

Abstract—Software vulnerabilities that can be the target of malicious
attack have a direct impact on software security and require
quantitative analysis for effective management. The vulnerability
standards that identify, classify, and evaluate the vulnerabilities can be
a metric for quantitative analysis. The Vulnerability Discovery Model
(VDM) helps to predict the vulnerability incidence rate and the
number of vulnerabilities in the future. In this study, we describe the
vulnerability management systems used by major countries and the
vulnerability standards of the United States that are in general use. For
empirical study, we select five DBMS vulnerabilities and examine
quantitative analysis that applies the VDM.

Keywords—Vulnerabilities, Vulnerability Discovery Model, CVE,
CVSS, NVD

I. INTRODUCTION
HE software used for national defense, finance, industry,
and the day-to-day life of the average person has increased
in importance with the development of IT technology. Even

the national infrastructure systems, such as water and electricity
supply systems and, traffic and communication systems, are
now controlled through software. The use of software improves
the efficiency of the systems and makes possible the systematic
control of resources.
 The internet can now be easily accessed using smart phones
and tablet PCs, with no regard to time and place. As a result,
the social community is expanding due to information sharing.

 However, the complexity of software has also been increasing
in order to provide these services and systems. This has caused
defects which can affect the accuracy and safety of the software.
The software defects that give rise to security threats can be
vulnerabilities, which are faults that can be viciously used to

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2011-0025512). This work was supported
by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2013S1A5A2A01017485). This research was supported by
the MSIP (Ministry of Science, ICT & Future Planning), Korea, under the
"Employment Contract based Master's Degree Program for Information
Security" supervised by the KISA (Korea Internet Security Agency)
(H2101-13-1001).

Du Sun Yoon is with the Department of Management Information Systems,
Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju,
Chungbuk 361-763, South Korea (corresponding author. phone:
+82-43-283-3658; fax: +82-43-273-2355; e-mail: tongtong1211@naver.com).

Tae-Sung Kim is with the Department of Management Information Systems
(Big Data Service Model Optimization Team, BK21 Plus), Chungbuk National
University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763,
South Korea (corresponding author.. phone: +82-43-261-3343; fax:
+82-43-273-2355; e-mail: kimts@cbnu.ac.kr).

harm the security of a software system [1]. Through these
vulnerabilities, threats and attacks can affect the security of
critical infrastructure, industrial control systems, and
Supervisory Control and Data Acquisition (SCADA) control
systems [2].
 Any system that uses vulnerable software can be attacked.
Therefore, the security of software depends on how the
vulnerabilities are managed. Although the qualities of existing
vulnerability management strategies have been intensively
studied quantitative analysis vulnerability is still needed for
efficient management. Quantitative methods of achieving target
levels of security make it possible to allocate resources. These
methods also allow for the numerical evaluation of allocating
resources for security testing and scheduling the development of
security patches and released patches. These quantitative
methods are also used by end- users to analyze risk and estimate
potential vulnerabilities [3].

II. LITERATURE REVIEW

A. Software vulnerability definitions
The definitions of vulnerability vary by researchers. Krsul
(1998) defines vulnerability as “an instance of [a mistake] in the
specification, development, or configuration of software such
that its execution can violate the [explicit or implicit] security
policy [4].” Pfleeger (1997) defines vulnerability as a
“weakness in the security system that might be exploited to
cause loss or harm [5].” Mehrez and Henda (2006) defines
vulnerability as a “defect, or a bug, or a flaw [6].”
 Judging by the above definitions, the vulnerability of software
can be defined as “software defects can give security threats.”

B. Software vulnerability lifecycle

Fig. 1 Software vulnerability lifecycle

Vulnerability Discovery Models for
Database Management System Using CVE

DU SUN YOON, TAE-SUNG KIM

T

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 29

javascript:endicAutoLink('national');
javascript:endicAutoLink('defense');

 A vulnerability has a lifecycle that occurs through the seven
stages shown figure 1 and that progresses by the actions of
research institutions and stakeholders associated with each stage
[7].
 First, in the birth stage, the vulnerability is made during the
software development process. It is not corrected and
discovered at this stage because the software has not yet been
distributed. The Second stage is discovery, which occurs
between the stages of birth time it is discovered by external
stakeholders.

 Stakeholders corresponding to this stage include the vendors
who distribute the software, attackers who try to threaten the
system, and the relevant researchers and security agencies. The
third stage is correction, which is the period of time between
when the vendors that analyzed the software's vulnerability are
able to develop a patch, and its publication. The fourth stage is
disclosure, which is intended to expose the vulnerability found
during the discovery phase. The type of disclosure varies
depending upon how much is disclosed and how disclosure is
made. The fifth stage is publicity. There is difference between
disclosure and publicity, which differs from disclosure in that
disclosure involves the exposure of vulnerability information
among stakeholders for the patch, while publicity involves
announcement of the presence of vulnerability to general users
and corporations for the purpose of vulnerability warnings. The
sixth stage is scripting, where hackers develop programs and
scripts for automating that will allow extensive exploitation of
the vulnerability. A worm is a typical example of a script.
 The final stage is death and represents the time when the patc
h for the vulnerability has been completed or when interest in o
r attacks on the vulnerability are reduced.

 However, not all vulnerabilities progress through all seven st
ages. Depending on the discoverer and the purpose of the count
ermeasures, the vulnerability lifecycle can be changed, especial
ly during the discovery and disclosure stages.
 The vulnerability lifecycle can be divided into two broad cate
gories: discovery by hackers or discovery by others. If the vuln
erability is discovered by hackers, it is exploited or disclosed t
o an inside community and a black market can be formed. In th
e black market, knowledge about the vulnerabilities is traded wi
th other hackers or organizations. In contrast if the vulnerabilit
y is discovered by others (e.g., security researchers, security co
mpanies, and users), a white market formed, where vendors wh
o have developed the vulnerable software provide rewards for r
eporting vulnerabilities in order to develop quick patchs.

C. Software vulnerability database
In the United States, the National Vulnerability Database (NV

D) is the responsibility of the Department of Homeland Securit
y (DHS), the National Institute of Standards and Technology (
NIST), and the MITRE Corporation. Figure 2 shows the
vulnerabilities collecting system of NVD. The vulnerability dat
a constituting the NVD is stored using identification, classificat
ion, and evaluation standards. We will describe standards of N
VD in detail in the following section.

 In the case of Japan, the Information-technology Promotion A
gency (IPA) and Japan Computer Emergency Response Team

Fig. 2 Vulnerabilities collecting system of NVD

 Coordination Center (JPCERT/CC) operates the vulnerability
databases. These agencies have set up an Information Security E
arly Warning Partnership for efficient collection and patching o
f vulnerabilities. They collect the vulnerabilities through a coop
eration system similar to that used in the United States and invo
lving vendors, software developers, security researchers, securi
ty organizations, and other stakeholders as shown in figure 3 [8]
. The agencies also collect vulnerabilities from international co
operating institutions such as NIST and the Centre for the Prot
ection of National Infrastructure (CPNI) in the UK. The Collec
ted vulnerabilities are disclosed on Japan Vulnerability Notes (
JVN) and JVN iPedia. The difference in the two databases lies i
n their correspondence systems. JVN discloses the vulnerabiliti
es immediately using its own vulnerability classification system
and assessment system, whereas JVN iPedia uses the identificat
ion, classification, and evaluation standards of United States. J
VN iPedia also discloses vulnerabilities with countermeasures b
y conducting a survey and vulnerability analysis every 2 to 4 we
eks.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 30

http://www.ipa.go.jp/index-e.html
http://www.ipa.go.jp/index-e.html
http://endic.naver.com/enkrEntry.nhn?entryId=f09dd340b0464206ac049fa67b1e39fa
http://endic.naver.com/enkrEntry.nhn?entryId=f09dd340b0464206ac049fa67b1e39fa
http://endic.naver.com/enkrEntry.nhn?entryId=f09dd340b0464206ac049fa67b1e39fa

Fig. 3 Vulnerabilities collecting system of JVN and JVN iPedia

Fig. 4 CNVD cooperating system

 China operates a vulnerability database under the name of the
China National Vulnerability Database (CNVD). As shown in
figure 4, CNVD is operated with a technical cooperation syste
m composed of the China Computer Emergency Response Tea
m Coordination Center (CNCERT/CC), software developers, m
ore than 200 networks security companies, and white hackers. S
imilar to the United States and Japan, they collect vulnerability
data through cooperation with external and internal organizatio
ns. Registration of vulnerabilities on CNVD is divided into inf
ormal registration and public registration. Informal registration
uses CNVD-ID, which is its own identification system. CNVD-
ID consists of the year and a 5 digit serial number [9].

D. Software vulnerability standards

1) Common Vulnerability and Exposures (CVE)

Fig. 5 Revised CVE-ID

 Vulnerability data will be collected by the coordination
system, which is made up of a variety of relevant institutions and
professionals, including security professionals, software
developers, and computer emergency response teams (CERTs).
It is possible for confusion to occur due to the use of different
names in each institution for each collected vulnerability;
therefore, it will be arranged through the CVE classification
system. Organized vulnerabilities are listed on the NVD with
the year and serial number by a compilation committee [10].

CVE is a useful tool for the quantitative analysis of
software-security vulnerabilities. It is possible to analyze the
number of vulnerabilities according to calendar time. In
addition, classification by type of vulnerability is also possible.
More than 58,258 CVEs of 1,919 softwares have been listed on
the NVD to date [11].
 Figure 5 shows the information of the revised CVE-ID applied
on January 1, 2014. The serial numbers of the original CVE-ID
were restricted to 4 digits. Therefore, the CVE numbers that
could be published were limited to 9,999. The revised CVE-ID
expanded the serial numbers to 7 digits, so publication of
9,999,999 CVEs is now possible [12].

2) Common Vulnerability Scoring System (CVSS)

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 31

 CVSS is a framework for scoring the severity of
vulnerabilities. Thus, it helps to remove vulnerabilities
according to their priority. The CVSS scoring system is made up
of a base metric, a temporal metric, and an environmental
metric. The base metric, which is evaluated considering the
inherent characteristics of the vulnerability, is made up of
sub-scales that evaluate the difficulty and influence of attack on
the vulnerability. The temporal metric, which is a measuring
element that can be affected by time, has sub-scales for
evaluating the possibility of an attack and the difficulty of
patching the vulnerability. The environmental metric measures
the elements affected by the environment, such as additional
impacts of an attack and the target distribution [13].

Fig. 6 CVSS scoring system

 The values of the three metrics are obtained by separate
equations, and the values to be substituted into the equations are
obtained by each sub-scale. As Shown in figure 6, the final
values of vulnerability severity are obtained by successive
calculations of the three metrics. The basic metric value is
included in the equation of the time metric, while the time
metric value is included in the equation of the environmental
metric. The final score of the vulnerability has a value between
0.0 and 10. The CVSS version has been updated to CVSS v2.9
from CVSS v1.0 to date, and CVSS v3.0 is currently under
development [14]. A version is updated by revision of the
equations and sub-scales.

3) Common Weakness Enumeration (CWE)
CWE is a classification standard of vulnerabilities. Whereas
CVE describes the vulnerability of specific software, CWE
provides information about weaknesses that might commonly
occur in software. Accordingly, it is intended to improve the
security and services program for diagnosing vulnerability by

providing information to security experts and developers
regarding the type of vulnerabilities. The CWE classification
system consists of Views, Categories, and Compound Elements
including Weaknesses. Views classify the weaknesses
depending on the perspective and the concept, while categories
classify the weaknesses with common characteristics and
Compound Elements describes the weaknesses of complex
elements rather than one weakness. As of November 2013, 940
CWE entries consisting of 31 Views, 187 Categories, 741
Weaknesses, and 8 Compound Elements were published [15].

4) Common Weakness Scoring System (CWSS)

Fig. 7 CWSS scoring system

 CWSS is a framework for scoring the severity of CWE. CVS
S evaluates the CVE with three metrics, and CWSS also evalua
tes the CWE with three metrics as shown in figure 7. The first
metric is the Base Finding Metric Group, which consists of sub
-scales such as the impact of weakness and authority level obtai
ned by an attack on a weakness. The second metric is the Attac
k Surface Metric Group, which is composed of sub-scales inclu
ding scoring authority level and possible locations to attack we
akness. The last metric is the environmental metric, which has
sub-scales to score the difficulty of finding weaknesses, potenti
al of attack, and the business impacts of an attack. Similar to th
e CVSS scoring system, the CWSS severity score is obtained b
y successive calculation of three metrics, but the final score has
 a value between 0.0 and 100, while the CVSS has a value bet
ween 0.0 and 10. The version of CWSS has been updated CWS
S v0.1 to CWSS v0.8 at present [16].

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 32

E. VDM
VDM is a useful tool for the quantitative analysis of software
security vulnerabilities. It was started on the basis of the
Software Reliability Model (SRM). The SRM assumes that the
reliability of the program is based on the number of errors the
program has. Depending on the detection and removal of errors,
system’s errors may be reduced enough to make the system
more reliable.

 The SRM is used to predict the number of errors remaining in
the system and when they are to be generated. This prediction
may be used to measure the amount of reliability tests required
[17]. Thus, the SRM uses statistical methods to detect errors
during testing and operation to predict the reliability of the
products [18]. Applying the SRM to vulnerability data has not
been done for years. Alhazmi and Malaiya (2005) proposed the
term VDM applying the SRM to vulnerability data [19].

 We can predict the cumulative number and the detection rate
of vulnerability through VDM. This also makes it possible to
measure the time and resources necessary to maintain the
system, to estimate the required time for quality assurance, and
to compare similar systems.

 VDM can be classified into two models. The first, the
Time-Based Model, is used to predict the cumulative number of
vulnerabilities over time. Time-Based Models have been
studied as follows:The Anderson Thermodynamic Model (AT)
proposed by Anderson [20], the Rescorla Quadratic Model
(RQ) and the Rescorla Exponential Model (RE) proposed by
Rescorla [21], the Logarithmic Poisson Model (LP) proposed
by Musa and Okumoto [22], and the Alhazmi and Malaiya
Logistic model (AML) proposed by Alhazmi and Malaiya [23].
The second, the Effort-Based Model is used to predict the
cumulative number of vulnerabilities based on the number of
users and market share. Alhazmi and Malaiya proposed
Alhazmi and Malaiya Effort-Based model (AME) [25].

 In this paper, we did not examine the application of the
Effort-Based Model because it would have been difficult to
collect the objective data which would have included the
number of product users, and the market share.

III. EMPIRICAL STUDY

A. VDM Models for DBMS
In this paper, the vulnerability data of the five DBMSs
(ORACLE DATABASE SERVER, MYSQL, MS-SQL
SERVER, POSTGRE-SQL, and DB2) were collected up to
May 1, 2013 from the NVD. These DBMSs were ranked from
first place to fifth places according http://www.db-engines.com/
on May 1, 2013 [24].

Alhazmi and Malaiya applied all the existing VDMs to
targeting major Operating Systems. Then, in order to measure
the difference between the observed value and the actual model,
we performed the chi-square goodness of fit test. The results
showed that AML is the most significant in many Operating
Systems [25]. Therefore, in this paper, we applied the AML to
the collected vulnerability data. In addition, for comparison, we
applied the Linear Model (LM), estimated by linear regression
analysis. Then, through the chi-square goodness of fit test, we
tested the models in how close they were to the actual

observations. The data used in this test was comprised of
quarterly accumulated vulnerabilities.

 AML is based on an S-shaped behavior that can be divided
into three phases. The first is the learning phase. In this
phase, hackers are interested in newly released software. They
learn about the software and start reporting vulnerabilities. The
second phase is the linear phase. In this phase, hackers
understand the software and market acceptance of software gets
increased. Thus, reporting of the software’s vulnerabilities rises
linearly. The third is the saturation phase. In this phase, simple
vulnerabilities have been found. In addition new versions of
software are released so that hacker’s is drawn to them. Finally,
the number of cumulative vulnerabilities decreases.

)(Ω−Ω=
Ω BA

dt
d

 (1)

1
)(

+
=Ω −ABtBCe

Bt (2)

 Equation (2) is AML. It is obtained by solving a differential
equation of (1). Equation (1) is composed of two factors
(A , B). A is the increasing rate of vulnerabilities and B is
the total number of accumulated vulnerabilities that will
eventually be found.
 Ω is the cumulated number of vulnerabilities. Where C is a
constant introduced while solving (1), t = 0 initially, and A , B
are empirically determined from the recorded data [23].

Fig. 8 ORACLE DATABASE SERVER fitted to the models

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 33

Fig. 9 MYSQL fitted to the models

Fig. 10 MS-SQL SERVER fitted to the models

Fig. 11 MS-SQL SERVER fitted to the models

Fig. 12 DB2 fitted to the models

 Figures 8, 9, 10, 11, and 12 are graphs that were obtained by

applying the VDM to vulnerabilities of MS-SQL SERVER and
DB2 respectively. The dotted line shows the actual quarterly

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 34

accumulated vulnerabilities. The solid and dashed lines are
models estimated by applying the AML and LM to the data.
Figure 8 shows a graph of the ORACLE DATABASE
SERVER’s 328 vulnerabilities from the third quarter, 1999 to
the second quarter, 2013. Figure 9 shows a graph of the
MYSQL‘s 193 vulnerabilities from the firth quarter, 1998 to the
second quarter, 2013. Figure 10 shows a graph of the MS-SQL
SERVER’s 73 vulnerabilities from the second quarter, 1998 to
the fourth quarter, 2012. Figure 11 shows a graph of the
POSTGRE-SQL‘s 70 vulnerabilities from the firth quarter,
1999 to the second quarter, 2013. Figure 12 shows the DB2’s 90
vulnerabilities from the third quarter, 2004 to the second
quarter, 2013.
 Figure 9 shows the exponential behavior. Figure 10 shows the
S-shaped behavior of AML, but the vulnerabilities increased
rapidly in 2000, 2002, 2009, and 2010 instead of steadily.
However, in Figure 8, Figure 11, and Figure 12, these can be
seen that the models and the actual data are almost identical.

B. Chi-square Goodness of fit test

Table 1. AML Chi-square Goodness of fit test

 DF Chi-square
Chi-square

critical
(5%)

P-value Result

ORACLE
DATABASE

SERVER
55 96.58969177 85.749 0.00045217 N/S

MYSQL 58 120.6242366 89.477 0.00000272 N/S

MS-SQL
SERVER 58 95.46324599 89.477 0.00141685 N/S

POSTGRE-SQL 54 28.66034354 84.502 0.99819694 S

DB2 35 22.76729623 60.275 0.94479405 S

Table 2. LM Chi-square Goodness of fit test

 DF Chi-square
Chi-square

critical
(5%)

P-value Result

ORACLE
DATABASE

SERVER
55 1288.424185 85.749 2.2931E-233 N/S

MYSQL 58 272.7755515 89.477 1.43185E-29 N/S

MS-SQL
SERVER 58 118.5453287 89.477 4.7932E-06 N/S

POSTGRE-SQL 54 88.21977088 84.502 0.002264418 N/S

DB2 35 144.0919039 60.275 3.46329E-15 N/S

 We used the chi-square goodness of fit test to determine
whether or not the expected values obtained by AML fit the
observed values. It was performed with a significance level at
5%. When the obtained chi-square value was below the
chi-square critical value, the model fit the data [26]. However, if
the obtained chi-square value was higher than the chi-square
critical value, the model did not fit the data.

 Table 1 shows the results of the ORACLE DATABASE
SERVER, MYSQL, and MS-SQL SERVER were
insignificant, but the result of the POSTGRE-SQL and DB2
were significant. On the other hand, Table 2 shows the results of
performing the chi-square goodness of fit test by applying LM
showed that not all of the models were significant.

IV. CONCLUSIONS
In this study, we examine the vulnerability management

systems of major countries and vulnerability standards of the
United States that are utilized in general. Also we used VDM
analysis as a quantitative method of analyzing software security
vulnerabilities. We collected five DBMS vulnerabilities from
the NVD for empirical research. The collected data on
vulnerabilities was accumulated quarterly vulnerabilities and
shown in the graphs. Since then AML and LM were applied to
the data and compared to each other through the chi-square
goodness of fit test. The results indicated that AML is more
significant than LM.
The models of DB2 and POSTGRE-SQL products were shown
to be significant through the application of the AML. It was also
shown that they have a variety of uses. By predicting the
cumulative number over the model, we can make a purchase
decision of DBMS. In addition, the development team of the
vendors can use the models for manpower allocation and patch
schedules.

REFERENCES
[1] Chunguan, K., Qing, M., Hua, C., Analysis of Software Vulnerability, in

Proc. Of the 5th WSEAS International Conference on Information
Security and Privacy, 2006, pp.218-223.

[2] Giovanni, C., Taihoon, K., Seoksoo, K., Improving SCADA Control
Systems Security with Software Vulnerability Analysis, in Proc. Of the
12th WSEAS International Conference on Automatic Control,
Modelling & Simulation, 2010, pp. 409-414.

[3] Alhazmi, O. H., Malaiya, Y. K., Ray, I., Measuring, Analyzing and
Predicting Security Vulnerabilities in Software Systems, Computers &
Security, Vol.26, No.3, 2007, pp. 219–228.

[4] Krsul, I. V., Software Vulnerability Analysis, Ph.D. Dissertation,
Computer Sciences Department, Purdue University, 1998.

[5] Pfleeger, C. P., Security in Computing, Prentice-Hall, 1997.
[6] Mehrez, E., Henda, B. G., Addressing Software Application Security

Issues, in Proc. Of the 10th WSEAS International Conference on
Computers, 2006, pp. 362-367.

[7] John, T. C., Vulnerability Disclosure Framework : Final Report and
Recommendations by the council, National Infrastructure Advisory
Council, 2004.

[8] Dongjin, k., Sungje, C., An analysis of Domestic Foreign Security
Vulnerability Management Systems based on a National Vulnerability
Database, Internet and Information Security, Korea, 2010, pp.130-147.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 35

[9] A study on Construction of a Vulnerability Management System for
New Information Technologies, Industry Academic Cooperation
Foundation of Dankook University, 2010.

[10] http://cve.mitre.org/about/index.html, accessed on Oct 1, 2013.
[11] http://www.cvedetails.com, accessed on Nov 2, 2013.
[12] http://cve.mitre.org/cve/identifiers/syntaxchange.html, accessed on Oct

1, 2013.
[13] http://www.first.org/cvss/cvss-guide, accessed on Oct 1, 2013.
[14] http://www.first.org/cvss/history, accessed on Oct 1, 2013.
[15] http://cwe.mitre.org/data/lists/2000.html, accessed on Nov 2, 2013.
[16] http://cwe.mitre.org/cwss/index.html, accessed on Oct 1, 2013.
[17] Ozment, A., Vulnerability Discovery and Software Security,

unpublished Ph.D. Dissertation, Computer Laboratory Computer
Security Group & Magdalene College, University of Cambridge, 2007.

[18] AIAA/ANSI, 1993. Recommended Practice: Software Reliability.
ANSI.ISBN 1-56347-024-1. R-013-1992, pp. 26-27, 37 and 67.

[19] Alhazmi, O. H., Malaiya, Y. K., Modeling the vulnerability discovery
process, in Proc. Of the 16th IEEE International Symposium on Software
Reliability Engineering, 2005. pp. 129-138.

[20] Anderson R. J., Security in open versus closed systems - the dance of
Boltzmann, Coase and Moore, int. Conf. on Open Source Software:
Economics, Law and Policy, 2002, pp. 1-15.

[21] Rescola E., Is finding security holes a good idea? , Security and
Privacy, Vol.3, No.1, 2005, pp. 1 -19.

[22] Musa J. D., Okumoto K., A logarithmic Poisson execution time model
for software reliability measurement, in Proc. 7th International
Conference on Software Engineering, 1984, pp. 230-238.

[23] Alhazmi, O. H., Malaiya, Y. K., Quantitative vulnerability assessment of
systems software, In Proc. of the IEEE Reliability and Maintainability
Symposium (RAMS'05), 2005, pp. 615.

[24] http://db-engines.com/en/ranking, accessed on May 1, 2013.
[25] Alhazmi, O. H., Malaiya, Y. K., Application of vulnerability discovery

models to Major Operating Systems, in Proc. Of the IEEE transactions
on reliability, 2008, pp. 14-22.

[26] Shahabuddin,, F. A. A., Kamarulzaman, I., Abdull, A. J., On The
Comparison of Several Goodness of Fit Tests:With Application to Wind
Speed Data, in Proc. 3rd WSEAS Int. Conf. on Renewable Energy
Sources, 2009, pp. 394-398.

Du Sun Yoon is a master course student at the Department of Management
Information Systems at Chungbuk National University. He received his
bachelor in International Business from Chungbuk National University. His
research areas include vulnerability management and security in software.

Tae-Sung Kim is a professor at the Department of Management Information
Systems at Chungbuk National University. He received his bachelor, master,
and doctoral degrees in Management Science from Korea Advanced Institute of
Science and Technology (KAIST). He worked for Electronics and
Telecommunications Research Institute (ETRI) as a Senior Researcher for
more than three years. Also, he worked as a visiting professor at the Department
of Business Information System and Operation Management, the University of
North Carolina at Charlotte and a visiting research scholar at the School of
Computing, Informatics and Decision Systems Engineering, Arizona State
University. His research areas include management and policy issues in
telecommunications and information security. His recent research papers have
appeared in international journals, such as European Journal of Operational
Research, ETRI Journal, Journal of the Operations Research Society, Journal of
Intelligent Manufacturing, Operations Research Letters, and Stochastic
Analysis and Applications.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 8, 2014

ISSN: 1998-4480 36

http://cve.mitre.org/about/index.html
http://cve.mitre.org/cve/identifiers/syntaxchange.html
http://www.first.org/cvss/cvss-guide
http://www.first.org/cvss/history
http://cwe.mitre.org/data/lists/2000.html
http://cwe.mitre.org/cwss/index.html
http://db-engines.com/en/ranking

