
 

 

  
Abstract—Cyclic Autocorrelation has been proposed as 

a technique for symbol rate detection in cognitive radios.  
However, cyclic autocorrelation can be inefficient due to 
the need to perform an autocorrelation of the received 
signal at different cyclic frequencies followed by an 
exhaustive search over the entire search space in order to 
find the cyclic frequency that produces the maximum 
autocorrelation.  In this paper the simulated annealing 
algorithm is used as a preprocessor to the cyclic 
autocorrelation algorithm in order to estimate the symbol 
rate of M-Ary phase shift keyed (MPSK) signals.  The 
Simulated annealing algorithm is used to traverse the 
search space in order to find the optimum cyclic frequency 
without performing and exhaustive search. 
 

Keywords—Cognitive Radios, Cyclic Autocorrelation,  
Simulated Annealing, Software-defined Radio, Symbol 
Rate detection.  

I. INTRODUCTION 
OMMUNICATION systems are constantly evolving  to 

increase functionality and efficient use of limited 
spectrum.  New sophisticated communication protocols are 
being developed to accomplish these goal, however, the radios 
themselves also need to become smarter.  Traditionally 
communication radios have been designed to resolve a signal 
of a specific modulation at a specific symbol rate.  This means 
that if it becomes necessary for a radio to operate on a 
different signal that uses a different modulation scheme and 
operates at a different data rate, then a new radio would need 
to be designed.   This can be costly in terms of both time and 
money. 

Software-defined radios (SDRs) aim to solve this problem 
by replacing as much of the radios hardware components with 
equivalent software modules.  The software modules can be 
programmed to handle multiple waveforms, with various data 
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rates.  SDR capabilities are also bolstered by the fact that they 
can be implemented on field programmable gate arrays 
(FPGAs) that are reconfigurable in the field, so SDRs can be 
updated as needed.  This makes for a cost effective and robust 
radio that can be updated remotely. 

While a SDR is able to handle various signals, it is still 
required that the appropriate parameters, i.e., the data rate, 
modulation type, be set before it is able to accurately resolve a 
given waveform.  Some radios are equipped with algorithms 
and sensors that allow the radio to detect or estimate these 
parameters, thus allowing the radio to operate autonomously.  
These SDRs are referred to as cognitive radios.  The 
applications for cognitive radios are many, ranging from 
satellite to satellite communications for deep space 
applications, to intelligent radios for military soldiers in the 
field. The cognition of a cognitive radio is facilitated by 
sensors and algorithms that are able sense the environment and 
determine the necessary parameters to allow the radio to 
configure itself accordingly.  The symbol rate is one of the 
main parameters of a signal that needs to be resolved in order 
to accurately receive and demodulate a signal.  

II. CURRENT TECHNOLOGIES 
 Many devices today such as smart phones and tablets 

contain multiple radios that are designed to resolve different 
types of signals.  For example, the typical smart phone may 
have over ten different radios included in it.  Those may 
include: 
• Cellular radio for Global System for mobile (GSM) or 

code division multiple access (CDMA). 
• Bluetooth Radio 
• Wi-Fi a/b/g/n 
• Radio for Global positioning systems (GPS) 
• Radio frequency identification (RFID) 
• Long-term evolution (LTE) 
• Evolution data optimized (EVDO) 
• Infrared radio 
• Near field communication (NFC) 

 Many of these radios have to be configured on these 
devices that have limited real estate on the chips and circuit 
boards.  Furthermore, having devices with numerous radios 
can be very inefficient in terms of power management. 
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A software-defined radio running on an FPGA or and digital 
signal processor (DSP) can replace some or all of the physical 
layers for these radios, thus leading to more efficient use of the 
real estate of the device.  Having a single FPGA may be more 
power efficient as well.  Table I illustrates some more 
advantages and disadvantages of software-defined and 
traditional radios.   

Table I shows that the main disadvantages of software-
defined radios are security and software bugs.  Since the radio 
is based in software, much like many other computer systems 
the integrity of the radio can be compromised if it is not 
properly secured.  Software based systems are also susceptible 
to software bugs which can lead affects simple malfunctions to 
total failure. 

III. PARAMETER ESTIMATION FOR SDR 
 In order for a SDR to properly resolve a signal certain 

parameters such as the signals modulation type, symbol rate 
and signal-to-noise ratio (SNR) has to be known apriori, and 
so the radio operator has to manually enter these parameters 
into the radio. 

 Therefore, in order to have the radio operate without a 
human-in-the-loop, mechanisms had to be added on the front 
end of the radio.  These mechanisms are able to detect or 
estimate these parameters.  These types of radios are called 
cognitive radios.  Fig. 1 and Fig. 2 are the respective block 
diagrams of a software-defined radio and a cognitive radio. 

Of all the parameters that the cognitive radio has to either 
estimate or detect the symbol rate is very important mainly 
because the symbol rate can be used in the calculation of the 
other parameters such as the modulation type and the SNR.  
The symbol rate of a signal can be detected one of two ways 
[1], the transmitter can send this information on a separate 
channel or the receiver can estimate the symbol rate, given that 
the receiver has full knowledge of all the possible symbol rates 
that the signal can have. 

 The first option may be impractical in a system where 
bandwidth is limited.  The second option implies that the 
cognitive radio receiver must blindly estimate the incoming 
signals parameters with little or no apriori information about 
the signal. 

 There are a number of symbol rate estimation algorithms 
in existence that are capable of blindly estimating symbol rate.  
These include methods such as cyclic autocorrelation [2], rate 
estimation via wavelets [3], [4] Fourier transforms [5].  The 
wavelet technique described in [4] takes advantage of Haar 
mother wavelet and its ability to detect transient changes in the 
signal when a symbol change occurs.  Whenever a symbol 
change occurs the wavelet method produces a spike, therefore 
when this method is applied to a signal with multiple symbol 
changes a series of peaks are produced and these peaks should 
display some periodicity.  A Fourier transform is then applied 
to determine the frequency, i.e., the estimated symbol rate.  
This method implied that the signal must be at baseband.  The 
inverse fast Fourier transform (IFFT) method described in [5] 
tries to determine the oversampling factor employed by the 
pulse-shaping filter employed by the transmitter.  The 
algorithm starts by taking a periodogram of the received 
MPSK signal and to attain a signal G(F).  The IFFT is then 
applied to G(F), resulting in a signal g(n).  The oversampling 
factor is determined by counting the number of samples at 
which the first null of g(n) occurs.  The symbol rate estimate is 
then determined by finding the quotient of the system sample 
rate and the estimated oversampling factor.  This method 
requires very large FFTs in order to make the nulls more 
distinguishable. 

For this work, the cyclic correlation algorithm was 
employed to estimate symbol rate.  The cyclic correlation 
algorithms less complex compared to the wavelet and IFFT 
methods and lends itself to practical implementation.  

IV. THE CYCLIC AUTOCORRELATION ALGORITHM 
The cyclic correlation algorithm takes advantage of the 

cyclostationary nature of linearly modulated signals [2] which 
include M-Ary phase shift keyed (MPSK) signals.  The 
autocorrelation of M-Ary signals repeat with a period that is 
equal to the symbol rate of the signal [6].  The governing 
equation is shown in (1). 
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Fig.1 Block diagram of a Software-defined Radio. 

 
Fig.2 Block diagram of a cognitive radio. 

Table I  Comparison of the advantages and disadvantages of 
traditional and conventional radio. 
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α – is  referred to as the cyclic frequency 
τ – is  the lag 
N – is the total number of samples 
r – is the received signal 

r  – is the complex conjugate of the received signal 
 
The algorithm performs an autocorrelation at different 

cyclic frequencies, in search of the optimum cyclic frequency, 
where the autocorrelation value is maximized.  The signal is 
shifted in the time domain based on τ and the kernel e-j2παn 
shifts the autocorrelation in the frequency domain [7].  The 
estimated symbol rate of the given signal is calculated by 
applying (2) 

                                      optss FT α⋅=ˆ                              (2) 

where, 

sT̂  – is the estimated symbol rate 
Fs – is the sample rate 
αopt – is the optimum cyclic frequency 
 
The algorithm does an exhaustive search over all possible 

cyclic frequencies in order to find the optimum frequency and 
depending on the resolution of the frequencies the process 
could become very inefficient. 

V. SIMULATED ANNEALING 
The simulated annealing (SA) algorithm is an optimization 

technique that is based on the annealing process in metallurgy 
[8].  The algorithm is able to find the global maximum of an 
objective function by randomly permuting one or more 
variables of the objective function.  The simulated annealing 
algorithm has the ability to avoid becoming stuck at local 
extrema and so given enough time the algorithm will find the 
global extreme of the objective function.  

In metallurgy when a metal is heated to a high temperature 
the atoms within the metal become energized and the randomly 
and manically move around within the metal.  If this 
temperature is held constant for long enough some equilibrium 
will be reached.  The temperature is then lowered and once 
again the atoms will randomly move around until some 
equilibrium is reached for this lower temperature.  Since the 
temperature is lower, the energy levels of the atoms are also 
lowered and so they do not move around as manically.  The 
temperature is once a gain lowered and the process is it 
repeated with the temperature being slowly decreased until it 
reaches some minimum, i.e., freezing temperature.  At the 
minimum temperature the atoms within the metal are at a 
minimum energy state and have assumed a crystalline 
structure.   The result of the crystalline structure is a more 
ductile metal.  This entire process is referred to as annealing.   

Simulated Annealing is analogous in that the process starts 
at a high temperature. The temperature in simulated annealing 
is referred to as the control parameter. When the control 
parameter is high, the algorithm will randomly select one or a 

combination of free parameters randomly and with wide 
variation.  The free parameters are used to evaluate the 
objective.  The control parameter is slowly decreased to some 
minimum value.  As the control parameter decreases the 
random selection of the free parameter will not vary as widely.  
By the time the algorithm arrives at the minimum temperature 
the it should converge upon a set of parameters that cause the 
objective function to result in a global extrema.  The simulated 
annealing algorithm is able to avoid getting stuck in a local 
minimum/maximum by accepting an incorrect result 
occasionally [9].  The algorithm will accept an incorrect 
answer based on the Boltzmann probability (3).   

 ( ) ( )
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Where, PΔE is Boltzmann’s probability, and kb is 
Boltzmann’s constant.  The probability is evaluated by 
differentiating between the previous energy state and the 
newest energy state divided by the control parameter.  If PΔE is 
less than a uniformly random number between 0 and 1 the 
incorrect solution is rejected.  In simulated annealing kb is 
usually set to one, therefore the probability is influenced 
greatly by the control parameter T. 

So for example  if the algorithm was searching for  a global 
minimum and it was trapped at a local minimum, the algorithm 
may randomly choose a set of parameters that lead to a higher 
energy estimate, and that estimate may be excepted as the next 
state.  This essentially allows the algorithm to escape from the 
local minimum.  Fig. 3 shows a flowchart of the general 
simulated annealing algorithm. 

Where, 
• θ – is a set of free parameter that are needed by the 

objective function. 
• E(θ) – is the result of evaluating the objective function 
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with a given. 
• T – the control parameter, i.e., the temperature. 
• Φ – the objective function. 
• ΔE – is the difference between the new and old 

evaluations of the objective function. 
• PΔE – referred to as Boltzmann’s probability 
• β – scaling parameter 
• λ – a number between 0 and 1  

VI. SIMULATED ANNEALING WITH CYCLIC CORRELATION 
Using the cyclic correlation algorithm for symbol rate 

detections, requires performing an autocorrelation of the 
recived signal at different cyclic frequencies and then 
performing a search to identify which cyclic frequency results 
in the maximum correlation coefficient.  The exhaustive search 
for the optimum cyclic frequency can be inefficient especially 
if the resolution of the cyclic frequencies and the correlation 
lags are small.  The cyclic correlation algorithm requires to 
input parameters, namely the cyclic frequency α, and the lags 
τ.  The simulated annealing algorithm is used to randomly 
select combinations of these two variables, from a search 
space and submit them to the cyclic correlation algorithm.  
This means that the cyclic correlation objective function will 
not have to be executed for all combinations of α, and τ within 
the search space. Also due to the randomness of the parameter 
selection process the resolution of the two parameters are 
allowed to vary.  By using SA an near optimum solution is 
guaranteed, i.e., the correct set of parameters will be selected 
from the search space.  The result is algorithms that can 
autonomously detected the symbol rate of a received signal 
given that the symbol rate lies within the selected search space, 
and no other information.   

Fig. 4 depicts a flowchart of the modified algorithm.  The 
main difference between Fig. 3 and Fig. 4 is that the modified 
algorithm has to take into account the restrictions associated 
with the cyclic correlation algorithm.   

 
 
The two-dimensional search space for the algorithm is 

defined a all possible combinations of α and τ.  In order to 
determine the range of α’s, consider (1) where α is defined by 
(4)  

            sFR=α                     (4) 
Where R is a candidate symbol rate and Fs is the sampling rate 
used to sample the received signal. based on the relationship in 
(4) it can be seen that the lower limit of α > 0 since, there can 
be no negative frequencies, nor can the symbol rate be a value 
of zero.  The upper limit is bound by the sampling theorem 
which states that Fs > 2R, so the upper limit of α is 0.5. 
Therefore the cyclic frequency is bounded as shown in (5). 

                                    5.00 << α                                 (5) 
The range of lag is determined by the fact that the cyclic 

correlation algorithm needs to autocorrelate at least one 
symbol.  Therefore, it is necessary to calculate the number of 
samples per symbol, based on the highest and lowest possible 
symbol rates of the received signal.   The number of samples 
per symbol is defined by (6). 

                      RFsymbolpersamples s=            (6) 
Therefore (7) defines the number of necessary lags. 
                               minmax RFsRFs ≤≤ τ              (7) 
These bounds are represented by cmin and cmax in the 

flowchart in Fig. 4.  Essentially, whenever a θnew is evaluated it 
has to be checked against the bounds before it is accepted for 
the next iteration of the algorithm.  Otherwise the new value is 
discarded and the old values are retained on the next iteration. 

VII. SIMULATION RESULTS 
An experiment was used designed to test the simulated 

annealing with cyclic correlation algorithm.  The algorithm 
was tested with BPSK signals of differing symbol rates 
ranging from 300 kBd – 1500 MBd.  The simulated annealing 
algorithm was allowed to simultaneously select combinations 
of  α and τ. 

 
Fig.4  Flow chart of the simulated annealing with cyclic 

 

 
Table II Shows the result of the hybrid algorithm versus the 

true data 
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Table II shows the results of the test by comparing the true 
parameters for the cyclic frequency, the lag and the estimated 
symbol rate. It can be shown from Table II was that the 
algorithm was able to successfully determine the cyclic 
frequency for all   of the respective symbol rates to within one 
percent of error.  These results show that the algorithm is 
capable of blindly determining the symbol rate of MPSK 
symbol. 

VIII. CONCLUSION 
The cyclic correlation algorithm with simulated annealing 

was able to estimate the symbol rate to within 0.1% of the true 
rate.  The simulated annealing optimization algorithm was able 
to randomly vary the two input parameters, i.e., lag and cyclic 
frequency, of the cyclic correlation algorithm.  This allows for 
less executions of the cyclic correlation algorithm, while still 
producing an accurate result.  
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