorithm are chosen as
follows:

(i) employed bee size Ny = 50

(i) maximum iteration number [,,,, = 100

By computation, the parameters are chosen as N = 28.53,
a1 = 66.30°, x1 = [0,89.04° — 05,0]T and o = 0.5253.
Simulations are carried out for the proposed AACCF and
the ordinary linear optimal control (LOC) under the same
condition and the same noise as to be compared with each
other. In the LOC, note that wg = 0 and M = 0. So the
augmentation  — X is not necessary, and Z,1 and o are
nothing. We set z = [z, 79, 23]T, C(z) = =2, L = 1,
X0 =0, R=1, Q = diag(1,1,1), (0) = [0,z2(0), z3(0)]T,

1 1 0

£(0) = [0,%2(0),0]T, and S(0) = | 1 5 10
0 10 50
Fig. 7 shows the cross section z5(0) — z3(0) of the stable
regions for the proposed AACCF and LOC when Z,(0) = 0.
This indicates that the stable region, which is enclosed by
the solid line for the AACCE, is considerably wider than for
the LOC, shown by the dotted line. Figs. 8-13 show the time
responses of x, &, P.(d), and u, respectively, when x5 (0) =
1.2, #5(0) = 0, and z3(0) = 0. These results indicate that
the stable region and trajectories obtained by the proposed
AACCF are much better than those obtained by the LLOC.

VI. CONCLUSIONS

In this paper an AACCF has been presented for nonlin-
ear systems with noisy measurement. The design parameters
included in both controller and filter are appropriately de-
termined using ABC algorithm. The use of ABC algorithm
makes it easier to design the AACCEF, because ABC algorithm
has a few setting parameters. The proposed controller has
been applied to the field excitation control problem of single-
machine power system. Simulation results have shown that the
new controller can expand the stable region and improve the
time responses considerably.
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