
Performance Evaluation of XML Web Services for

Real-Time Applications

Hazem M. El-Bakry and Nikos Mastorakis

Abstract- Service-Oriented Architecture (SOA) has been

becoming one of the most widely used methodologies for

building and integrating different types of software

applications. This because the extreme benefits that it

offers to their adopters including agility, dynamicity, and

loose-coupling. These benefits are usually missed in

traditional software terminologies and practices. XML

Web Services is the most used technology for realizing

SOA because it is easy to use. Furthermore, it allows high

interoperability between different systems due to its

dependency on standards that are widely accepted and

supported by almost all large software vendors. However,

XML Web Services suffers from a number of drawbacks

such as low performance, bad utilization of hardware

resources, and high network latency. These pitfalls may

prevent some adopters from utilizing SOA in large and

complex systems. Therefore, these issues should be first

addressed and resolved before leveraging it into real-time

systems. Here, an experimental evaluation for the

performance of XML Web Services in real-time business

systems is presented. Moreover, this study offers some

tactics and strategies that might be used to enhance the

overall performance of XML Web Services.

Keywords-SOA, XML Web Services, Problem Root

Causes, Systems Integration, Performance Evaluation,

Optimization Tactics and Strategies.

I. Introduction
owadays, SOA has gained momentum from almost

all players in software market for building and

integrating systems, especially complex ones that

demand continuous changes to meet market ever-

changing requirements [1,2,10].

Technically, many technologies could be used for

realizing and implementing service-oriented systems

including message queuing, remote procedure calls

(RPCs), Common Object Request Broker (CORBA), and

Common Object Model (COM) [4]. However, XML Web

Services is the most used technology for realizing SOA

due to number of factors including [5]:

• Ease-of-Use: Using XML Web Services does not

require deep technical knowledge, as it is very easy

to learn and use, especially if compared with other

tools like CORBA and COM.

 Manuscript received June 9, 2008.

H. M. El-Bakry is assistant professor with Dept. of Information

Systems - Faculty of Computer Science and Information Systems –
Mansoura University – Egypt. (e-mail: helbakry20@yahoo.com).
 N. E. Mastorakis is professor with Technical University of Sofia, –

BULGARIA

• Support: Because it has appeared as a result of

cooperation between large software vendors such as

Microsoft, IBM, BEA, and Sun Microsystems, it is

supported in almost all software tools, frameworks,

and programming languages.

• Modularity: It is modular by nature, so, it is easy to

encapsulate logic in terms of modules that could be

deployed and used separately according to business

needs.

• Compose-ability: It is very easy to aggregate a

number of XML Web Services to construct a new

one that covers more complex needs.

• Low Costs: It is much cheaper than traditional and

proprietary technologies.

• Commonality with SOA Model: The architectural

model of XML Web Services is almost identical to

the basic model of SOA, as they both have service

provider, service consumer, service registry, service

contract, and service itself.

Unfortunately, the aforementioned advantages of XML

Web Services were not enough to enable SOA adopters to

use it effectively in real-time business systems, as it still

suffers from number of problems such as low

performance, bad utilization for hardware resources, and

high network latency. These issues must be first

addressed and resolved to allow optimum utilization for

SOA.

This paper examines the performance of XML Web

Services in building and integrating real-time business

systems taking a hypothetical scenario for banking

solutions as an example to these systems in order to

compare found results with those of using other

traditional methods. Additionally, it discusses root causes

of found problems in order to give some tactics and

strategies that could be leveraged to make better use of

XML Web Services.

II. Root Causes
Many studies have discussed the performance of XML

Web Services from different perspectives, and they all

concluded that poor performance goes back to a number

of reasons including:

• XML Data Format: The technology of XML Web

Services depends on XML (Extensible Markup

Language) for representing data being transmitted

between different systems and nodes. As known,

XML is a tag-based language rich with different

capabilities that allow easy and powerful integration

between different systems. For example, it offers

different mechanisms for validating, querying, and

transforming data [6]. These capabilities made XML

N

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

25

the preferred choice of software vendors who look

for interoperability and loose-coupling between

integrated systems. However, this richness causes

data files to be bloated with long named tags,

complex data structures, and big amounts of plain-

text data that make their generation and processing

very complex, heavy, and slow.

• Encoders/Decoders: XML Web Services use

encoders to transform data into a sequence of bytes

before transmission, and on the other side, they use

decoders to return transmitted data to its original

form. ASCII was one of the most used encoding

formats in legacy systems. Depending on ASCII

format in XML Web Services is very expensive and

slow especially for numerical values and floating

points [7].

• Parsing Techniques: XML being transmitted

between different nodes must be parsed and validates

before any further processing. Using inefficient

parsing techniques may require much hardware

resources (including RAM and processing cycles)

and long times to complete required tasks.

• Serialization/De-serialization: Serialization

(marshaling) is the process that converts the state of

objects in a form that can be transmitted over

network media (such as wires and Wi-Fi) between

different nodes. Conversely, de-serialization (de-

marshaling) process is responsible for bringing the

state information to original formats. Efficient

serialization techniques must be very fast and

generate serialized data in compact formats.

Depending on bad serialization techniques may

generate very large data outputs that might clog

network during transmission process. As mentioned,

XML Web Services serialize data using XML

format, and because XML is text-based format, then

generated messages are always very large in size if

compared to original data (before serialization) [7,

8].

• Transport Protocol: XML Web Services use

Simple Object Access Protocol (SOAP) as a

lightweight communication framework that is based

on XML. Although SOAP messages can use any

transport protocol to send requests and receive

responses, it uses HTTP as a default transport

protocol. HTTP is a request-response protocol that

supports only synchronous interaction between

clients and servers, and this makes it ill-suited for

message-based communications that require

asynchronous interactions [9]

• Network Infrastructure: There is no question that,

network is one of the most important factors for the

success of any client/server implementations, and

thus, depending on weak and slow networks can lead

to unreliable, inefficient, and intermittent interactions

between clients and servers. Furthermore, slow

networks may lead to less utilization for available

processing power because CPUs will wait longer

times until data arrives to be processed.

• Extra Elements in Software Stack: In service-

oriented systems, XML Web Services are defined in

a separate layer that accepts clients’ requests to be

formatted before sending them to underlying

components. As known, the more layers and

processing logic defined in any software architecture,

the slower performance of overall system. This is due

to extra processing that is needed to reach final

element in software stack including discovery,

reflection, initialization, instantiating, and

invocations of needed components and objects as

well as transformations for incoming requests and

out-coming data formats.

III. Technical Scenario
Integrating different systems together is a very common

scenario in software field, and leveraging SOA for

building and integrating different business systems like

banking solutions offers many advantages over other

traditional integration methods including simplicity,

dynamicity, agility, and loose-coupling between

integrated systems [3]. For this reason, we are going to

illustrate one of these scenarios in subsequent sections.

Assume that we have the following two banking systems

that need to be integrated together with minimum impacts

on underlying architecture and components:

• Core-Bank: It is a legacy monolithic system that

acts as a back-end for other operational (front-end)

systems. Core-bank system consists of different

business modules including (customer management,

deposits, foreign exchange, commercial loans,

Islamic loans, etc). Additionally, this system offers

some non-functional features such as transaction

support, role-based security, and auditing and

logging for user actions. The core-bank system

allows users to send requests and receive responses

via its GUI while all processing occurs into database

itself. This database consists of large number of

precompiled stored procedures, and each stored

procedure takes a huge number of input parameters

to process them and return back generated result sets.

• Loan-Origination: It is a front-end system built with

.NET framework 2.0 and c# language and it is

responsible for allowing bank clients to issue loans,

define installments, schedule payments, etc. Because

all information about bank clients and loans are

stored into the core-bank system, we have to

integrate the loan-origination system with it. To

enable this integration, we will build an XML Web

Service that comprises a large number of methods

responsible for accepting requests from different

client (front-end) applications including the Loan-

Origination application, and passing them to stored

procedures that reside under the core-banking

system. To enable efficient use of the new XML

Web Service, software components should be built to

wrap available stored procedures and encapsulate

their logic. These components will divide underlying

business logic that is scattered over different stored

procedures into modules that could be easily used

and modified whenever needed [11, 12]. Defined

components could be realized (designed and built)

with any modern programming environment (such as

J2EE or .NET) that supports advanced features like

OOP, RAD, XML Web Services, etc. After realizing

needed components, they will be placed into a new

layer that resides between the new XML Web

Service and underlying stored procedures to act as a

mediator/wrapper that accepts different invocations

from XML Web Service and turn them into formats

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

26

that could be accepted by stored procedures. Figure 1

illustrates a high level view for integration

architecture of our systems, whereas, figure 2

illustrates simple request and response messages that

are handled by the system.

Figure 2: An Example for Request/Response Messages

IV. Performance Evaluation

Due to high dependency on XML Web Services, the

illustrated architecture slightly suffers from low

performance. In fact, leveraging SOA is always hampered

by large sizes of XML files being transferred between

clients and servers. These large data files always clog

network and drain almost all hardware resources

including RAM, CPU, and storage infrastructure. In

original architecture the core-banking system was entirely

built over a set of stored procedures to execute needed

business logic, but it now depends on a service layer that

acts as a wrapper that receives client requests and maps

them to appropriate stored procedure(s). Figure 3

illustrates a comparison between the total times needed

for receiving the response message of the request that

gets basic information about one bank client using both

methods.

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

27

Figure 3: Invocation Time needed for Database Stored Procedure vs. XML Web Service

V. Optimization Tactics and Strategies

As illustrated, the original method that uses stored

procedures is 4 times faster than the new XML Web

Services method. To mitigate this problem, many

experiments have been conducted to yield the following

list of recommended tactics and techniques:

• Utilize Better Encoders/Decoders: Utilizing or

even customizing more optimized encoders/decoders

and encoding formats can save much of time needed

for preparing data. UTF8 is a well known and

standard encoding format that has been tuned to

replace the traditional slow ASCII format. It is now

known to be one of the fastest encoding options

available in software market that supports almost all

commonly used characters as well as special

characters [13].

• Leverage Binary XML: As mentioned, most of

current XML implementations depend on using

plain-text format that causes data files to be very

complex and large in size. W3C has announced that

formatting XML data using binary format is more

efficient for both network and hardware utilization

[14]. Different techniques might be utilized to use

binary data, for example, the data being transmitted

between network nodes might be serialized

(marshaled) and de-serialized (un-marshaled) using

binary format instead of text-based XML format.

Figures 2, 3 illustrate the results generated by a

simple benchmark (windows forms) application that

was written (using c# language and .NET Framework

3.5) to estimate the serialization time needed by

binary and text-based serialization techniques on a

PC that uses Intel Dual Core 2.6 GHz processor and

2 GB memory. As depicted, the application shows

that XML serialization takes 290 milliseconds to

serialize some of stored (dummy) information. The

amount of data is represented in 20 rows and 5

columns (948 bytes), whereas, the binary

serialization takes only 8 milliseconds to serialize the

same data. This means that binary serialization in our

scenario saves more than 97% of time needed by

XML serialization. Certainly the serialization time

will vary according to number of factors including

amount and complexity of data being serialized, for

instance, if we serialized 10,000 rows of the

aforementioned data (569,808 bytes) on the same PC,

the XML serialization will take 709 milliseconds

versus 322 milliseconds for binary serialization,

which means that binary serialization saves more

than 55% of total serialization time. We should note

that there is a fixed time that is needed in each

method whatever the size and amount of data to

initialize serialization process. This initialization

operation is solely needed to read the schema of data

being serialized. Figure 5 illustrates a simple

comparison between total times needed for binary

serialization versus XML (text-based) serialization to

return the response of a simple request.

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

28

Figure 4: Performance of Binary Serialization vs. XML Serialization

Figure 5: Binary Serialization vs. XML Serialization

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

29

Figure 6: Invocation Time needed for XML Serialization vs. Binary Serialization

Figure 7: Invocation Time needed for Stored Procedures vs. Binary Serialization vs. XML Serialization

• Apply Data Compression Techniques: Since XML

is a text-based format, and XML documents always

have too many white spaces, then using traditional

compression algorithms such as ZIP/GZIP for

compressing data transferring between clients and

servers can get rid of many bytes of the volume out

of data files. To apply compression technique on

traveling data, both requestors and responders must

understand the used compression algorithm to be

able to recognize and use these data. This assurance

should be identified and guaranteed by SOA

governance team during preliminary implementation

phases. Figure 8 illustrates the results generated by a

benchmark (console) application that has been

written (using c# language and .NET Framework 3.5)

to calculate total save in size of Response document

that was illustrated in figure 2 using ZIP/GZIP

algorithms. The results shows that the original size of

Response document was 771 bytes, whereas, the size

of compressed file is only 550 bytes which means

that ZIP/GZIP algorithms save 221 bytes

(approximately 29%) from original document size.

Another way that could make XML documents

smaller is to avoid long element and attribute names.

For example, the Response document illustrated in

figure 2 could be abbreviated as illustrated in figure

9. The size of new abbreviated Response document

takes only 559 bytes with total save 212 bytes

(approximately 28%) from original document size.

This option will only be applicable where the human

readability of request/response messages is not

required. Combining two techniques together in our

scenario allowed us to eliminate about 57% (the

most) of total document size which is excellent to our

issue while keeping the great benefits of SOA

including the ease-of-use and simplicity of XML

Web Services and overall architecture. Certainly,

these values may vary depending on the structure and

size of original documents being compressed,

however, saving total size of documents (especially

complex and large ones) being processed and

transmitted over network has with no doubt positive

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

30

impact on memory consumption, network utilization,

and transmission time. One note that we should take

into consideration regarding to applying ZIP/GZIP

algorithms is that processing compressed data may

require more CPU usage at the receiving (last) node,

as it will be a part of its responsibilities to unzip data

in order to be able to use it in any further processing.

This issue can be easily resolved by using more

powerful servers that use high speed multi-

processing cores.

Figure 8: Total Save in Response Document Using ZIP/GZIP Algorithms

Figure 9: Abbreviated Request/Response Messages

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

31

• Use Better Parsers: SAX and DOM are the most

popular parsing techniques available in XML market.

Many benchmarks on their throughputs have shown

that they require slightly long times to parse XML

files at different sizes and complexity levels. The

long time is mainly needed because these parsers

read data files more than once (at least two times) to

be able to discover their structure and to validate

entire data. Furthermore, big amount of memory

might be needed to store extracted data during

parsing phase, and this of course may degrade overall

performance of used CPUs when no more memory is

available (in paging and caching operations

performed by operating system). To resolve this

issue, we may depend on faster and more efficient

techniques such as Virtual Token Descriptor XML

(VTD-XML) which depends on “non-extractive”

tokenization approach to parse XML files [15].

Additionally, using schema-specific parsers rather

than general purpose parsers can greatly enhance the

performance of parsing phase [16]. Using more

enhanced parsing algorithms and tools can save time

needed to parse data which in turn save the overall

processing time and resources.

• Pre-generate Serialization Assemblies: Many of

development tools (including .NET 2.0 and latter)

allow developers to pre-generate and cache

serialization assemblies that could be deployed with

applications to save time needed for discovering,

extracting, and recognizing structures of objects

being serialized and de-serialized [17].

• Divide Large Files: It is known that large files

always have bad impacts on the utilization of

hardware resources (memory, processor, and

network) and processing time. Dividing large and

complex data files into smaller pieces (if possible)

can deliberately enhance both processing and

network performance.

• Install Silicon-based XML Engines: Many silicon-

based engines are available now to handle XML at

higher speeds. These engines can be embedded into

different network and hardware equipments

including switches, routers, load balancers, PCI-

cards and servers [18].

• Apply Parallelism Techniques: Data files could be

yielded and processed in parallel using grid-based

technologies that depend on mutli-threaded systems

(one thread for each process/sub-process) to allow

faster processing and better utilization of available

hardware resources including processing cycles,

memory, and storage infrastructure [19, 20, 21].

• Utilize High Speed Networks: There are now

Ethernet implementations that enable enterprises to

have transmission speed that varies from traditional

10Mbits/s Ethernet to 100Gigabit Ethernet [22, 23,

24, 25]. Also, fiber channels and links could be

installed to allow high speed and reliable

transmission for data encapsulated into XML

requests and replies.

VI. Conclusion

The evaluation for XML Web Services in real-time

business systems has been presented by illustrating a

common scenario for two banking systems that need to be

integrated together with contemporary SOA

methodologies and terms. The use of XML Web Services

in our scenario caused a number of problems including

slow performance and bad utilization for hardware and

network recourses over RPC implementation (stored

procedures) that is widely used in traditional point-to-

point integration methods. These pitfalls could not be

accepted under any circumstances in real-time business

systems that receive and handle tons of requests every

single second. For that reason, some tips and

recommended actions has been given to allow efficient

and better use of SOA and XML Web Services in

building and integrating real-time business applications

and systems.

References

[1] M. P. Papazoglou, “Service-Oriented Computing:

Concepts, Characteristics, and Directions”, Proceedings of

the fourth IEEE international conference on web

information systems engineering (WISE’03), 2003.

[2] K. Channabasavaiah, K. Holley, E. Tuggle, “Migrating to a

service-oriented architecture, Part 1, 2”, http://www-

128.ibm.com/developerworks/library/ws-migratesoa

[3] A. M. Riad, A. Hassan, Q. F. Hassan, “Leveraging SOA in

Banking Systems’ Integration”, Journal of Applied

Economics Science, Romania (JAES), Volume III, Issue2

(4), Summer 2008.

[4] D. Krafzig, K. Banke, D. Slama, “Enterprise SOA Service-

Oriented Architecture Best Practices”. Prentice Hall. April

2005.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,

and S. Weerawarana, “Unraveling the web services web:

An introduction to SOAP, WSDL, UDDI”, IEEE Internet

Computing, 6(2):86-93, March-April 2002.

[6] “Extensible Markup Language (XML) Specification

Version 1.0”. W3C. February 04, 2004,

http://www.w3.org/tr/rec-xml/

[7] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating

the limits of SOAP performance for scientific computing”,

Proceedings of the 11th IEEE International Symposium on

High Performance Distributed Computing, pages 246-254,

2002.

[8] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P.

Widener, “Efficient wire formats for high

performance computing”, Proceedings of the 2000

Conference on Supercomputing, 2000.].

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.

Masinter, P. Leach, and T. Berners-Lee, “Hypertext

transfer protocol - HTTP/1.1, 1999. IETF RFC

2616”, http://www.ietf.org/rfc/rfc2616.txt.

[10] Thomas Erl, Service-Oriented Architecture (SOA):

Concepts, Technology, and Design, Prentice

Hall/Pearson PTR, 2007.

[11] H. M. Sneed, “Integrating legacy Software into a

Service oriented Architecture”, Proceedings of the

Conference on Software Maintenance and

Reengineering (CSMR’06), IEEE, 2006.

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

32

[12] Z. Zhang, H. Yang, “Incubating Services in Legacy

Systems for Architectural Migration”, Proceedings of

the 11th Asia-Pacific Software Engineering

Conference (APSEC’04), IEEE, 2004.

[13] “Understanding Encodings”,

http://msdn.microsoft.com/en-

us/library/ms404377.aspx.
[14] D. Geer, “Will Binary XML Speed Network Traffic?”,

IEEE Computer Society, April 2005.

[15] “VTD-XML: The Future of XML Processing” http://vtd-

xml.sourceforge.net/.

[16] K. Chiu, M. Govindaraju, and R. Bramley,

“Investigating the limits of SOAP performance for

scientific computing”. In Proceedings of the 11th

IEEE International Symposium on High Performance

Distributed Computing, pages 246-254, 2002.
[17] “XML Serializer Generator Tool' (Sgen.exe)”

http://msdn.microsoft.com/en-us/library/bk3w6240.aspx.

[18] “WebSphere DataPower SOA Appliances” http://www-

01.ibm.com/software/integration/datapower/.

[19] Y. Pan, Y. Zhang, K. Chiu, W. Lu, "Parallel XML Parsing

Using Meta-DFAs," e-science, pp.237-244, Third IEEE

International Conference on e-Science and Grid

Computing (e-Science 2007), 2007

[20] W. Lu , K. Chiu, Y. Pan, “A Parallel Approach to XML

Parsing”,

http://grid.cs.binghamton.edu/projects/publications/parallel

-Grid06/parallel-Grid06.pdf

[21] R. D. C. , K. S. Herdy, D. Lin, “High Performance XML

Parsing Using Parallel Bit Stream Technology”,

http://www.cs.sfu.ca/~cameron/parabix-study-preprint.pdf

[22] http://www.ieee802.org/3/ba/PAR/par_0308.pdf

[23] http://www.ieee802.org/3/hssg/

[24] http://www.ieee802.org/3/ba/public/index.html

[25] J. D. Ambrosia, "IEEE P802.3ba Objectives", September,

2007.

INTERNATIONAL JOURNAL OF COMMUNICATIONS
Issue 2, Volume 3, 2009

33

