
 

 

 

Abstract— just as data becomes important with regard to safety and 
security as well as effectiveness associated with information transfer, 
from a source to a destination node, the particular issue for how this 
data could possibly be compacted in a message for transfer can be 
another vital issue. In this paper we show up an experiment where 
arbitrary parameters could be chosen within a probabilistic manner of 
certainty and uncertainty. We explain results of the test base on the 
theory of Shannon entropy of classical information. This means a 
measured condition will have significantly less details in it because of 
the guarantee of pure states, the entropy of a pure state is zero. The 
higher the entropy the higher qubits can be enclosed in a message. 
We evaluate the way our test provide chances of retrieving more 
information out of a variable that has less probability to be selected, 
consequently recording a high number of entropy than the variable 
with a higher probability. We also show how the Shannon reverse 
theorem of both the classical and quantum channel could be 
simulated from noisy channel to noiseless one and vice versa. 

 

Keywords—Quantum information theory; quantum data 
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I. INTRODUCTION 
Traditionally a model of communication comprises sending 
and receiving nodes and a medium within which information 
is transferred (in our case quantum channel). 
A particular channel transmitted some symbols as input which 
in connection also produces other symbols as output, the input 
and output symbols are different, and then there is a need for 
an encoding procedure, to ensure the effectiveness of the 
transmission[1, 2]. The encoding process involves the 
assignment of precise word to each input symbols, that this 
word has a built-in relation with output alphabet[3].  
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Now the information senThis also applies to quantum 
information theory but with some changes as stated in[4]. A 
quantum state was assigned to the symbol generated by the 
source. Unlike traditional model the symbol of the 
input/output alphabet of the channel is 2D Hilbert space 
known as qubit [5]. The source encoding was also represented 
in qubit. There is a super operator representing the alteration 
of the transmitted information. But for our case we 
deliberately introduce noisy behavior in our channel due to the 
environmental effect on the system upon interaction. When the 
channels are free of error, each symbol is attached to a pure 
state. While a mixed state is associated to the symbol if the 
channel is noisy. 

II. LITERATURE REVIEW  

In this section the theoretical idea of information transfers in 
both classical and quantum information theories are discussed. 
 

A. Shannon entropy as a concept of information transfer 
This will be better understood if we start with a real life 

example. 
 
Assuming we have a bag that contains 10 fruits and if nine 

of the fruits are apples and one is an orange, by extracting one 
fruit at random. Let’s assume the random extraction as X. The 
result is measured by assigning the value 1 if the fruit is apple 
and value 0 if the fruit is orange. 

 

𝑃𝑃(𝑥𝑥=1) =
9

10
= 0.9 

𝑃𝑃(𝑥𝑥=0) =
1

10
= 0.1 

 
The expected value of finding the variable 𝑋𝑋 can be 

calculated as 
 

𝐸𝐸(𝑋𝑋) = 1�𝑃𝑃(𝑥𝑥=1)� + 0�𝑃𝑃(𝑥𝑥=0)�              (1.0) 
𝐸𝐸(𝑋𝑋) = 1(0.9) + 0(0.1) = 0.9 

 
The amount of information for the first event is defined as 
 

𝐼𝐼𝑖𝑖 = − log2�𝑃𝑃(𝑥𝑥𝑖𝑖)�                                (1.1)  
                                                 
 in our case the two values of information will be 
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𝐼𝐼1 = − log2(0.9) = 0.15 
𝐼𝐼0 = − log2(0.1) = 3.32 

 
Now there is little anomaly that the information associated 

with having orange is much higher than that of having apple 
despite having the highest probability [6]. Therefore the idea 
of random variable means the exact outcome is not known, 
and still the amount of information retrieved after the 
experiment is not known, due to the reason that every possible 
result has associated a different amount of information[3]. 
This is quite a brilliant idea that also gives a way in defining 
the amount of information acquired. 

 for every X, 
 

𝑋𝑋 → �𝑥𝑥1, 𝑥𝑥2, … . . , 𝑥𝑥𝑛𝑛� 
Lies a probability 𝑃𝑃 → �𝑝𝑝1,𝑝𝑝2, … … , 𝑝𝑝𝑛𝑛� 
That provides information 𝐼𝐼 → �𝐼𝐼1,𝐼𝐼2, … . . 𝐼𝐼𝑛𝑛 � 
 

   Now the amount of information associated with 𝑋𝑋 is given 
as (𝑋𝑋). Considering our example the 𝐼𝐼(𝑋𝑋) is 0.15 with 
probability 0.9 and 3.32 with probability 0.1. 
This is an important new variable which is not dependent on 
the value of 𝑋𝑋. It relies on the probability of those values. 
 The expected value of  
 

𝐼𝐼(𝑋𝑋) is 𝐸𝐸(𝐼𝐼(𝑋𝑋)) ≡ 𝐻𝐻(𝑋𝑋) 
𝐻𝐻(𝑋𝑋) = 0.15 × 0.9 + 3.32 × 0.1 = 0.467 

 
And that is the expected value of the amount of information 
obtained from the experiment by the random variable 𝑋𝑋. 
In general the analytic expression of this value known as 
Shannon entropy can be written as [7] 
 

𝐻𝐻(𝑋𝑋) = 𝐸𝐸�𝐼𝐼(𝑋𝑋)� = �𝑃𝑃(𝑥𝑥𝑖𝑖) log2(𝑃𝑃(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

      (1.2) 

                    

B. Von Neumann Entropy 
We learn from Shannon entropy 𝐻𝐻(𝑋𝑋) that it is the number 

of incompressible bits of information performed for each 
letter[7]. It is known that the mutual information [7] 

 
𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋 ∣ 𝑌𝑌 )

= 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌 ∣ 𝑋𝑋 )                                 (1.3) 
 

is the number of bits per character  about 𝑋𝑋 that we can 
acquire by reading 𝑌𝑌 (or the other way round). If the 
conditional probability characterized by a noisy channel, then 
𝐼𝐼(𝑋𝑋;𝑌𝑌) is the amount of information for each character that 
can be transmitted through the channel[8]. Now assuming we 
have a source that generates data (messages) of length n, and 
each character is generated from a set of quantum states. 
These quantum states 𝜌𝜌𝑥𝑥  are associated with probability𝑃𝑃𝑥𝑥 . As 
it is clearly discussed in[9] that the probability of any 
measured outcome of each character from the 𝜌𝜌𝑥𝑥  where there 
is no prior knowledge of which character was transmitted can 
be written as [10] 

 
𝜌𝜌 = �𝑃𝑃𝑥𝑥𝜌𝜌𝑥𝑥

𝑥𝑥

                                      (1.4) 

 
for the positive operator valued measure[11] (POVM) 𝐹𝐹𝑎𝑎   
 

𝑃𝑃(𝑎𝑎) = 𝑡𝑡𝑡𝑡(𝐹𝐹𝑎𝑎𝜌𝜌) 
 
We can now define the von Neumann entropy as 
 

𝑆𝑆(𝜌𝜌) = −𝑡𝑡𝑡𝑡(𝜌𝜌 log𝜌𝜌)                             (1.5) 
 
By choosing orthonormal basis {∣ 𝑎𝑎 >} that diagonalizes 𝜌𝜌 
 

𝜌𝜌 = �𝜆𝜆𝑎𝑎 ∣ 𝑎𝑎 >< 𝑎𝑎 ∣, 𝜆𝜆𝑎𝑎 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
𝑎𝑎

 

 
Then 𝑆𝑆(𝜌𝜌) = 𝐻𝐻(𝐴𝐴)  
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻(𝐴𝐴)𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜     
 

𝐴𝐴 = {𝑎𝑎, 𝜆𝜆𝑎𝑎} 
 
In a situation where the pure state (mutual and orthogonal) 
have the signal alphabet then the equation source becomes a 
classical source; 
 

𝑆𝑆(𝜌𝜌) = 𝐻𝐻(𝑋𝑋)                                         (1.6) 
 
The more the signal state 𝜌𝜌 becomes commuted mutually, the 
more interesting the quantum source becomes. Now our bigger 
argument is that von Neumann and Shannon entropies 
quantify the incompressible information content of the 
quantum source and classical source respectively [12]. For the 
quantum source we refer to the signal states that are pure. In 
this regard the von Neumann entropy is the interpretation of 
quantum information theory and classical for Shannon 
entropy. 

C. Fidelity 
Assuming a pure state is transmitted through a quantum 

channel and the pure state is the density operator[11, 13] 
 

𝜌𝜌� =∣ 𝜑𝜑 >< 𝜑𝜑 ∣                                       (1.7) 
 
Then the super operator that produces the alteration 

characterizes this 
 

𝜌𝜌�′ = $(𝜌𝜌�)                                            (1.8) 
 
Now the fidelity function is defined by 
 

𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) =< 𝜑𝜑 ∣ 𝜌𝜌�′ ∣ 𝜑𝜑 >                             (1.9) 
 
If the fidelity is closer to 1 we expect better transmission 

and the application of fidelity is limited to pure states. And for 
the mixed states is even more complicated [7]. 
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𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) = 𝑡𝑡𝑡𝑡2 �(�𝜌𝜌�𝜌𝜌�′  �𝜌𝜌�)1
2� �                       (2.0) 

 
where 𝜌𝜌� and 𝜌𝜌�′  are the mixed states, now the fidelity 

equation can be can be re-written as 
 

𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) = max  |< 𝜙𝜙 ∣ 𝜙𝜙′ >| 2                  (2.1) 
 
where 𝜙𝜙 and 𝜙𝜙′are purification of  𝜌𝜌� and 𝜌𝜌�′  respectively. 
Now the fidelity being an important factor the following are 

always true about it. 
 
1. It ranges between 0 and 1, for fidelity to be 1  𝜌𝜌� = 𝜌𝜌�′  
2. 𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) = 𝐹𝐹(𝜌𝜌�′ ,𝜌𝜌�) 
3. Given two real positive numbers 𝑎𝑎1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎2 such that 

their summation is 1 then 
𝐹𝐹(𝜌𝜌�𝑃𝑃1𝜌𝜌�1 + 𝑃𝑃2𝜌𝜌�2) ≥ 𝑃𝑃1𝐹𝐹(𝜌𝜌�,𝜌𝜌�1) + 𝑃𝑃2𝐹𝐹(𝜌𝜌�, )𝜌𝜌�2  
also; 𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) ≥ 𝑡𝑡𝑡𝑡(𝜌𝜌�𝜌𝜌�′). 

4. If 𝜌𝜌� is pure state 𝜌𝜌� =∣ �𝜑𝜑⟩⟨𝜑𝜑� ∣, then 
𝐹𝐹(𝜌𝜌�,𝜌𝜌�′) =< 𝜑𝜑 ∣ 𝜌𝜌�′ ∣ 𝜑𝜑 >= 𝑡𝑡𝑡𝑡(𝜌𝜌�𝜌𝜌�′) 

5. 𝐹𝐹(𝜌𝜌�1 ⊗ 𝜌𝜌�2,𝜌𝜌�3 ⊗ 𝜌𝜌�4) = 𝐹𝐹(𝜌𝜌�1,𝜌𝜌�3)𝐹𝐹(𝜌𝜌�2,𝜌𝜌� 4)   
6. If 𝜌𝜌�1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌�2 are transformed to 𝜌𝜌�1

′  𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌�2
′   respectively 

it implies that 
𝐹𝐹(𝜌𝜌�1

′  ,𝜌𝜌�2
′  ) ≥ 𝐹𝐹(𝜌𝜌�1,𝜌𝜌�2) which means the fidelity of the 

transformed state is greater or equal to the pure state 
depending on the value of 𝜌𝜌� 𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌�′ . 

D.  Schumacher’s Coding Theorem   
For a set of pure quantum state 
 {∣ 𝜑𝜑1 >, ∣ 𝜑𝜑2 >, … . . , ∣ 𝜑𝜑𝑥𝑥 >} with probabilities 

�𝑃𝑃1,𝑃𝑃2,…..𝑃𝑃𝑥𝑥� the symbol from the source depends on the 
density operator  

 
𝜌𝜌� = � lim

𝑥𝑥
𝑃𝑃𝑥𝑥 ∣ 𝜑𝜑𝑥𝑥 >∣ 𝜑𝜑𝑥𝑥 >                      (2.2) 

 
 Similarly, a series comprising N symbols is described using 

the tonsorial product formalism as 
 

𝜌𝜌�𝑁𝑁 = 𝜌𝜌� ⊗ … . .⊗𝜌𝜌�                                  (2.3) 
 
For a given two positive real numbers 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀 and 

sequence of N symbols, each state is generated by the source 
with 𝑆𝑆(𝜌𝜌�) + 𝛿𝛿 qubits keeping the fidelity as high as possible 
i.e 𝐹𝐹 > 1 − 𝛿𝛿. 

E. Quantum Channel without Noise  
Now assume that we want to send conventional information 

triggered from a source with entropy 𝐻𝐻(𝑋𝑋) through an error 
free quantum channel. For a successful transmission of 
information it is obvious that a quantum source is needed. To 
proceed with the process an application is need to be prepared 
so as to take care of the characters of the original input 
alphabet together with their probabilities with a complete set 
of quantum state [7].  

 
But the 𝑋𝑋 becomes more uncertain when trying to obtain a 

good measurement for the transmitted quantum states. To 
overcome this, the concept of accessible information 𝐴𝐴(𝐼𝐼) is 
introduced, and it is defined as maximum information in bits 

that could be recovered, when the results of a measurement 
that give the highest information carried in a quantum state. 

 
𝐴𝐴(𝐼𝐼) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜍𝜍𝐼𝐼(𝑋𝑋,𝑌𝑌)                                  (2.4) 

 
Where 𝜍𝜍 is an operator and also a variable that is obtained 

randomly by measuring the state and their corresponding 
probabilities, 𝐼𝐼(𝑋𝑋,𝑌𝑌) represents the classical mutual 
information between 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌. The set of the quantum states 
are orthogonal. 

F. Quantum Channel with Noise  
The way of retrieving information in a noisy and un-noisy 
quantum channel is somehow identical but the only difference 
is that for the noisy quantum channel it is allowed that the 
input information of the quantum source is a static mixture[7]. 
Hence the pure states are transformed into mixed states due to 
the de coherence effect. We can model this channel with a 
super operator ₦ which has effect directly on the input 
alphabet source. 
 

∣ 𝜑𝜑𝑥𝑥 >∣ 𝜑𝜑𝑥𝑥 >→ ₦(∣ 𝜑𝜑𝑥𝑥 >< 𝜑𝜑𝑥𝑥 = 𝜌𝜌�𝑥𝑥                (2.5) 
 
Capacity of the Channels: 
 
The quantum channel differs from classical one in terms of 
capacities. This resulted as a fact that the quantum channel has 
great dynamic abilities if we consider the transfer of 
information via the quantum channel, the variety of capacities 
comes up from numerous factors[14]: 
 

- Type of information transfer in both quantum and 
classical channels 

- Type of the input state either entangled or non-
entangled states 

- The measurement carried on the output , that is either 
single or collective 

- Availability of subordinate resources i.e. initial state 
between the sender and receiver and if the 
communication between them is allowed classically. 

Thus the capacity of a quantum channel is known as the ability 
of the channel to transfer information without the conventional 
communication and the ancillary resources[15]. Also quantum 
channel can establish an entanglement with the sender and the 
receiver which may lead as a resource for teleportation [16, 
17], and this equal the capacity of the channel in transferring 
the quantum information. 
 
These capacities were initially determined based on the 
asymptotic uses of the channel, with the assumption that the 
channel is memoryless, and also the noise on the input to the 
channel was assume to be not connected. Even though there is 
no justification of the made assumption and the asymptotic 
scenario. 
 
The possibility of reaching a perfect or accurate information 
transmission or an entangled generated information over 
single or limited number of uses is in general focus and not 
feasible.  
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Hence the need for a probability error that is not zero. Thus 
made it possible to consider the capacities under the condition 
that the chance for this error is at most a value that is greater 
or equal to zero. 
 

𝜀𝜀 ≥ 0 
Shannon establishes a phenomenon in which a noisy quantum 
channel (memoryless) can be able to simulate a noiseless 
binary channel [16] by applying coding theorem of noisy 
channel [18] and also proves that the asymptotic effectiveness 
of the quantum channel can be shown by the following 
expression: 
 

𝐶𝐶(𝑁𝑁) = max 𝐼𝐼(𝑋𝑋;𝑌𝑌) 
= max{𝐻𝐻(𝑋𝑋) + 𝐻𝐻�𝑌𝑌 − 𝐻𝐻(𝑋𝑋𝑋𝑋)�} 

 
Where H is the entropy, X is the random input variable, Y = 
N(X) which is the induced output variable, C is the capacity of 
the channel and N is the channel. 
 
The classical reserved Shannon theorem: as discussed in [19] 
it says if in the transmission there is sharing of an infinite 
random bits between sender and receiver for N channels of 
capacity C, then  we expect 𝐶𝐶𝑛𝑛 + 0(𝑛𝑛) uses of noiseless binary 
channel to be sufficient to simulate n uses of the channel. 
 
Let’s consider a noisy quantum channel that is been simulated 
by a noiseless one, which is the reversed of the classical 
theorem where the noisy channels simulate the noiseless. The 
reversed case can take place having equal capacities if the 
random information is shared. This means the noisy channels 
are equivalent asymptotically. 
 
This will greatly ease the complication in quantum channel 
capacity if the reversed theorem became true as: It says “the 
quantum channel can be simulated asymptotically provided 
the previous entangled state and amount of non-quantum 
communications equals to its assisted capacity” [16, 19]. 
Therefore in a situation where there are many entangled states, 
all quantum channels are categorized based on quality 
equivalence and quantitatively characterized by a single 
parameter. 
 
C.H Bennett et-al where able to show this theorem as follows: 
 
Let N be the memoryless classical channel, X be the random 
variable (input), Y be N(X) induced output 
This implies that I(X; Y) will indicate mutual relationship 
between Y and X. and let’s assume NF represent the feedback 
copy of receiver’s output. It is trivial that 
 

𝑁𝑁 ≤ 𝑁𝑁𝐹𝐹  𝑎𝑎𝑎𝑎𝑎𝑎 (𝑁𝑁: 𝑝𝑝) ≤ 〈𝑁𝑁𝐹𝐹: 𝑝𝑝〉 
 
p is the input distribution for one use of a channel of input-
output mutual information. 
 
Quantum Reverse Shannon Theorem: 
 

Let N be a quantum channel from A→B or equivalently an 
isometric from A→BE and NF the feedback channel that 
results from given system E to the sender. If we are given an 
input density matrix ρA then entropy quantities such as I(R; B) 
or I(R; B)ρ refer to the state 
 

𝜑𝜑𝑅𝑅𝑅𝑅𝑅𝑅 = (𝐼𝐼𝑅𝑅 ⊗ 𝑁𝑁𝐴𝐴⟶𝐵𝐵𝐵𝐵)(Φ𝜌𝜌
𝑅𝑅𝑅𝑅) 

Where Φ𝜌𝜌  is any state satisfying Φ𝜌𝜌 = 𝜌𝜌 

G. Mathematical Values of  𝑆𝑆(𝜌𝜌) 

i. Purification:  
For a pure 𝜌𝜌  
 

⇒ 𝜌𝜌 =∣ 𝜑𝜑𝑥𝑥 >< 𝜑𝜑𝑥𝑥 ∣ 
 
Then 𝑆𝑆(𝜌𝜌) has to be zero 

ii. Variation: 
The unitary change of basis doesn’t affect any change in 

entropy 𝑆𝑆(𝜌𝜌) = 𝑆𝑆(𝑈𝑈𝑈𝑈𝑈𝑈−1) this is true because 𝑆𝑆(𝜌𝜌) depends 
on eigenvalues of 𝜌𝜌. 

iii. Maximum: 

For a value 𝑑𝑑 as non-vanishing eigenvalues, then,  
 

𝑆𝑆(𝜌𝜌) ≤ log𝐷𝐷 
 
This means the entropy is at highest when the non-zero 

eigenvalues are equal. 

iv. Concavity: 
For 𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, … 𝜆𝜆𝑛𝑛  ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆1 + 𝜆𝜆2 + ⋯+ 𝜆𝜆𝑛𝑛 = 1   

𝑆𝑆(𝜆𝜆1𝜌𝜌1 + ⋯+ 𝜆𝜆𝑛𝑛  𝜌𝜌𝑛𝑛 ≥ 𝜆𝜆1 𝑆𝑆(𝜌𝜌1) + ⋯𝜆𝜆𝑛𝑛  𝑆𝑆(𝜌𝜌𝑛𝑛) 
 
This shows the more we have less knowledge of how the 

state is generated the larger the von Neumann entropy 
becomes [20]. This is as the result of a concavity of the log 
function. 

v. Entropy Measurement: 
Suppose in a state 𝜌𝜌 we measure an observable 
 

𝐴𝐴 = � ∣ 𝑎𝑎𝑦𝑦 > 𝑎𝑎𝑦𝑦 < 𝑎𝑎𝑦𝑦 ∣
𝑦𝑦

                            (2.6) 

 
Such that 𝑎𝑎𝑦𝑦  has probability 
 

𝑃𝑃�𝑎𝑎𝑦𝑦� =< 𝑎𝑎𝑦𝑦 ∣ 𝑎𝑎𝑦𝑦 ∣ 𝑎𝑎𝑦𝑦 >                                 (2.7) 
 
Then Shannon entropy of the ensemble measurement 

outcomes [21] 
 

𝑌𝑌 = �𝑎𝑎𝑦𝑦 ,𝑃𝑃�𝑎𝑎𝑦𝑦��𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝐻𝐻(𝑌𝑌) ≥  𝑆𝑆(𝜌𝜌) 

 

H. Quantum Data Compression  
Let’s assume we have a long message of n characters and 
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each character in the ensemble pure state was chosen 
randomly.  

 
{∣ 𝜑𝜑𝑥𝑥 >,𝑃𝑃𝑥𝑥}, 
 

And we also assume that the states are not all mutually 
orthogonal 
Now each character is described by  
 

𝜌𝜌 = �𝑃𝑃𝑥𝑥 ∣ 𝜑𝜑𝑥𝑥 >< 𝜑𝜑𝑥𝑥 ∣
𝑥𝑥

                             (2.8) 

 
And generally the whole message has  
 

𝜌𝜌𝑁𝑁 = 𝜌𝜌 ⊗ … . .⊗𝜌𝜌                                     (2.9) 
 
The challenge here is to find a quantum code that will make 

us to compress the message and thereby reducing the Hilbert 
space to smaller, without compromising the message [22]. 
This compression of data was achieved optimally by ben 
Schumacher. The best compression that did not temper with 
the fidelity as 𝑛𝑛 → ∞ is this of Hilbert space with 

 
log(𝑑𝑑𝑑𝑑𝑑𝑑ℋ) = 𝑛𝑛𝑛𝑛(𝜌𝜌)                                         (3.0) 

 
where von Neumann entropy here is the number of qubit of 

quantum information in each character of a message. 
For a message to have n photons and needed to be 

compressed. 
 

𝑚𝑚 = 𝑛𝑛𝑛𝑛(𝜌𝜌)                                                 (3.1) 

III. RESULTS AND DISCUSSION 
In this section analysis of the simple picking experiment was 
given and also the interpretation of information compressed in 
a single message for transfer. In the experiment we performed 
a random picking of the fruits one at a time, each time 
measuring the probability for the occurrence of each item. The 
amount of information after each picking is also measured and 
also the entropy is interpreted in each case. 

TABLE I. RESULTS FOR THE EXPERIMENT  

 
 
Table I shows the values of the probabilities p(x) orange 
which is the probability of picking orange and p(x) apple 
which is the probability of picking an apple, amount of 
information in orange I(orange) and I(apple) amount of 
information in apple and the entropies h(x) orange and h(x) 
apple for picking the fruits one at a time, this shows the 

certainty and the uncertainty of each event in trying to select  
either an orange or an apple. Therefore by the above 
interpretation the von Neumann entropy is the amount of 
information in picking each of the fruit. 
 

 
Fig 1. Probability of picking an orange 

 
Fig. 1 shows how probability of picking an orange keeps 
changing after each event for ten times with the assumption 
that each time it is an orange that is picked. That is why we 
have uncertainty at each event, thus providing more 
information.   
 

 
Fig 2. Probability of picking an apple 

Fig 2 shows how probability of picking an apple remain 
constant after the first event, though providing less 
information due to the certainty of the outcomes. The 
assumption here is that the first picking was apple therefore all 
the remaining chances are certainly for orange therefore 
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minimal amount of information is expected.   
 

 
Fig 3. Entropy measure of picking orange 

 
Fig 3 shows the entropy measure of uncertainty in picking the 
random variable orange, the measure keep changing while 
rising until it maximum, then it comes down to zero. Meaning 
that, it is only at the last event that certainty comes up. 
Therefore the message here could contain more information 
compressed as compared to Fig 4 below. 
 

 
Fig 4. Entropy measure of picking an apple 

 
Fig 4 shows that the amount of information that can be 
compressed in a message is very little because is at only the 
first prediction that it has a measure but all other events are 
certain therefore the entropy collapsed. 
 

 
Fig 5. Measure of amount of information in orange 

 
Fig 5 shows the measure of amount of information gathered 
considering the choice of orange, the channel will contain 
more information as the probability decreases. 
 

 
Fig 6. Measure of amount of information apple 

 
Fig 6 shows the measure of amount of information that can be 
obtain in picking an apple. For the first nine events the 
information was zero because all this while the probability 
was at maximum thereby producing less information.  
 

IV. CONCLUSION AND FUTURE WORK 
We were able to show how information can be maximum or 

minimum in an event. Such events were assumed to be the 
messages and the informations obtained in picking the fruits 
are the qubits contained in those messages. The qubits are 
ready for transmission using the probability experiment and 
applying the theory of Shannon entropy of classical 
information. Also we were able to show that the noisy 
classical or quantum channels can be used to simulate their 
noiseless counterpart channels and vice versa by applying the 
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Shannon reverse theorem of both classical and quantum 
channels. This is an opener to start for the quantum 
information transfer and message compression. We will focus 
in our next work the number of qubit of quantum information 
contains in each character of a message, which is the von 
Neumann entropy. The known results of the Shannon entropy 
will give us a lead. 
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