
 

 

Abstract— In this paper we address optimization problems in 

wireless networks, specifically tailored for mesh networks, via the 

application of a classical network reliability measure. In classical 

reliability theory, a communication network can be modeled as a 

directed graph G=(V,E), composed of a finite set V of nodes, and a 

finite set E of links, where the links of the network underlying graph 

fail independently with known probabilities (nodes are perfectly 

reliable). Given a set K of terminal nodes and a source node s of K, 

the Source-to-K-terminal reliability, Rs,K(G), is the probability of the 

event that the source s will be able to communicate with the terminal 

nodes thru operational directed paths. Each link represents a 

stochastic wireless communication channel connecting two nodes of 

a network whose probability of failure is based upon recent results in 

Information Theory. We present efficient algorithmic techniques to 

tackle optimization problems in communication networks such as 

nodes’  redundancy and areas’ connectivity.  

 

Keywords—Mesh networks, optimization, outage probability, 

reliability theory, simulation. 

I. INTRODUCTION 

ailures in communication networks may arise from natural 

catastrophes, component wear out, or action of intentional 

enemies. A communication network can be modeled by an 

undirected graph (or digraph) G= (V,E), where V and E are the 

set of nodes and edges (links) of G, respectively. Moreover the 

failure probabilities of the network components are 

represented by assigning probabilities of failure to the nodes 

and/or edges (links) of its underlying graph (digraph). In this 

paper, we will discuss a reliability model called the edge-

reliability-model, and we present a clear description of its 

applicability to assess performance objectives of real 

communication networks such as mesh networks. 

Given a probabilistic undirected graph G=(V,E) (in the 

remaining sections we will discuss networks modeled as 

directed graphs) with a distinguished set of  terminal nodes K 

of V (also call participating nodes), and where the edges fail 

independently with known probabilities (nodes are always 

operational), a widely studied network reliability measure is 

the classical K-terminal reliability RK(G) of G, which is 

defined as the probability that the terminal nodes are 

connected thru operational paths composed of surviving edges. 

In particular, if we set K={s,t}, R{s,t} (G) gives the probability  
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that two nodes of the network, s and t, will be able to 

communicate thru operational paths (called the two-terminal 

reliability) [1]-[4].  

For the classical reliability measure, computation of the K-

terminal reliability had been shown to be NP-hard [5]. For the 

specific case when |K|=2, Valiant proved that the computation 

of the reliability is NP-hard as well [6]. The same 

computational complexity was determined when K=V (called 

the all-terminal reliability) [7]-[8]. However efficient Monte 

Carlo techniques had been developed to estimate the classical 

reliability. In particular Monte Carlo Recursive Variance 

Reduction techniques (RVR for short) were implemented by 

Cancela and El Khadiri to estimate the classical reliability 

measure, showing excellent computational results [9]. 

The classical reliability model was extended to assess 

performance objectives of communication networks in which 

the quality of a communication depends on the length of the 

paths connecting the terminal nodes. In 2001, Petingi and 

Rodriguez introduced the K-terminal Diameter-constrained 

reliability of a communication network [10]. Given a graph 

G=(V,E) whose edges fail independently with known 

probabilities, a set of terminal nodes K, and a diameter bound 

D, RK(G,D) is defined as the probability that the surviving 

edges allow the existence of a path of at most D edges for each 

pair of terminal nodes of G. This model is applicable to assess 

for example the reliability of networks in which the 

communication between terminal nodes (or participating 

nodes) must meet delay constraints, as for example is the case 

in broadcasting networks. As the length of any path in a 

network has at most |V| - 1 edges, the Diameter-constrained 

reliability subsumes the classical reliability as RK(G,D) = 

RK(G), when D = |V|-1. Further information concerning this 

reliability measure can be found in [11]-[13]. 

Although network reliability models have been studied for 

several years to evaluate the reliability as well as to address 

design and/or optimization problems of complex 

communication networks,  the theoretical study of these 

models has taken an independent path from the applied one. 

Network Reliability Theory was developed in the 60s 

responding to the needs of measuring performance objectives 

of communication networks such as DARPA, and satellite 

communication networks.  

A series of papers are now appearing recognizing the 

importance of these models to assess performance objectives 

of communication networks such as wireless networks [14]-

[16]. In addition to the original intention of applying these 

measures to evaluate performance objectives of specific 

networks such as communication or electronic networks, these 

Application of the classical reliability to address 

optimization problems in mesh networks  
Louis A. Petingi 

F 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 1, Volume 5, 2011

1



 

 

models are also applicable  to a broader range of networks, 

such as for example biological networks; for example the 

reliability (the one’s complement of the failure probability) of 

an interaction between two proteins in a Proteins Interaction 

Network (PIN), was defined in terms of the number of proteins 

in the common neighborhood of the adjacent proteins (the 

interaction of two proteins are represented as an edge whose 

endpoints are the nodes representing the two proteins) [17]. 

The reliability of an edge (link) of a network is the 

probability of a successful communication through the edge 

(link) and it is determined as a function of the network’s 

operational characteristics (e.g., wireless networks, optical 

networks), and depends upon the performance objectives to be 

measured (e.g., determine the quality of communication 

between two access points in a mesh network).  

This paper analyses two classes of mesh networks; planned 

networks and random networks. Typically in a planned 

network, the location of each transmitting/receiving node was 

carefully planned, as for example in urban areas, where the 

nodes are usually located on roof-tops. Unlike planned 

networks, random networks consist of nodes which are 

randomly distributed and the network is usually set up in a ad 

hoc fashion (e.g., tactical military operations). 

In this paper we show how the behavior of mesh networks 

can be accurately simulated by random digraphs, and, 

consequently, a profound reliability analysis of these networks 

could be performed. Once the reliability of a network can be 

determined, several optimization and design problems in 

networks can be addressed as for example nodes’ redundancy 

in planned mesh networks. As the reliability analysis of a 

network considers all possible paths connecting terminal 

nodes, no assumptions are made on routing protocols or 

overall throughput of the network.  

In Section II we model wireless mesh networks as directed 

random graphs in which the probability of failure of a link 

connecting two different nodes of a topology is determined by 

the power outage of the wireless communication channel 

represented as a random variable using current results in 

Information Theory [14]; moreover we present a theoretical 

introduction of the Source-to-K-terminal reliability measure 

for digraphs. In Section III, we explain how this reliability 

measure could be applied to tackle optimization problems in 

planned mesh networks. In Section IV we study the problem of 

indicating locations among different geographical regions, in 

which optimal connectivity could be achieved, via an existing 

mesh network which was deployed in a ad hoc fashion. 

Finally, in Section V, we present conclusions and future 

research. An Appendix section is included with mathematical 

proofs of reliability results mentioned in the paper. 

II. WIRELESS NETWORK MODELING 

A. Random Graphs and link failure representation 

 Wireless transmissions are degraded by a phenomenon 

known as Path Loss, which is known as the difference between 

the transmitted power po and the received power of a signal pr. 

The relationship between pr and po is given by the relation 

nr d

p
p 0 , where d is the distance between the transmitter 

and receiver, and n is a constant between 2 and 4, known as 

the path loss exponent, representing the degradation of the 

signal due to the physical characteristics of the terrain 

embracing the communication between the transmitter and 

receiver. 

The determination and optimization of a channel capacity 

over a wireless link is also a topic of much research and some 

studies in this area. Shannon’s law provides the theoretical 

maximum rate at which error free digits can be transmitted. 

Mathematically, the capacity of a communication channel C is 

defined by the relation ),1(log2 SNRbC where b is the 

bandwidth in Hz, and the SNR is the signal to noise ratio at the 

receiver end [18]. 

A more representative model was recently introduced for 

the capacity of a wireless communication channel [14]. In this 

model, the instantaneous capacity of a wireless link is treated 

as a random variable and it is represented by the relation  

),
||

1(log
2

2 SNR
d

f
C n

   (1)       

where f  is the fading state of the channel and it is a Rayleigh 

random variable and the SNR is the signal to noise ratio. If η 

represents a zero mean additive white Gaussian noise with 

average power of η
2
, and assuming a transmitted input signal 

x, the SNR is then defined as |x|
2
/ η

2
. The probability of a link 

(communication channel) power outage, Poutage (or link 

failure probability), is defined as the probability of the event 

that the channel capacity is less than the transmission rate R, 

usually expressed in bits per channel use (i.e., Poutage = Prob 

{C<R}). From (1) and after some algebraic manipulation, the 

outage probability of a communication link is expressed as 

},|{| 2

RSN

d
fProbPoutage

n

 where .
12R

SNR
RSN  As 

fading is a Rayleigh random variable, Poutage is then the CDF 

of |f|
2
, and by application of probability theory, one gets 

),exp(1
RSN

d
Poutage

n

 (2)                                                   

where  = E(|f |
2
). The probability of a successful reception, or 

equivalently the link reliability, for a Rayleigh fading link with 

fixed distance is then given by the simple expression  

)/exp(1 RSNdPoutagePsuccess n . (3)                             

The importance of this link reliability representation is that 

the communication of real wireless networks can be then 

accurately simulated using standard Graph Theoretical models, 

and therefore several communication optimization problems 

can be successfully tackled.   

B. Mesh Networks 

As an example of the application of the reliability consider 

Cisco Aironet Mesh technology. The access points are 

basically composed of Maps (Mesh Access Points) and Raps 

(Routed Access Points). The basic difference between these 

network nodes is that Raps have wired connections to their 
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controllers while Maps use wireless connections to connect to 

their controllers.  

 Each node of the network can transmit as well as to receive 

signals, thus we could represent this mesh network as a 

digraph (directed graph). The communication between two 

nodes i and j is represented by two anti-parallel links, where 

the link (i,j) represents the transmission from transmitter i to 

receiver j; similarly we define the link (j,i) but interchanging 

the roles of the nodes (see Fig. 1).  

 Usually in standard Mesh Network analysis, the 

transmission power, transmission rate, as well as the SNR of 

the mesh nodes are assumed constant through the whole 

network (thus the range of the nodes’ transmissions are 

depicted by circumscribed circles of identical radius around 

each node), thus our model offers a more realistic simulation; 

if a link l=(i,j) has failure probability q(l) as stated in (2), in 

this model is very possible that q((i,j)) ≠ q((j,i)) since for 

example the adjacent nodes may have different receiving 

and/or transmitting specifications. 

 

 
 

 

 

 

 

 

 

Fig. 1. An example of a mesh network modeled as a digraph. 

 

Let G=(V,E) be a digraph with node-set V and link-set E. 

Moreover let s be the predefined source node and K be the set 

terminal (or participating) nodes of G. For digraphs, Rs,K(G) 

(called the Source-to-K-terminal reliability) is defined as the 

probability that the surviving links span a digraph such that an 

operational dipath from s to u exists, for each u  K (where the 

links from s to u of the dipath are all forward links). In other 

words, Rs,K (G) gives the probability of the event that the 

source s will be able to send information (via directed paths) to 

every participating node of K. In particular Rs,u (G) measures 

the probability that s will be able to send information to just 

another node u of G, and this notation will replace the standard 

notation Rs,K (G), whenever K={s,u}. 

The sample space is composed of all possible subgraphs of 

G, called the states of G, and a state H = (V(H), E(H)) has 

probability of occurrence  

)()(

),())(1()(
HEeHEe

eqeqHP      

where q(e) is the probability of failure of the link e. An 

operating state H, is a state in which there exists a directed 

path from s to each node u of K (i.e., s will be able to send 

information to all the terminal vertices of K), therefore it 

contributes to the reliability. Moreover let  be the set of all 

possible operating states of G. Thus we have 

Rs,K (G) = Prob {there exists a directed path from s to each  

node of K}= .)(
H

HP                                           (4)                                                    

Using this reliability measure, several design and optimization 

problems could be addressed. In the next section we present 

the applicability of the Source-to-K-terminal reliability to 

tackle the problem of nodes’ redundancy in planned networks. 

III. OPTIMIZATION PROBLEMS IN PLANNED NETWORKS 

A. Nodes’ redundancy in planned networks 

One interesting optimization problem that could be 

undertaken by applying the Source-to-K-terminal reliability is 

nodes’ redundancy in wireless networks. Usually in mesh 

networks (or wireless networks), if a set of nodes X fail, the 

other remaining nodes, V-X, will cover the areas previously 

covered by X. 

 Suppose that a node x fails (x is not a node of K), and we 

would like to be able to assess how the ability of s to 

communicate (i.e., send information) with other terminal nodes 

was diminished by the failure (or deletion from the network) of 

x. Indeed, Rs,K (G-x) will give the probability of the event that s 

will be able to transmit to the remaining participating nodes of 

K, given that x has failed (or equivalently it doesn’t belong to 

the network). In particular for K={s,t}, then Rs,K (G-x) is the 

probability that the transmitting node s will be able to deliver 

information to just another node t (called the Source-to-

terminal reliability) and for ease of notation it will denoted as 

Rs,t (G).  It is important to emphasize here that from the 

definition of a link failure probability discussed in Section II-

A, for most wireless networks (and in particular for ad hoc 

networks) Rs,t (G) ≠ Rt,s (G) whenever K={s,t}, since the 

transmission between nodes depends on the interconnections 

between nodes as well as if the nodes play the role of 

transmitters or receivers; thus the model proposed in this paper 

can accurately simulate real wireless networks.  

Even though our model works well for single source 

broadcasting networks, whenever every pair of anti-parallel 

channels connecting two nodes of a network have the same 

probability of failure, then Rs,K (G) = RK(G’), that is the 

Source-to-K-terminal reliability of the digraph G is equal to 

the K-terminal reliability (discussed in the Introduction) of a 

undirected graph G’ obtained from G by replacing two anti-

parallel links having the same probability of failure between 

two nodes, by a single undirected edge with the same 

probability; in the Appendix we formally present this 

equivalence between these reliability models and we explain 

how our reliability analysis based on which  node  is the source 

and which nodes are the terminals can be then extended to the 

case where K terminal nodes can communicate independently 

of which nodes are transmitting and which nodes are receiving 

information. Taken into account the stochastic link 

representation introduced in Section II-A, this situation is 

realizable for example when the nodes of a network have 

identical transmitting and receiving characteristics as well as 

considerations pertaining the fading states and path loss 

exponents of the channels. Also, even if the anti-parallel 

channels have different probabilities of failure, our 

methodology yields a good approach to estimate the K-

terminal reliability for the undirected case.  
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B. Determining the relevance of each redundant node in a 

given topology. 

Once the locations of the redundant nodes have been 

determined, it is important to assign to each of these nodes a 

weighted value which individually assesses the role each plays 

in improving the communication of a network. 

In our model we must first establish which node is the 

source and which nodes are the terminal ones, as the weighted 

importance of a redundant node in a network depends on 

which node is transmitting and which nodes are receiving 

information. Consider a random digraph G=(V,E) representing 

a network, and let s and K be the source and set of terminal 

nodes of G, respectively. Moreover let N  V-K be the set of 

redundant nodes of G. The redundancy weight of a node x  

N, Redx (G, s, K), is defined as 

               )()(),,(Re ,, xGRGRKsGd KsKsx
,  (5) 

that is, the contribution of x to the reliability of G is 

determined by the difference between the reliability of the 

network G from the reliability of the network obtained from G 

by just deleting the node x. Here we are trying to identify the 

node whose removal from G affects more the reliability of the 

communication between s and the terminal nodes of K (i.e., {x 

 N: Redx (G, s, K) is the maximum among all nodes in N}).   

As an example consider the network exemplified in Fig. 2. 

In this example the terminal vertices are s and t, where s is the 

transmitting node and the set of redundant nodes is N = 

{1,2,3}. Each link connecting two nodes (refer to Section II-A 

for definition of a link failure probability in wireless networks) 

has been assigned a value corresponding to the Cartesian 

distance between them. However, as previously discussed, 

every two nodes are connected by anti-parallel directed links 

representing the two channels of communication between 

them, in which the nodes exchange their roles. For this 

example we assume that each node, when acting as a receiver, 

has SNR = 1000, or equivalently its SNRdb= 30; it should be 

noted that by just stating the SNR of  each access point, we are 

then assuming the same transmission and noise powers for the 

nodes of G, otherwise transmission and noise powers should 

be specified for each node. Moreover let the transmission rate 

R = 1 bit per channel use for each of the nodes of G when each 

plays the role of a transmitter. In addition each channel has 

path loss exponent n = 2 (corresponding to open space) and 

the expected value of the fading state is  =1. 

Table I illustrates the corresponding probability of failure 

for each communication link of the network depicted in Fig. 2, 

as calculated by application of (2). When calculating the 

reliability (refer to (4)) one obtains Rs,K(G) = 0.904, Rs,K (G-1) 

= 0.763, Rs,K (G-2) = 0.693, and Rs,K (G-3) = 0.792 thus Red1 

(G, s, K) = 0.141, Red2 (G, s, K) = 0.211, and Red3 (G, s, K) = 

0.112. Thus node 2 is the node whose removal will affect more 

the reliability of the communication between s and t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  A mesh network with terminal set K={s,t} (each node has 

SNR=1000, transmission rate R = 1 bit per channel use, and the 

fading state of each channel has expected value  =1). 

 

Cancela and El Khadiri developed a Monte Carlo Recursive 

Variance Reduction (RVR) technique to efficiently estimate 

the reliability RK(G) of an undirected graph G=(V,E) [9].  This 

technique takes at most O (|E|
2
)

 
steps and it can be easily 

translated into an algorithm to evaluate Rs,K(G) for a digraph G 

as well. Let MCRs,K (G) be such algorithm. 

   Algorithm Assign-Redundancy-Value assigns a redundancy 

weight to each redundant node of the network G=(V,E), with 

source node s, terminal node-set K, and returns the node (or 

the list of nodes) with maximum redundancy value in G as well 

as their corresponding unique redundancy weight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE  I 

PROB. OF  FAILURE  FOR EACH LINK OF THE NETWORK DEPICTED IN FIG. 2 

Directed link 
Distance 

(meters) 
Prob. of failure (Poutage) 

(s,1), (1,s) 

(s,2), (2,s) 

(s,3), (3,s) 

(s,t),  (t,s) 

25 

20 

20 

40 

0.464 

0.330 

0.330 

0.800 

(1,2), (2,1) 

(1,3), (3,1) 

(1,t),  (t,1) 

10 

28 

20 

0.095 

0.543 

0.330 

(2,3), (3,2) 

(2,t),  (t,2) 

15 

20 

0.201 

0.330 

(3,t), (t,3) 28 0.543 

 

 

  
Algorithm Assign-Redundancy-Value ( ) 
 
Input: Digraph G=(V,E), source node s, terminal set K, and 

redundant node-set N  (V-K). 

   1: maxL  ;  /* list of nodes with max. redund. value. 

   2: max  0; /* initial redund. value. 

   3: Rs,K (G)  MCRs,K (G); /* calculate reliability via MC 

   4: for v  N do 

   5:       Rs,K (G-v)  MCRs,K (G-v);    

   6:       Redv (G, s, K)  (Rs,K (G)- Rs,K (G-v)); 

   7:       if  Redv (G, s, K)  max do 

   8:            max  Redv (G, s, K); 

   9:     end if 

 10: end for 

 11: for v  N do /* list of nodes with max. redund. value. 

 12:      if  Redv (G, s, K) = max do  

 13:           maxL = maxL  {v}; 

 14:     end if    

 15: end for 

 16: return (max, maxL) 
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As the number of redundant nodes is most |V|-2, the 

complexity of Assign-Redundancy-Value is O (|V| |E|
2
). 

C. Determining the order of priority of redundant nodes. 

When several nodes are scheduled to be deployed given that 

their locations are already planned ahead of time, it is 

important to determine the order of priority they should be 

installed as a function of how the reliability of the 

communication increases. This analysis corresponds to the 

case where the cost of deploying is equal for all possible 

locations. Because of budget constraints or because by just 

installing a subset of the redundant nodes a required threshold 

reliability value for the communication has been achieved, 

prioritizing the deployment of the nodes is then critical.  

Let G=(V, E) be a digraph and V’ be a subset of the node-set 

V.  The subgraph of G induced by the nodes V’, denoted as 

[V’]G, is the digraph G’=(V’,E’) were E’ is the set of links of 

G that have all their end-points in V’ (i.e., E’ = {(u,v)  E : u 

 V’  and  v  V’ }).  

Let G the graph where all the redundant nodes have been 

placed at their corresponding locations. The set of nodes of G, 

V, is partitioned into the set C of core nodes, which includes 

the terminal set K, and the set of redundant nodes N (i.e., V = 

C  N). Starting with the subgraph of G induced by the node-

set C of core nodes (i.e., [C]G), build on this subgraph, by 

adding a node at the time (and corresponding induced links), 

according to which choice of node increases the reliability the 

most, and include each chosen node in a priority list. 

As an example consider the network underlined by G = (V, 

E) depicted in Fig. 2. Characteristics of the nodes and channels 

remain as stated in the previous sub-section. Here we are 

assuming that the core node-set is the terminal set K={s,t}, 

with source node s, and the remaining nodes, 1, 2, and 3, are 

the redundant nodes. Let G0 be the subgraph of G induced by 

the set C={s,t}, [C]G (see Fig. 3); the ordered pair assigned to 

each communications link between s and t, correspond to the 

distance and link probability of failure (shown in Table I). 

Calculating the reliability one gets Rs,t(Go ) = 0.2. 

 

 

 

 

 

 

 

 
Fig. 3. The graph induced from G by the terminal set K={s,t}. 

 

Next consider the subgraphs of G induced by C and another 

node of N, that is, [C  {1}]G, [C  {2}]G, and [C  {3}]G  

(see Fig. 4), and where the probability of failure of their links 

are shown in Table I. We then calculate the Source-to-terminal 

reliability for each of these subgraphs (refer to (4)), and we 

obtain Rs,t( [C  {1}]G ) = 0.486, Rs,t( [C  {2}]G ) = 0.555, 

and Rs,t( [C  {3}]G ) = 0.443, thus node 2 will be first in the 

priority list L, since, when added to Go it has increased the 

reliability by the largest amount (i.e., from 0.2 to 0.555). Let 

G1 = [C  {2}]G. 

 Next we proceed to look at the subgraphs of G induced by 

C  {2} and another node of N-{2}, that is, [C  {2}  {1}]G  

and  [C  {2}  {3}]G. Calculating the reliability of these 

graphs (refer to (4)) we obtain Rs,t([C  {2}  {1}]G) = 0.792 

and Rs,t([C  {2} {3}]G) = 0.763. Since when added to G1 

(and the corresponding induced links), node 1 has increased 

the reliability by the largest amount (i.e., from 0.555 to 0.792), 

then node 1 will be assigned the second priority in the list L. 

Finally node 3 is inserted in the third position of L. Thus 

L={2,1,3}. 

  

 

 

 

 

 

 
 

Fig. 4. a) [C  {1}]G ,  b) [C  {2}]G  , c) [C  {3}]G . 

 

The following algorithm, Assign-Redundancy-Priority, 

creates a priority list of the order in which redundant nodes 

should be inserted to the original core nodes of G to maximize 

the reliability. Moreover, if at any moment the reliability value 

of the induced graph by the core nodes and a sub-list of the 

redundant nodes have reached a threshold value T, then only 

the sub-list of nodes will be returned. If T = , a priority list of 

all redundant nodes will be returned.  
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Algorithm Assign-Redundancy-Priority ( ) 

 

Input: Digraph G=(V,E), source node s, terminal set K, core-set C, 

redundant node-set N  (V-K), threshold value T. 

 

      1: L  ;  /* priority list of nodes. 

  2: Op  C ; /* core nodes. 

  3: Rs,K ([Op]G)  MCRs,K ([Op]G); /* calc. rel. MC. 

  4: N’  N; /* auxiliary list of redundant nodes N’. 

  5: maxr  0; /* max. reliability value achieved. 

  6: maxv ; /* node with max reliability. 

  7: while Rs,K ([Op]G) < T and N’ ≠   do 

  8:     maxr  0; 

  9:     for v  N’ do        

10:          Rs,K ([Op  {v}]G)  MCRs,K ([Op  {v}]G); 

11:          if  Rs,K ([Op  {v}]G) > maxr do 

12:                maxr  Rs,K ([Op  v]G); 

13:                maxv  {v};     

14:          end if 

    15:      end for 

    16:     Op  Op  {maxv}; /* update list of curr. nodes. 

    17:      N’  N’ – {maxv}; /* delete maxv from N’. 

    18:       L  L  {maxv}; /* add maxv to the end of L.  

    19:      Rs,K ([Op]G)  MCRs,K ([Op]G); /* Rel. via MC      

    20: end while 

    21: return ( L ) 
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In line 1 of the algorithm Assign-Redundancy-Priority, the 

priority list L of nodes is initialized. The current set of nodes 

Op is set equal to the core nodes of G (line 2). In line 3, the 

reliability of the subgraph of G induced by the node-set Op 

(i.e., [Op]G) is determined by application of a Monte Carlo 

technique (see Section III-B). If either the reliability value of 

[Op]G has reached a threshold value T, or no more redundant 

nodes ought be considered, the priority list L is returned, by 

the algorithm, with the ordered sequence of nodes to be added 

to the original core nodes (line 21); otherwise, from the 

remaining redundant nodes, we determine one, maxv,  which 

when added to the current set of nodes Op, will induce a 

subgraph of G that yields the maximum possible reliability 

among  the outstanding redundant nodes (i.e., for-loop). In 

lines 16 thru 18, the chosen node is added to Op, it is inserted 

at the end of the priority list L, and deleted from the set N’ of 

remaining redundant nodes. Moreover, the reliability of 

subgraph of G induced by the updated set of nodes Op, now 

containing the new node, is then calculated (line 19). 

 With respect to the time complexity of the Assign-

Redundancy-Priority algorithm, as explained in Section III-

B, to estimate the reliability by applying a Monte Carlo 

technique MCRs,K (G) to a graph G=(V, E), takes O (|E|
2
) 

steps, and this evaluation procedure is executed at most |V|
2 

times (lines 10 and 19), yielding total complexity O(|V|
2
|E|

2
). 

IV. OPTIMIZATION PROBLEMS IN RANDOM NETWORKS 

A. Selecting locations for optimal communication between 

regions. 

Unlike planned networks where each node is carefully 

deployed, in random mesh networks, the nodes are randomly 

distributed through a geographical area, and the nodes 

transmitting as well as receiving characteristics do not follow a 

planned network’s approach; this situation appears for 

example in networks that are set-up in a ad hoc manner (e.g., 

disaster recovery operations, tactical military operations, 

conferences, etc.).  

  Given an existing network G= (V, E), one relevant problem is 

for example to determine within different surrounding 

geographical areas, locations where maximum communication 

capabilities could be attained using G as the backbone for the 

communication.  

 

 

 

 

 

 

 

 
Fig. 5.  Two different geographical areas and a mesh network. 

 

For an area A, the center of area CA (i.e., the area’s centroid) 

with mean coordinates (xA , yA), is determined. Suppose that in 

area A we place a mesh access point MA at location CA.  

Similarly we consider another geographical area B and access 

point whose centroid has coordinates (xB, yB). Next we connect 

these access points to the backbone network G by adding the 

corresponding links representing the communication channels 

(see Fig. 5).  

A geographical region R can be divided into sectors or areas 

having different physical (or tactical) characteristics. In many 

deployment or tactical situations, given the existence of a 

wireless mesh network whose nodes have been deployed in a 

ad hoc fashion, sometimes it is of relevance importance to 

identify locations of two different regions in which an optimal 

(or threshold) level of communication could be achieved. A 

region could represent a space within which movement of 

communication equipment (e.g., mobile wireless access point) 

is allowed (for tactical or strategic purposes). As the 

geographical areas composing the regions may have different 

transmitting and/or receiving capabilities due for example to 

terrain obstruction, we may be interested in determining within 

two regions, R1 and R2, two different areas (or sectors) A  R1 

and B  R2 for which the communication is optimal (in 

comparison with the other areas) or the quality of the 

communication surpasses a given threshold level, under the 

assumption that an access point is located at coordinate CA and 

another at coordinate CB. In this case, in order to simulate a 

mobile device, we are assuming a unique access point for each 

region with fixed transmitting as well as receiving capabilities 

(e.g., transmission rate, transmission power, and noise average 

power). Suppose that region R1 is composed of i areas A(1,1), 

A(1,2), …A(1,i) with centroid coordinates C(1,1), C(1,2), 

…C(1,i), respectively, and region R2 comprises j areas A(2,1), 

A(2,2), …A(2,j) with centroid coordinates C(2,1), C(2,2), 

…C(2,j), respectively.  Given an already existing network G = 

(V,E) and two subordinate regions R1 and R2 with 

corresponding mobile access points M1 and M2, respectively, 

let G [R1 ,R2 ]  be the graph obtained from G by adding a node 

v(1,l) located at the centroid coordinate C(1,l) of the region R1, 

for 1 ≤ l ≤ i, and a node v(2,p) located at the centroid 

coordinate of  area A(2,p) of the region R2, for 1 ≤ p ≤ j; let V1  

and V2 represent the sets of such nodes. In order to simulate a 

mobile access point, we can think that the same mesh access 

point Mq of region Rq  (1 ≤ q ≤ 2) is positioned at each of the  

nodes of Vq (at different times), representing the movement the 

access point within the same region. Consider the links 

representing the channels of transmitting nodes of R1 to nodes 

in G, E1
t 
= {(u,v): u = v(1,l), 1 ≤ l ≤ i; v  V}, and the links 

representing the channels of transmitting nodes of G to 

receiving nodes of R1, E1
r 
= {(u,v): u  V;  v = v(1,l), 1 ≤ l ≤ 

i}. Similarly we define E2
t 
and E2

r
, but involving nodes of R2 

instead. Moreover let E1,2 = {(u,v): u = v(1,l), 1 ≤ l ≤ i; v = 

v(2,p), 1 ≤ p ≤ j } (i.e., when nodes of R1 are transmitting to 

nodes of  R2), and E2,1= {(u,v): u = v(2,p), 1 ≤ p ≤ j; v = v(1,l), 

1 ≤ l ≤ i}. Thus the link-set of G [R1,R2 ] is EG[R1 ,R2 ] =  E  

E1
t

 E1
r
  E2

t
  E2

r
 E1,2  E2,1. Moreover the probability of 

failure of the links are calculated using (2) (see Section II-A). 

For ease of notation let L(u) be the location of a node u of  

G[R1,R2] (corresponding to a centroid point of one of the 

areas).  

Consider the following optimization problem: 

 

 

Mesh 

Network 

    

Area B       

Area    A   

    C   B       

     
         

    

    

   C   A       
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OG(R1, R2): Find in G[R1,R2 ] nodes u and v, u  V1 and v  V2, 

such as  

]),,[(  ]),[( 21,21,

2

1

RRRR GRMaxGR yx

Vy

Vxvu

 

that is, we are trying to find a location L(u) of a source node u 

of region R1 and location L(v) of a terminal node v of region R2, 

for which information sent from u to v is the most reliable 

among all pair of points belonging to the two regions. As 

mentioned in Section III, when two nodes u and v switch their 

role from transmitter to receiver, and vice versa, the quality of 

the communication could change according to the 

characteristics of the mesh access points as well as the 

topology representing the communication network. Thus we 

can also formulate the complementary optimization problem of 

OG(R1, R2): 

OG(R2, R1): Find in G[R1 ,R2 ] nodes u and v, u  V1 and v  V2, 
such as  

]),,[(  ]),[( 21,21,

2

1

RRRR GRMaxGR xy

Vy

Vx
uv

 

where in general OG(R1, R2)≠ OG(R2, R1). 

Procedure Optimal-Regional-Reliability solves 

optimization problem OG(R1, R2), when we are assuming a 

unique mobile access point for each region with known 

transmission power (i.e., |x|
2
, where x is the input signal), 

transmission rate (bits per channel use), and noise power (i.e., 

η
2
, where η  is a zero mean additive white Gaussian noise). 

For simplicity we assume that all the communication channels 

have a fading Rayleigh state with unique expected value , and 

the probability of failure of each link is calculated using (2). If 

threshold value T ≠ , then the algorithm returns (besides the 

maximum reliability value, and a pair achieving this reliability) 

a list of pair of nodes (u,v) for which ,]),[( 21, TGR vu RR  

otherwise it returns just the pair of nodes that maximizes (the 

first one is the source node, and the second is the receiving 

node) the reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With respect to the time complexity of Optimal-Regional-

Reliability, to estimate the reliability by application of the 

Monte Carlo technique MCRs,K (G’) for a digraph G’=(V’,E’) 

takes O (|E’|
2
) steps (see Section III-B). In  line 6, MCRs,K (G’) 

is applied to estimate the reliability of digraph G[R1,R2] for 

source node u and terminal node v for every pair (u,v) of 

nodes, where u represents an area of R1 and v an area of  R2. 

Thus line 6 is executed |V1| |V2| times, where each execution to 

estimate the reliability takes O (|EG[R1,R2]|
2
) steps. Thus 

algorithm Optimal-Regional-Reliability has time complexity     

O (|V1| |V2| |EG[R1, R2]|
2
). 

In the next sub-section we present an example of the 

applicability of algorithm Optimal-Regional-Reliability to 

solve optimization problem OG(R1, R2). 

B. Example. 

Consider the network G=(V,E) and related regions R1 and  

R2, each composed of two areas (Fig. 6). We assume all the 

nodes of G=(V,E) (i.e., V={1,2,3,4}) have identical SNR 

(SNRdb = 30), transmission rate (1 bit per channel use), and the 

fading state of the channels connecting the nodes of V, is a 

Rayleigh random variable with expected value  =1. Moreover 

we are assuming a path loss exponent equal to 2 for each of the 

communication channels of G. 

 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 6. Existing network G=(V,E) and regions R1 and R2 with 

corresponding areas A, B, and C, D with centroid nodes a, b, and c, d, 

respectively. The first value of an ordered pair represents the distance 

between two nodes and the second value is the probability of failure 

of the anti-parallel links. 

 

Using these parameters as well as the distances between nodes 

as depicted in Fig. 6, the  probability of failure of each link of 

G is calculated using (2) (shown in Fig. 6 as the second value 

of the ordered pair representing a communication link). 

Regarding the access point for each region, we assume that 

mobile access point M1 (corresponding to R1) has SNRdb = 30 

and transmission rate of 0.5 bits per channel use, and M2 also 

has SNRdb = 30 and transmission rate of 2 bits per channel use.  

It is important to note that by just stating the SNR of the access 

points, we are assuming identical transmission as well as noise 

powers for each of the nodes of G[R1,R2]; otherwise we need to 

state the transmission and noise powers for each node of 

G[R1,R2], and then calculate the SNR of each communication 

channel. The probability of failure of each link of EG[R1,R2] – 

E is evaluated using (2), under the previous assumptions and 

by fixing the fading state of each communication channel as a 

  
Algorithm Optimal-Regional-Reliability( ) 

 

Input: Digraph G[R1,R2] is the composed of existing  network 

G=(V,E), and regions R1 and R2 with corresponding sets of 

nodes V1 and V2. Threshold value T. Ordered pair (i, j); i 

transmitting region, j receiving region, 1  i, j   2, i not = j. 

 

      1: L  ;  /* list of pairs of nodes. 

  2: maxr  0; /* max. reliability value achieved. 

  3: maxpair ; /* pair of nodes achieving max rel. 

  4: for u   Vi  do        

  5:     for v  Vj do        

  6:          Ru,v (G[R1,R2])  MCRu,v (G[R1,R2]);/* MC. 

  7:          if  Ru,v(G[R1,R2]) >  maxr do 

  8:                maxr  Ru,v(G[R1,R2]); 

  9:                maxpair {(u, v)};     

10:          end if 

11:          if  Ru,v([G[R1,R2])  T do 

12:                L = L  {(u, v)}; 

13:           end if 

    14:     end for  

    15: end for 

    16: return (maxr, maxpair, L ) 

 

 
  G =( V , E   ) 

  R egio n  1 
  

2 2     

    ( ( 2 2 8 8 , ,     0.543)   
    

                ( ( 2 2 5 5 , ,     0.464)   
    

1 1     

3 3     

( ( 4 4 0 0 , , 0 0 . . 8 8 ) )     

                ( ( 2 2 8 8 , ,     0 0 . . 5 5 4 4 3 3 ) )     

                                    
( ( 2 2 0 0 , , 0 0 . . 3 3 3 3 ) )     

                        ( ( 2 2 0 0 , , 0 0 . . 3 3 3 3 ) )     

4 4     a   

b 
  

c 
  

d 
  

R egio n  2 
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Rayleigh random variable with expected value  = 1, and 

where the distance and the path loss exponent for each link are 

given by Table II.   

 

Regarding optimization problem OG(R1,R2), one gets     

Ra,c(G[R1,R2])=0.601, Ra,d(G[R1,R2])= 0.744, Rb,c(G[R1,R2])= 

0.597, and Rb,d(G[R1,R2])=0.739; thus information sent from 

region R1 to region R2 is most reliable when it is sent from node 

a (of area A) to node d (of area D), under the assumption of an 

unique mobile access point for each region.  

   When applying algorithm Optimal-Regional-Reliability to 

solve problem OG(R2,R1), we get Rc,a(G[R1,R2])=0.192, 

Rc,b(G[R1,R2])=0.180, Rd,a(G[R1,R2])=0.214, and Rd,b(G[R1,R2])  

= 0.200, therefore information is most reliable when sent from 

node d (area D) and received at node a (area A). It is important 

to emphasize here the importance that plays the high 

transmission rates of the access point of region R2, as well as 

the high path loss exponents of the communication channels 

connecting the different areas of the regions, for the low 

reliability values obtained for this problem. 

 

V. CONCLUSIONS 

In this paper we’ve modeled mesh networks as random 

digraphs in which a directed link of the graph represents a 

wireless communication channel between a transmitting node 

and a receiving node, and where this link is modeled using 

current results in Information Theory applied to wireless 

communications. Once a wireless network can be accurately 

simulated as a digraph, then network reliability measures can 

be applied to solve optimization problems in communication 

theory, and, in particular we’ve presented algorithms to tackle 

problems such as nodes’ redundancy in planned mesh 

networks as well as the problem of locating in different 

geographical regions surrounding an already existing network 

assembled in a ad hoc fashion, points in which the 

communication is the most reliable.   

 Future research will consider more sophisticate link models 

of wireless channels to integrate concepts such as antenna 

power gain and nodes interference, in order to accurately 

simulate real wireless networks.  

 It is of relevant importance to mention here that the analysis 

presented in this article can be easily adapted to general 

wireless networks, and mesh networks were chosen, among 

other wireless networks, to clarify concepts. 

APPENDIX 

Even though the Source-to-K-terminal reliability is 

applicable to  single source broadcasting networks, whenever 

every pair of anti-parallel channels connecting two nodes have 

the same probability of failure then Rs,K (G) = RK(G’), that is, 

the Source-to-K-terminal reliability of the digraph G is equal 

to the K-terminal reliability of an undirected graph G’ 

discussed in the Introduction, where G’ is obtained from G by 

replacing two anti-parallel links having the same probability of 

failure between two nodes, by  a single undirected edge with 

the same probability. This is an important assumption since the 

optimization algorithms presented in the paper, based on 

which node is the source and which nodes are the terminals, 

can be then extended to the case where K terminal nodes can 

communicate independently of which nodes are transmitting 

and which nodes are receiving information. For the stochastic 

link representation introduced in Section II-A, this situation is 

realizable for example when the nodes of a network have 

identical transmitting as receiving characteristics as well as 

considerations pertaining the fading states and path loss 

exponents of the channels.  

 Consider first the digraph G and the operating states  of G 

with respect to the Source-to-K-terminal reliability as defined 

in Section II-B; for the purpose of relating the reliabilities we 

will rename the set  as s,K(G). An operating state H of 

s,K(G) is a minpath if for any x  H, H – x is not in s,K(G). 

Satyanarayana called these minpaths K-trees [19]. Formally a 

K-tree T=(V’,E’) of G is a directed tree that contains all the 

nodes of K, there exists a unique dipath between the source s 

and each node of T, and each node of u of T not in K must 

have a link emanating from it (see Fig. 7). 

For a digraph G = (V, E) with terminal set K and node s of 

K, let M = {M1, M2… Ml} be the set of all minpaths of s,K(G) 

(i.e., K-trees). The situation where all the links of Mi operate 

(survive), is a random event which will be denoted by Ei. By 

Inclusion-Exclusion we obtain 

  
where the event   is the event that all the links of the 

subgraph obtained by the union of M1, M2,…, and Mm are 

operating; thus (6) considers only subgraphs of G which are 

the union of K-trees. 

 

 

 

 

TABLE  II 

PROBABILITY  OF FAILURE OF  THE  LINKS IN EG[R1,R2] - E 

Nodes Distance 

(meters) 

Chann. 

Path L. 

Expon. 

 Link Failure 

Prob. 

Link Failure 

Prob. 

a, 1 

a, 2 

a, 3 

a, 4 

a, c 

a, d 

50 

30 

33 

11 

50 

58 

2.0 

2.0 

2.0 

2.0 

3.0 

2.6 

(a, 1) 

(a, 2) 

(a, 3) 

(a, 4) 

(a, c) 

(a, d) 

0.645 

0.311           

0.363 

0.049 

1.000  

1.000     

 (1, a) 

(2, a) 

(3, a) 

(4, a) 

(c, a) 

(d, a) 

0.918 

0.593 

0.663 

0.114 

1.000 

1.000 

b, 1 

b, 2 

b, 3 

b, 4 

b, c 

b, d 

45 

23 

42 

20 

58 

64 

2.0 

2.0 

2.0 

2.0 

2.8 

2.4 

(b, 1) 

(b, 2) 

(b, 3) 

(b, 4) 

(b, c) 

(b, d) 

0.568 

0.197 

0.518 

0.153 

1.000 

1.000 

(1, b) 

(2, b) 

(3, b) 

(4, b) 

(c, b) 

(d, b) 

0.868 

0.411 

0.829 

0.330 

1.000 

1.000 

c, 1 

c, 2 

c, 3 

c, 4 

41 

46 

15 

36 

2.3 

2.3 

2.3 

2.3 

(1, c) 

(2, c) 

(3, c) 

(4, c) 

0.994 

0.999 

0.398 

0.978 

(c, 1) 

(c, 2) 

(c, 3) 

(c, 4) 

1.000 

1.000 

0.782 

1.000 

d, 1 

d, 2 

d, 3 

d, 4 

40 

50 

22 

44 

2.0 

2.0 

2.0 

2.0 

(1, d) 

(2, d) 

(3, d) 

(4, d) 

 

0.798 

0.918 

0.384 

0.856 

(d, 1) 

(d, 2) 

(d, 3) 

(d, 4) 

0.992 

0.999 

0.766 

0.977 
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Fig. 7.  a) Directed graph G with source node s and K terminal nodes 

(black nodes), b) - c) K-trees of G. 

 

Given a probabilistic undirected graph G=(V,E) with a 

distinguished set of  terminal nodes K of V,  the classical K-

terminal reliability RK(G) of G, is defined as the probability 

that the terminal nodes are connected thru operational 

(undirected) paths composed of surviving edges. If we let 

K(G) be the operating states of G (i.e., connected subgraphs 

of G containing the terminal set K), the corresponding 

minpaths are undirected K-trees (i.e., Steiner trees) and a 

formulation similar to (6) can be derived to evaluate RK(G). 

Let M = {M1, M2… Mr} be the set of Steiner trees of the 

undirected graph G. Using Inclusion-Exclusion we obtain 

  
Let G’ be the undirected  graph obtained from a digraph G 

by replacing each pair of anti-parallel links having the same 

probability of failure between two nodes, by a single 

undirected edge with the same probability (under the 

assumption that is the case for each set of anti-parallel links of 

G). It is not difficult to prove that in that case there is a one-to-

one correspondence between the directed K-trees of G and the 

undirected K-trees of G’ (Steiner trees); then it follows that 

each term of (6) for the directed case is identical to each  term 

of (7) for the undirected case,  consequently Rs,K (G) = RK(G’). 

 In this case each optimization algorithm presented in this 

paper based upon which node is the source and which nodes 

are the terminals, can be then extended to the case where K 

terminal nodes can communicate independently of which 

nodes are transmitting and which nodes are receiving 

information. 
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