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Abstract- This paper presents a robust blind channel equalization technique in impulse noise environments. To
suppress impulse noise effectively, the combination of order statistics (OS) and adaptive thresholding is consid-
ered. We implement nonlinear adaptation with the OS operation based on the Sato error criterion. The adaptive
threshold is calculated using the variance of the input signal. Computer simulations demonstrate that a significant
improvement in both the bit error rate and mean square error is achieved for communication channel models with
a mixture of additive white Gaussian noise and impulse noise, in which two different impulse noise generation
models with different noise generation probability are considered.
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1 INTRODUCTION

Multipath fading is a serious problem which affects
the reliability of communication systems such as mo-
bile radio and high frequency (HF) channels. Such
digital communication channels suffer from intersym-
bol interference (ISI) invoked from the multipath fad-
ing. To compensate for ISI, adaptive equalization
techniques can be used [1]. Usually, the equalization
techniques are training sequence based [2][3]. The
communication capacity, however, degrades with the
length of the training sequence. Hence, blind equal-
ization [4] can be a solution to overcome such a situ-
ation, in which the equalizer works without any train-
ing sequence. Most of the blind equalizers use a linear
adaptive algorithm (with a nonlinear error criterion)
and assumes that the additive noise is Gaussian [5].
However, the Gaussian assumption of the noise is not
always valid in practical communications systems, be-
cause sometimes the noise can be impulsive [6]. Lin-
ear filters may not be suitable there. A large ampli-
tude of the impulse noise adversely affects both signal
restoration and adaptation [7]. This has prompted a
great deal of research in nonlinear filtering techniques
that are more robust against impulse noise.

Order statistics (OS) filters are known for sup-
pressing impulse noise [8]-[10]. The L-filter [8] forms
a new input vector by sorting the elements of input
vector. This filter works well in image processing,
but it cannot perform well in channel equalization due
to the loss of temporal information after the ranking
operation. The Ll -filter [9] provides good signal re-
construction and noise removal by considering both
time and rank orders. In [10], the performance of the

Ll -filter was investigated for the purpose of (training
based) channel equalization in the presence of impulse
noise, and it was shown that the Ll -filter behaves bet-
ter than the linear filter in terms of mean square er-
ror (MSE). The C-filter [11] also utilizes the rank and
temporal information in processing inputs with im-
pulse noise, which is also applicable to the channel
equalization purpose. In [11], however, the task of
channel equalization was not studied. On the other
hand, the multirate optimizing order statistics equal-
izer (MOOSE) has a two-stage architecture, consist-
ing of an order statistical impulse removal prefilter
and a (training based) channel equalizer [12]. For
the MOOSE, the use of the impulse removal prefilter
does not provide inherently a solution to the equal-
ization problem in impulse noise without the fraction-
ally spaced technique. This is because the impulse re-
moval prefilter is a general filter to suppress impulse
noise, which is applicable to a variety of fields con-
taining impulse noise. Like the above, there are sev-
eral works about the training based equalization tech-
niques in impulse noise. However, there are only a
few works about blind equalization in impulse noise
environments. In [13] the author presents an approach
for blind channel equalization in impulse noise, which
is based on the information theoretic learning method
instead of the MSE method. The approach can sup-
press impulse noise well, but the resulting conver-
gence is not satisfactory especially with respect to
speed.

The Sato equalizer [14] is a pioneer work of blind
equalization, which is a simple and effective blind
equalizer and has been widely used for applications.
The performance of the Sato equalizer in impulse
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Figure 1: Blind channel equalization system with impulse noise

noise is not known. In this paper, we investigate the
performance of the Sato equalizer in impulse noise
and visualize that the Sato equalizer is severely af-
fected in an impulse noise environment. In order to
improve the performance of the Sato equalizer in im-
pulse noise, we need to suppress the impulse noise ef-
fect in the adaptation process. One idea to accomplish
this is to use the principle of the C-filter in the adap-
tation process of the Sato blind equalizer. From this
point of view, we derive an OS based blind equalizer
with the Sato error criterion, where the time and rank
orders are taken into account.

An adaptive threshold technique has been used in
the training based equalizer to handle significant out-
liers in [15]. This technique is also applicable to the
blind equalizer. In this paper, we investigate the effec-
tiveness of the adaptive threshold [15] for blind equal-
ization with the Sato error criterion. The threshold
is calculated with the variance of the input signal for
each iteration. Unlike the trimming with the C-filter
[11], the thresholding calculation is kept isolated from
the adaptation process.

The organization of this paper is as follows. The
channel model and blind equalization system to be
considered in this paper are described in Section 2.
The proposed OS based blind equalization with the
Sato error criterion (OS-Sato) is described in Section
3. In Section 4, the adaptive threshold technique is
described and a threshold based blind equalizer is de-
rived. Section 5 describes noise generation models,
and Section 6 shows computer simulation results to
validate the proposed blind equalizers. Section 7 con-
cludes the paper with a brief summary.

2 CHANNEL MODEL AND BLIND
CHANNEL EQUALIZATION

We consider a digital communication system where
the transmitted sequence is corrupted by both the ad-

ditive white Gaussian noise (AWGN) and impulse
noise. The channel is described by

x(n) =

L−1∑
i=0

hi(n)u(n− i) + g(n) + I(n), (1)

where hi(n), i = 0, 1, · · ·, L are the channel coeffi-
cients, u(n) is the transmitted sequence, g(n) is the
AWGN, and I(n) is the impulse noise. The transmit-
ted sequence u(n) is assumed to be an independent
random binary sequence of ±1 with an equal proba-
bility. For the mixture noise, the impulse noise I(n)
is added to the AWGN g(n). The probability of the
generation of the impulse noise I(n) is defined by Pi.

Figure 1 shows a system model of the blind equal-
izer considered in this paper, where the Sato algorithm
is employed as the adaptation scheme of the transver-
sal filter, this corresponds to the so-called Sato equal-
izer. The Sato equalizer minimizes a non-convex cost
function:

J = E[(û(n)− y(n))2], (2)

where û(n) is an estimate of u(n), which is given by

û(n) = γsgn[y(n)] (3)

with the sign function sgn[] returning the sign of its
argument. The dispersion coefficient γ in (3) controls
the output scaling, which is computed as

γ =
E[u2(n)]

E[|u(n)|]
· (4)

The Sato equalizer updates its coefficient vector by the
least mean squares (LMS) algorithm. The adaptation
equations are given by

y(n) = x(n)Tc(n), (5)

e(n) = û(n)− y(n) = γsgn(y(n))− y(n), (6)

c(n + 1 ) = c(n) + µe(n)x(n)· (7)
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where x(n) = [x(n), x(n−1), ···, x(n−L+1)]T is the
input vector, c(n) = [c(n), c(n−1), ···, c(n−L+1)]T

is the coefficient vector, and e(n) is the estimation er-
ror. The parameter µ controls the convergence of the
equalizer.

3 OS BASED BLIND EQUALIZA-
TION

In this section, the proposed OS-Sato equalizer is de-
scribed where the OS operation is incorporated into
the Sato equalizer.

The adaptation of the OS-Sato equalizer is done
based on the OS of the input vector, where a combina-
tion of temporal and rank orders information is used.
The OS-Sato equalizer utilizes the filter output to es-
timate the transmitted sequence blindly with the Sato
error criterion.

The OS-Sato equalizer is implemented at the part
of the transversal filter with the Sato algorithm in Fig-
ure 1, where the coefficient vector c(n) is nonlinearly
adapted based on the order of the input sequence x(n).
Due to the OS operation, the impulse noise appears
only on dominated elements of the coefficient vec-
tor and hence provides robustness against the impulse
noise effect.

The OS-Sato equalizer prepares a coefficient
matrix instead of a coefficient vector as follows

C(n+ 1) =

c0 ,0 (n) c0 ,1 (n) · · · c0 ,L−1 (n)
c1 ,0 (n) c1 ,1 (n) · · · c1 ,L−1 (n)
· · · ·
· · · ·
· · · ·

cL−1 ,0 (n) cL−1 ,1 (n) · · · cL−1 ,L−1 (n)

 .
(8)

In (8), the elements ci,j(n),i, j=0, 1, · · ·,L-1 are ini-
tialized to zeros at n=0. For the adaptation of the OS-
Sato equalizer, among the L by L elements of C(n),
onlyL elements are selected using the OS operation of
the input vector x(n) and then updated. Specifically,
for the nth iteration, only cl(j ),j (n),j=0, 1, · · ·,L-1 are
selected. And a coefficient vector

cOS−Sato(n) = [cl(0 ),0 (n), cl(1 ),1 (n), · · ·
· · ·, cl(L−1 ),L−1 (n)]T (9)

is formed and updated where l(j ) corresponds to the
order when the input vector, x(n) = [x (n), x (n −
1 ), ··, x (n − L + 1 )(n)]T , is transformed into the OS
vector as follows

S(n) = [s0 (n), s1 (n), · · ·, sL−1 (n)]T , (10)

s0 (n) < s1 (n) < · · sL−1 (n). (11)

The order l(j ) in (9) is determined for i, j=0, 1, · ·
·,L− 1 by

l(j) = i if si(n) = x(n− j). (12)

The adaptation equations for the OS-Sato equal-
izer are given by

y(n) = x(n)TcOS−Sato(n), (13)

e(n) = û(n)− y(n) = γsgn(y(n))− y(n), (14)

cOS−Sato(n + 1 ) = cOS−Sato(n) + µe(n)x(n)·
(15)

The updated coefficient vector cOS−Sato(n + 1 ) is
then inserted into the coefficient matrix C(n + 1).
Such a process corresponds to one iteration for the
OS-Sato equalizer.

4 THRESHOLD BASED BLIND
EQUALIZATION

In this section, the threshold based adaptation for
blind equalization is discussed.

To mitigate the impulse noise effect, the threshold
based adaptation [16] is applicable to the Sato equal-
izer. The resulting equalizer is termed the threshold
Sato (T-Sato) equalizer in this paper. The coefficient
vector of the T-Sato equalizer will not be updated
when an outlier is present in the input vector. This
operation is equivalent to that the step size is set to
zero in the above situations. Otherwise, the equalizer
will update the coefficient vector using (5), (6) and
(7). The no-adaptation combats the impulse noise ef-
fect.

The adaptive thresholding is also applicable to the
OS-Sato equalizer, which results in the threshold OS-
Sato (T-OS-Sato) equalizer. The coefficient vector of
the T-OS-Sato equalizer is selected with the OS op-
eration and updated with the threshold based adap-
tation using the Sato error criterion. If there is no
outlier present in the input vector, the selected co-
efficient vector will be updated using (13), (14) and
(15), and the impulse noise effect is suppressed by
no-adaptation. In the T-Sato and T-OS-Sato equal-
izers, commonly the input signal corrupted by only
the AWGN is effectively used for the equalizer coeffi-
cients adaptation.

The adaptive thresholding technique is described
in details here. To implement the thresholding, the
squared deviation Γ(n) is calculated for each element
of the input vector x(n) as

Γ(n) = [x(n)− x̄(n)]2, (16)
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Figure 2: BER performance on Channel 1 for noise
generation model 1 with Pi=0.0001

Figure 3: BER performance on Channel 1 for noise
generation model 1 with Pi=0.001

where x̄(n) is the average up to the nth input sam-
ple where the input samples corrupted by the AWGN
only are used. This averaging is implemented so that it
does not include potential impulse candidates. In gen-
eral, observations having high order and low order are
considered to be potential impulse candidates. Hence
by eliminating the first and last elements, s0 (n) and
sL−1 (n), of the OS vector, the influence of the im-
pulse noise could be reduced. To deal with the AWGN
only, by eliminating these two elements, x̄(n) is adap-
tively obtained as follows

x̄(n) =
1

n+ L− 2
(n− 1)x̄(n− 1) +

L−2∑
i=1

si(n)·

(17)
The following threshold value is then evaluated

to judge whether impulses are included in the input
vector as

Ω(n) = αV (n), (18)

where α is a scaling parameter and V (n) is the esti-
mate of the variance of the input signal corrupted by
the AWGN only. V (n) can be calculated adaptively

Figure 4: BER performance on Channel 1 for noise
generation model 1 with Pi=0.01

Figure 5: BER performance on Channel 1 for noise
generation model 2 with Pi=0.0001

as

V (n) =
1

n+ L− 2
[(V (n− 1) +

(x̄(n− 1))2)(n− 1) +

L−2∑
i=1

si(n)2]− (x̄(n))2. (19)

The squared deviation Γ(n) is compared with the
threshold value Ω(n). If

Γ(n) > Ω(n), (20)

then the observation is considered to be affected by
impulse noise and the coefficient vector is not updated
until the (n + L − 1)th iteration. Otherwise, it will
be updated. Rather than the trimming of high ampli-
tude impulse noise in [11], the thresholding in (20)
directly considers whether the observation is impulse
or not. When the relationship in (20) is satisfied, it is
expected that impulses are included in the input vector
and they are then suppressed by no-adaptation.

5 NOISE GENERATION MODEL
Two different noise generation models are considered
to verify the effectiveness of the OS-Sato, T-Sato and
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Figure 6: BER performance on Channel 1 for noise
generation model 2 with Pi=0.001

Figure 7: BER performance on Channel 1 for noise
generation model 2 with Pi=0.01

T-OS-Sato equalizers. For noise generation model 1,
the impulse noise I(n) is generated from a binary se-
quence with the values of +10, −10 and is added to
the AWGN g(n) to generate the white-impulse mix-
ture noise m(n). This model was used in [15].

For noise generation model 2, the Bernoulli-
Gaussian model is considered to generate the white-
impulse mixture noise m(n). This model was used in
[16][17]. In this model, m(n) is given by

m(n) = Sg(n) + b(n)Si(n) (21)

where b(n) is the Bernoulli process, that is, an inde-
pendent and identically distributed sequence of zeros
and ones with probability P (b(n) = 1) = Pi which
is the impulse noise generation probability. In (21),
Sg(n) and Si(n) are zero mean white Gaussian noises
whose variances are v2g and v2i , respectively. In this
study, we choose the variance of the impulse noise as

v2i = 50v2g . (22)

Three different impulse noise generation probabilities,
Pi = 0.0001, 0.001 and 0.01, are studied for both the
noise generation models.

Figure 8: MSE performance on Channel 1 for noise
generation model 1 with Pi=0.001, SNR=20 dB and
step size=0.13

Figure 9: MSE performance on Channel 1 for noise
generation model 1 in enlarged view

6 SIMULATION RESULTS
The OS-Sato, T-Sato and T-OS-Sato equalizers are
implemented and compared for simulation experi-
ments. At first, we assume a minimum phase channel
whose transfer function is given by

Channel 1 : H(z) = 1 + 0.5z−1. (23)

The additive noise is a white-impulse mixture noise
generated from noise generation models 1 and 2. The
impulses are generated individually for each individ-
ual trial. The scaling parameter α in (18) is commonly
set to 5.

Figures 2, 3 and 4 show the BER performance
on Channel 1 for noise generation model 1 with dif-
ferent Pi. The data number N=100000 is used. The
equalizer length is set to L=4, the delay is zero and
the step size is set to µ=0.04 commonly. Individual
trials of 100 are implemented for each performance
plot. From these figures, it is observed that the OS-
Sato equalizer can suppress the impulse noise with
lower Pi. On the other hand, the T-Sato equalizer can
mitigate the impulse effect well for the entire Pi and it
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Figure 10: MSE performance on Channel 1 for noise
generation model 2 with Pi=0.001, SNR=20 dB and
step size=0.155

Figure 11: MSE performance on Channel 1 for noise
generation model 2 in enlarged view

is effective in higher SNR conditions. Moreover, the
T-OS-Sato equalizer outperforms for the entire Pi and
for a wide range of SNR.

Figures 5, 6 and 7 show the BER performance
on Channel 1 for noise generation model 2 with dif-
ferent Pi. The data number N=100000 is used. The
equalizer length is set to L=4, the delay is zero and the
step size is set to µ=0.04 commonly. Individual trials
of 100 are implemented for each performance plot. In
Figures 5, 6 and 7, similar tendencies with those in
Figures 2, 3 and 4 are observed.

The MSE performance on Channel 1 for noise
generation model 1 is shown in Figure 8 and an en-
larged view of Figure 8 is shown in Figure 9, where Pi

is set to a moderate value of 0.001, the SNR is set to 20
dB and the step size is set to 0.13 commonly. Individ-
ual trials of 100 are implemented for each plot. Fig-
ure 9 clearly demonstrates that the OS-Sato equalizer
can suppress the impulse effect up to a certain level.
The T-Sato equalizer provides successfully an MSE
level with significant impulse noise suppression. The
T-OS-Sato equalizer outperforms the other equalizers
and provides a further MSE improvement of about 5

Figure 12: BER performance on Channel 2 for noise
generation model 1 with Pi=0.0001

Figure 13: BER performance on Channel 2 for noise
generation model 1 with Pi=0.001

dB than the T-Sato equalizer. The MSE performance
on Channel 1 for noise generation model 2 is shown
in Figure 10 and an enlarged view of Figure 10 is
shown in Figure 11, where Pi is set to 0.001, the SNR
is set to 20 dB and the step size is set to 0.155 com-
monly. Individual trials of 100 are implemented for
each plot. Figure 11 also shows that the T-OS-Sato
equalizer outperforms the other equalizers for noise
generation model 2.

The performance of the OS-Sato, T-Sato and T-
OS-Sato equalizers is investigated also on a raised co-
sine channel whose transfer function is given by

Channel 2 : H(z) =
3∑

i=1

1

2
(1 + cos

2π(i− 2)

W
)z−i.

(24)
The parameter W is set to 3. Figures 12, 13 and 14
show the BER performance on Channel 2 for noise
generation model 1 with different Pi. The data num-
ber N=100000 is used. The equalizer length is set to
L=7, the delay is 5 and the step size is set to µ=0.018
commonly. Individual trials of 100 are implemented
for each performance plot. From Figures 12, 13 and
14, it is observed that the OS-Sato equalizer can sup-
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Figure 14: BER performance on Channel 2 for noise
generation model 1 with Pi=0.01

Figure 15: BER performance on Channel 2 for noise
generation model 2 with Pi=0.0001

press the impulse noise for the entire Pi on Channel
2. The OS-Sato equalizer is more effective with lower
Pi. On the other hand, the T-Sato provides signifi-
cant impulse noise suppression with higher Pi. The
T-OS-Sato equalizer outperforms for the entire Pi and
specifically in low SNR conditions on Channel 2.
Figures 15, 16 and 17 show the BER performance on
Channel 2 for noise generation model 2 with differ-
ent Pi. The data number N=100000 is used. The
equalizer length is set to L=7, the delay is 5 and
the step size is set to µ=0.018 commonly. Individual
trials of 100 are implemented for each performance
plot. Similarly, it is observed that the impulse suppres-
sion is achieved more effectively with the T-OS-Sato
equalizer for noise generation model 2 as well.

The MSE performance on Channel 2 for noise
generation model 1 is shown in Figure 18 and an en-
larged view of Figure 18 is shown in Figure 19, where
Pi is set to a moderate value of 0.001, the SNR is set
to 20 dB and the step size is set to 0.13 commonly. In-
dividual trials of 100 are implemented for each perfor-
mance plot. Figure 19 shows that the OS-Sato equal-
izer can suppress the impulse noise up to a level on
Channel 2. Further MSE improvement is achieved
with the T-Sato equalizer. The T-OS-Sato equalizer

Figure 16: BER performance on Channel 2 for noise
generation model 2 with Pi=0.001

Figure 17: BER performance on Channel 2 for noise
generation model 2 with Pi=0.01

outperforms the other equalizers and provides a fur-
ther 5 dB MSE improvement than the T-Sato equalizer
on Channel 2. The MSE performance on Channel
2 for noise generation model 2 is shown in Figure 20
and an enlarged view of Figure 20 is shown in Figure
21, where Pi is set to 0.001, the SNR is set to 20 dB
and the step size is set to 0.155 commonly. Individual
trials of 100 are implemented for each performance
plot. Figure 21 shows that similar MSE performances
are achieved with the OS-Sato, T-Sato and T-OS-Sato
equalizers, respectively for noise generation model 2
as well.

From the computer simulation results, it is ob-
served that the OS based adaptation can suppress
impulse noise up to a certain level. The threshold
based adaptation can provide a further performance
improvement. Finally, the combination of both can be
the best solution to provide significant impulse noise
suppression for the Sato equalizer.

7 Conclusion
This paper presents effective blind channel equaliza-
tion in impulse noise environments. We provide novel
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Figure 18: MSE performance on Channel 2 for noise
generation model 1 with Pi=0.001, SNR=20 dB and
step size=0.13

Figure 19: MSE performance on Channel 2 for noise
generation model 1 in enlarged view

insight of the OS operation for the Sato equalizer. The
adaptive thresholding with the OS operation can sig-
nificantly suppress the impulse noise regardless of its
generation model and generation probability. Both
BER and MSE measurements demonstrate the perfor-
mance superiority of the T-OS-Sato equalizer in im-
pulse noise environments for two different channels.
Future work aims at automatic setting of the scaling
parameter for the adaptive thresholding.
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