
 

 

 

Abstract - This paper focuses on the analysis and diagnosis of 

communication between clients and the physical hardware of remote 

laboratories based on ISES (Internet School Experimental System). 

Many different types of connections are allocated to use comfortably 

the real-time experimenting in a remote laboratory. Each ISES unit 

includes some communication mechanism to provide data to 

underling or superior unit to process it in a given way. The main 

reason for proper communication is to deliver control commands 

from clients to the physical hardware to perform preset tasks in order 

to observe, measure and obtain real physical or electrical phenomena 

in form of data. The ISES remote experiment provides clients a 

unique educational tool for the purpose of the desired phenomena 

understanding. This tool is particularly useful for distant students, 

who are often hampered to attend experimental courses. 

In the first chapter, the state of the art of the ISES remote 

experiment concept is introduced. In the next chapter, the basic 

analysis of the data communication, necessary for a cooperation of 

the units involved, i.e. physical hardware, Measureserver®, Internet 

and client, is presented. Further chapter proposes improvements of 

the most decisive communication segments. Three advanced 

diagnostic systems are introduced and used to prevent or significantly 

reduce occasional faults and anomalies. The first is the internal unit 

diagnosis, solving various communication faults inside the ISES 

remote experiment. The second one acts as the network traffic 

diagnosis, dealing with the detection, identification and 

quantification of anomalies, which can create congestion in network 

and may have an ill effect on the administrators or clients. As the 

third one, the cognitive fault diagnosis system is described with the 

aim of monitoring the distributed sensor network. It makes advantage 

of spatial and temporal relationship among sensor units connected to 

the ISES physical hardware to give sufficient information for failures 

reduction or avoidance. The last chapter summarizes all benefits of 

these diagnostic systems for ISES remote experiments reliability. 

 

Keywords - ISES, Measureserver®, physical hardware, remote 

experiment, communication protocol, transmission, diagnosis 

I. INTRODUCTION 

HE traditional methods of teaching, oriented on students at 

secondary schools and universities, are quite obsolete and 

not so broadly popular to understand taught scientific themes. 

The contemporary students demand higher level teaching 

methods, which help them to perceive phenomena in better 

way in the field of physics, biology, chemistry and electro-

engineering. Educational materials accessibility is important as 

well, especially for distant students who often prefer studying 

scientific themes via the Internet on their computers. These 

coveted advantages are provided by a remote experiment (RE) 

called e-laboratory. RE is built on ISES, which has been 

developed for educational purposes. The ISES is a complex 

tool for real-time operation, data acquisition, data processing 

and controlling physical hardware (HW). It is an open system 

consisting of the basic ISES hardware and ISES WIN software 

intended for a local experiment but it also has an option for the 

remote connection called ISES WEB Control Kit available 

anytime and anywhere. 

The RE based on ISES WEB Control Kit is perceived like 

the superstructure so called ISES remote experiment (ISES 

RE), which has been developed by Charles University in 

Prague. After some time, the ISES RE has been significantly 

improved on a higher level educational tool by Tomas Bata 

University in Zlín in cooperation with Charles University in 

Prague so called EASY REMOTE - ISES (ER-ISES) in order 

to simplify settings and usage for teachers. 

The ISES REs are categorized to several groups according 

to their complexity and the level of control as the basic, 

complex and scientific. Each RE consists of five cooperative 

units like is the physical HW (apparatus consisting of the ISES 

panel, meters, sensors and specific experimental devices 

generating given phenomena), Measureserver
®
, ImageServer, 

WebServer and WebClient. More technical details about the 

ISES RE are available in [1][2][15][16] and [17]. The 

clarifying scheme, including the communication relationships, 

is presented in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. STATE OF THE ART 

The ISES units dispose of adequate communication 

mechanisms to cooperate with neighboring units to deliver 
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Fig. 1 Arrangement of the ISES remote experiment [3] 
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requested information. Since many different types of data 

(signals and packets) are being processed and transmitted, so 

the functional concept implements the signal converting 

process and communication protocols. 

A. Physical hardware 

A low-level communication based principle is used between 

the ISES RE physical hardware modules and the AD/DA 

(Analog-to-Digital / Digital-to-Analog) convertor - 12 bits, 

time of conversion - 0.01 ms, installed as the PCI 1202 

interface card inside an administrative computer. This device 

converts a continuous physical quantity (voltage) to a digital 

number that represents the quantity's amplitude and performs 

the inverse operation back to the physical quantity. All the 

used modules of physical HW, including the specific sensors 

and AD/DA convertor, are demonstrated in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Measureserver
®

 unit 

The Measureserver
®
 (MS) is a significant software part of 

the ISES RE concept. It is perceived as a communication 

mediator between the physical HW and remote clients. The 

MS is constructed as the mathematical model used for 

designing of control programs by an external PSC program file 

to build a control and measurement logic. 

Towards the physical HW, the MS communicates in reality 

with a software driver of the AD/DA convertor. It is entirely 

digital process based on reading data (values) directly from 

particular pins and writing data to respective pins which are 

translated by the AD/DA convertor. These pins are perceived 

as the inputs and outputs located on the ISES board that allows 

connecting particular measuring sensors and devices into the 

system. The low-level operation is always ensured by the 

PCI1202CardPlugin.ldp plug-in (intercommunication driver) 

loaded by the ScriptablePlugin2.ldp plug-in, which exploits the 

first one for its internal functioning. The ScriptablePlugin2.ldp 

plug-in builds the ISES RE logic by a PSC program delivered 

to the system by a responsible administrator. This plug-in is 

able to load any intercommunication file within the MS 

startup, but presently, the PCI1202CardPlugin.ldp is only 

available. The CFG configuration file, as a necessary part of 

MS intended for initial settings includes a reference to the 

ScriptablePlugin2.ldp plug-in. A scheme of the data 

communication relationships among particular modules is 

described in Fig. 3. 

When data (control and measurement commands) come 

from a remote client to MS, the communication is realized by 

the TCP/IP (Transmission Control Protocol / Internet 

Protocol) protocol via the Internet and then goes to Intranet 

(local area network) in a building where the laboratory with 

ISES RE resides. Such the communication strictly requires a 

static public IP address of a computer hosting the MS and 

other important supporting services. 

All commands, incoming from the entered client and 

physical HW on the other side, are processed by the 

deterministic way in a finite-state machine (FSM) realized by 

two involved parser mechanisms. 

The first is the LR(1) parser that processes commands from 

the CFG configuration file for the purpose of the GUI 

(graphical user interface) setting. This parser is based on the 

static state transition tables called parsing tables, which codify 

the language grammar. These parsing tables are parameterized 

together with a lookahead terminal (lookahead establishes the 

maximum incoming tokens that the parser can use to decide, 

which rule it should use). More technical details, including 

several parsing examples, are available in [5] and [6]. 

The second one is the Recursive descent parser processing 

commands from the PSC program file in order to create 

internal data structures for ISES RE. The parser uses a general 

form of top-down parsing where backtracking may be 

involved. The parsing principle is based on the walking 

through a tree. More details, with a parsing example, are 

available in [7] and [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Web server 

This unit is called Nginx that comes into the process when 

client enters a web page of the ISES RE by typing an IP 

 
Fig. 2 ISES remote experiment including the AD/DA convertor card 

and a broad range of involved meters, sensors and probes [4] 

 
Fig. 3 Communication relationships among particular modules 

representing the ISES remote experiment 
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address or URL (Uniform Resource Locator) in any web 

browser (e.g. Firefox Mozilla, MS Explorer). Nginx is an open 

source reverse proxy server for HTTP, HTTPS, SMTP, POP3 

and IMAP protocols and a web server [9]. 

When a client enters the ISES RE, the Nginx starts 

negotiating with the client and establishes a direct data 

communication between the MS unit and Java applet called 

ConnectionHub. Every applet, imported on the web page by 

the Nginx, uses services of the ConnectionHub to 

communicate with the physical HW via the MS unit. 

D. Data network 

As mentioned previously, the ISES RE uses communication 

protocols to negotiate with clients. When a client enters an 

URL of the ISES RE in a web browser to reach the physical 

HW, the communication starts by using the Internet Protocol 

Suite. After establishing the connection, initial packets enter a 

local area network (LAN) in the building where the laboratory 

resides. In the LAN, the connection is realized by Ethernet to 

communicate with the MS unit. 

E. Client’s interface 

It is only one interface the clients can access the ISES 

physical hardware, therefore the web page's design and 

serviceability play important role as presented in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. ISES REMOTE EXPERIMENT DIAGNOSIS 

A diagnostic system poses an important part of every 

modern software and hardware application. Contemporary 

applications became too complex and they communicate 

usually with different subsystems, therefore administrators and 

clients should have a comfortable diagnostic tool to maintain 

functioning of such the applications. 

A. Internal units diagnosis 

The ISES RE concept has many deficiencies related to the 

communication among particular units. The most problematic 

point seems to be between the MS and physical HW where the 

involved AD/DA convertor is important. 

Presently, the MS sometimes loses connection with the 

ISES RE or even stops its functioning. This is a serious 

problem that always has to be solved by the intervention of an 

administrator by experience-based actions (e.g. restart of the 

MS, re-connection of individual hardware modules). A 

solution is to deploy an intelligent diagnostic system intended 

for the communication that should primarily eliminate all the 

administrator's actions because a human factor can negatively 

influence the ISES RE functioning. The diagnostic system will 

be automatically monitoring and evaluating the internal 

connection between the MS and the AD/DA convertor. In case 

of the miscommunication, an alarm report will be generated 

and dispatched to the remote laboratory management system 

(RLMS), as a new unit of the improved ISES RE. The RLMS 

will be acting as a supervisor authorized to restart the MS as 

well to recover its initial functioning. Furthermore, the preset 

communication between the PCI1202CardPlugin.ldp plug-in 

and modules (e.g. ampere-meter, voltmeter), installed on the 

ISES board, will dispose of the robust self-checking 

mechanisms. When e.g. a cold link occurs in the connector 

linking the pin with module, a generated alarm report will be 

delivered to the RLMS to inform an administrator and entered 

clients about existing problem that obstructs the 

experimenting. The scheme, shown in Fig. 5, presents a 

deployment of the internal units diagnosis into the MS 

communicating with the ISES RE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Network traffic diagnosis 

As the second problematic point appears network traffic 

anomalies decelerating or blocking the communication 

between clients and the ISES RE. Anomalies are unusual and 

significant changes in network’s traffic levels, which can often 

span multiple links. It is an important problem to understand 

the nature of traffic anomalies in a network. Regardless of 

whether the anomalies are malicious or unintentional, it is 

needed to analyze them for the following reasons: 

 Anomalies can create congestion in the network and stress 

resource utilization in a router, which makes them crucial 

to detect from an operational standpoint. 

 
Fig. 4 Web page of the ISES RE presenting the Faraday's law of 

electromagnetic induction [4] 
 

Fig. 5 Arrangement of the improved ISES RE based on the remote 

laboratory management system and the internal units diagnosis [3] 
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 Some anomalies may not necessarily impact the network 

but they can have a dramatic impact on responsible 

network administrators or end clients. 

It is a really difficult problem to solve because anomalous 

patterns must be extracted and interpreted from large amounts 

of high-dimensional noisy data. Hence, a general method is 

used to diagnose such anomalies. This method is based on a 

separation of the high-dimensional space occupied by a set of 

network traffic measurements into disjoint subspaces 

corresponding to normal and anomalous network conditions. 

The separation can be effectively performed by the coordinate 

transformation method called Principal Component Analysis. 

An analysis of volume anomalies can be realized by using 

simple traffic measurements only from data links. The 

involved diagnostic method is able to: 

1) detect when a volume anomaly is occurring, 

2) identify the underlying origin-destination flow, which is 

the source of the anomaly, 

3) estimate the amount of traffic involved in the anomalous 

origin-destination flow. 

The introduced method is able to diagnose both existing and 

synthetically injected volume anomalies in real traffic in two 

networks. It diagnoses the largest anomalies and does so with a 

very low false alarm rate [11]. 

 

1) Volume anomalies 

A typical network (e.g. backbone) is composed of nodes 

(also called Points of Presence or PoPs) that are connected by 

links. An Origin-Destination (OD) flow is define as the traffic 

that enters the network at the origin PoP and exits at the 

destination PoP. The path followed by each OD flow is 

determined by the routing tables. Therefore, the traffic 

observed on each network link arises from the superposition 

(two signals are added together) of these OD flows. 

The volume anomaly term refers to a sudden (with respect 

to time step used) positive or negative change in an OD flow’s 

traffic. Since such an anomaly originates outside the network, 

it will propagate from the origin PoP to the destination PoP. 

A technique is used for diagnosing the volume anomalies. If 

a volume anomaly propagates through the network, it should 

be observed on all links it traverses. Anomalies based on the 

OD flow are identified by observing only link counts. 

The diagnosis difficulty stems in part from the fact that it 

uses only link data, which can be collected via SNMP (Simple 

Network Management Protocol). Necessary inferences must be 

formed about unusual events occurring in the underlying OD 

flows from these link data. 

Examples of this difficulty are presented in Fig. 6. The top 

plot on each side of the figure shows an OD flow time series 

with an associated volume anomaly - this information is not 

available to the algorithms, but just to show the nature of these 

anomalies. The point at which each anomaly occurs is 

designated by a circle on the timeline. Below the timeline are 

plots of link traffic on the four links that carry the given OD 

flow. These four plots represent the data that is available to the 

algorithm. The diagnostic system processes link data to: 

1) detect that at the time shown, the network is experiencing 

an occurred anomaly, 

2) isolate the four links shown as those experiencing the 

detected anomaly, 

3) estimate the size of the spike in the OD flow. 

Three observations could be performed from these 

examples. First, while the OD flows have pronounced spikes, 

the corresponding spike in the link traffic is dwarfed, and 

difficult to detect even from visual inspection. For instance, 

the traffic volume at the spike time on links, defined as c-d and 

b-c in Example 1, is hardly distinguishable. Second, the 

temporal traffic patterns may vary substantially from one link 

to another. In Example 2, the i-f link has a smooth trend, 

whereas the other links for the OD flow have more noisy 

traffic. Separating the present spike from the noise in the 

traffic on the c-b link is visually more difficult than separating 

the spike in the i-f link. Thus isolating all the links exhibiting 

an anomaly is challenging. Finally, mean traffic levels vary 

considerably. In Example 1, the mean traffic level on the c-d 

link is more than twice that of the f-i link. The varying traffic 

levels makes it difficult to estimate the size of the volume 

anomaly and hence its operational importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem of diagnosing a volume anomaly in an 

involved OD flow can be separated into the following steps: 

 Detection consists of designating those points in time at 

which the network is experiencing an anomaly. An 

effective algorithm for solving the detection has a high 

detection probability and a low false alarm probability. 

 Identification consists of selecting the true anomaly type 

from a set of possible candidate anomalies. The method is 

extensible to a wide variety of anomalies. However, a first 

step, the candidate anomaly set is the set of all OD flows. 

 Quantification is the problem of estimating the number of 

additional or missing bytes in the underlying traffic flows. 

The quantification is important because it gives a measure 

of the importance of the existing anomaly. 

 
Fig. 6 Examples of present anomalies at the Origin-Destination flow 

level (top row) that is required to diagnose from link traffic [11] 
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The diagnosis also requires the detection of an anomaly 

time, the identification of the underlying responsible OD flow 

and the quantification of an anomaly. 

 

2) Data acquirement 

The method operates on link traffic data obtained by SNMP. 

Traffic anomalies can last anywhere from milliseconds to 

hours. It can be used on data with any time granularity, e.g. to 

work with data binned on 10 minute intervals. Binning is a 

way to group a number of more or less continuous values to a 

smaller number of bins [10]. 

In order to validate data against true OD flows, a set of link 

traffic counts must be obtained consistent with sampled OD 

flow data collected from the network. To perform this, the 

traffic matrix estimation method is followed and a construction 

of the link counts is then performed from OD flow counts, 

which use a routing table taken from the network in operation. 

 

3) Subspace analysis of link traffic 

The diagnosis of anomalies in traffic requires the ability to 

separate them from normal network-wide traffic. In this 

subchapter, the Principal Component Analysis (PCA) is 

described to separate normal and anomalous network-wide 

traffic conditions. 

The PCA is a coordinate transformation method that maps a 

given set of data points onto new axes. The axes are called the 

principal axes or principal components. When working with 

zero-mean data, each principal component has the property 

that it points in the direction of maximum variance remaining 

in the data, given the variance already accounted for in the 

preceding components. As such, the first principal component 

captures the variance of the data to the greatest degree possible 

on a single axis. The next principal components then each 

capture the maximum variance among the remaining 

orthogonal directions. Thus, the principal axes are ordered by 

the amount of data variance that they capture. 

An illustration of the difference between normal and 

anomalous traffic variation is shown in Fig. 7, as captured in 

the PCA decomposition. The figure shows sample projections 

of the network 1 dataset onto selected principal components. 

On the left, projections onto the first two principal components 

(u1 and u2) are presented, which capture the most significant 

variation in the data. These time series are periodic and 

reasonably deterministic and clearly capture the typical diurnal 

patterns, which are common across traffic on all links. Note 

that u1 and u2 are roughly 180 degrees out of phase, meaning 

that the two can be used in linear combination to roughly 

construct of sinusoid of any phase. Thus the extraction of 

common temporal patterns via the PCA does not require the 

underlying traffic time series to have the same periodic phase 

as reflected e.g. in traffic in the same time zone. The subspace 

method assigns the traffic variations to the normal subspace. 

Presented Fig. 7 also shows projections u6 and u8. In the 

contrast to involved u1 and u2, these projections of the data 

exhibit significant anomalous behavior. These traffic spikes 

indicate unusual network conditions possibly induced by a 

volume anomaly at the OD flow level. The subspace method 

treats such projections of the data as belonging to the 

anomalous subspace. 

A variety of procedures can be applied to separate the two 

types of projections into normal and anomalous sets. Based on 

examining the differences between typical and atypical 

projections, a simple threshold-based separation method has 

been developed to work well in practice. Specifically, a 

separation procedure examines the projection on each 

principal axis in order; as soon as a projection is found that 

exceeds the threshold, e.g. contains a deviation from the mean, 

that principal axis and all subsequent axes are assigned to the 

anomalous subspace. All previous principal axes then are 

assigned to the normal subspace. All the dimensions showing 

significant variance are assigned to the normal subspace when 

this procedure results in placing the first four principal 

components in the normal subspace in each case. 

The traffic is decomposed on each link into normal and 

anomalous components after separating to the space of 

possible traffic measurements into the subspaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Diagnosing volume anomalies 

The methods used for detecting and identifying volume 

anomalies draw from a theory developed for the subspace-

based fault detection in multivariate process control. 

Detecting volume anomalies in link traffic relies on the 

separation of link traffic at any time step into normal and 

anomalous components. They can be also called as the 

modeled and residual parts of the link traffic in a network. 

The key idea in the subspace-based detection step is that, 

once both the normal and anomalous subspaces have been 

constructed, this separation can be effectively performed by 

forming the projection of link traffic onto these two subspaces. 

As the next diagnostic step is a process of the identification. 

In the subspace framework, a volume anomaly represents a 

displacement of the state vector away from the normal 

subspace. This state vector is expressed as a sum of the sample 

vector for normal traffic conditions and the magnitude of the 

anomaly, which is influenced by the vector defining the 

manner in which this anomaly adds traffic to each link in the 

 
Fig. 7 Example of the projections onto principal components 

showing normal and anomalous traffic variation in network [11] 
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network. The particular direction of the displacement gives 

information about the nature of the anomaly. Thus the 

approach to anomaly identification is to ask which anomaly 

out of a set of potential anomalies is best able to describe the 

deviation of state vector from the normal subspace. 

When an estimation of the particular volume anomaly was 

formed, the last step comes into the process called 

quantification. This method is able to estimate the number of 

bytes constituting this anomaly. 

 

5) Validating results 

The validation is centered on answering two questions: 

1) How well can the method diagnose actual anomalies 

observed in real data? 

2) How does the time and location of the anomaly affect 

performance of the method? 

The first question can be answered as follows. It is reached 

up by using the time series analysis on OD flow data to isolate 

first a set of true anomalies. This approach allows evaluating 

the subspace method quantitatively. In particular, it allows the 

measurement of detection and false alarm probabilities. 

The second question can be answered as well. It is realized 

by injecting anomalies of different sizes in OD flows and 

applying a procedure to diagnose these known anomalies from 

link data. This is performed repeatedly for each time step and 

for each anomaly to form the picture of how diagnosis 

effectiveness varies with the time and location of the occurred 

anomaly in a data network. 

In each case, the performance of each step must be 

quantified in the following diagnosis procedure. A detection 

success is measured by two metrics: the detection rate and the 

false alarm rate. The detection rate is the fraction of true 

detected anomalies. The false alarm rate is the fraction of 

normal measurements that trigger an erroneous detection. An 

identification success is captured in the identification rate, 

which is the fraction of detected anomalies that are correctly 

identified. Finally, a quantification success is measured by 

computing the mean absolute and relative error between the 

estimate and the true size of identified volume anomalies [11]. 

C. Cognitive fault diagnosis system 

Let us find a solution for the operative mechanism of ISES 

Measureserver
®
 with respect to its diagnostics to reduce faults 

coming from sensors of the RE physical hardware, using the 

artificial intelligence approach. 

Sensors monitoring a real environment are prone to faults or 

aging, ill affecting ISES RE functioning, or even fallout of the 

whole apparatus. In turn, the permanent or transient faults can 

influence sensors functioning, causing errors in the RE 

processing chain. Such erroneous information may exert strong 

side effects on the subsequent control chain leading to bad 

decisions and inappropriate control actions. 

Fault diagnosis system (FDS) should play an important role 

of supervising the process operations for the purpose of 

detecting, isolating and identifying a potential fault and design 

possible accommodation actions. The main components of 

FDS are derived from the comparison of the running and 

model data of functioning. Model data, often unavailable, is 

frequently substituted by the experimental data generated by 

the ISES physical hardware during or after the measurement. 

When a change with respect to the model is detected by 

applied FDS, the following situations might arise [12]: 

 Model change: The model is no longer representing the 

current data due to the model approximation deficiencies. 

 Change in the environment: The environment is a time 

variable quantity and the trained model is no more able to 

explain the acquired data. 

 Fault: The sensor or its electronic unit is affected by a 

fault inducing an error. 

Existing FDSs intended for sensor networks do not 

generally allow distinguishing between occurred faults and 

environment changes. Moreover, in the original model bias is 

considered negligible, which is hardly acceptable hypothesis in 

many applications. However, a cognitive FDS may influence 

sensor data streams. This type of FDS already recognizes the 

model bias existence during measurements and proposes a 

method for discriminating between faults and changes. 

Let us further attempt to propose a solution for FDS design, 

based on the artificial intelligence approach, introducing 

dependency graphs and information related to spatial and 

temporal relationships among sensor data streams. 

 

1) Functional concept 

Hidden a-priori information concerning spatial and temporal 

relationships among proposed sensor data streams is exploited, 

leading to a functional dependency graph where nodes are the 

used sensors and arcs are associated with the sensor-to-sensor 

functional relationship. In particular, for each sensor couple, 

Hidden Markov model (HMM) is designed which gives the 

parameters of linear time invariant (LTI) model approximating 

the relationship. As such, spatial redundancy is modeled with 

HMM in the parameter space of linear time invariant dynamic 

models, embedding the time dependency. When the likelihood 

between the HMM-based learning machine and the new 

incoming data stream falls below a preset threshold (which can 

be inserted by the teaching process), a change is detected by 

the HMM-based change detection test (CDT) at the detection 

layer. The cognitive layer of FDS, activated in response to a 

change, starts alarm raised by the CDT, discriminates time 

variant and bias faults using the dependency graph of the 

network. At the same time, it allows for isolating the fault for a 

possible accommodation phase [12]. 

In following we describe the theoretical solution of a 

cognitive FDS in order to diagnose all sensors installed in RE 

physical hardware to reduce possible faults coming from the 

measurement subsystems. The proposed FDS is intended to be 

built in the next generation of the Measureserver
®
 unit for the 

AI on line diagnosis of the RE physical hardware. 

 

2) Modeling functional relationships in sensor networks 

Let us consider a sensor network composed of N fixed 
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sensing units, which are deployed within the environment P. 

Each unit can host up to M sensors giving information on 

various physical properties of P space (for example, 

temperature, humidity, vibrations, rain intensity). Each j-th 

sensor of the i-th unit acquires a scalar data stream Xi,j. 

The FDS runs as a part of the MS unit situated in the control 

room where the RE physical hardware is installed [12]. 

a)   Modeling the network: the dependency graph 

The cognitive framework for the fault diagnosis relies on the 

ability to model functional relationships among the acquired 

information on the space P. In detail, each functional 

relationship captures spatial and temporal dependencies from 

data provided by a generic couple of involved sensors. Fig. 8 

shows an example of the sensor network with dependencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A direct relationship exists among couple of sensors of the 

same type like is usually temperature vs. temperature. If data 

streams Xi,j and Xv,j, i ≠ v are correlated, then an arc linking the 

j-th sensor of unit i with its counterpart of unit v is introduced. 

For example, two clinometers insisting on the same connected 

structure are related; those deployed far apart probably are not. 

An indirect relationship can be introduced between two 

generic sensors by means of a third entity. Indirect relations 

are mitigated by the presence of compensation mechanisms. 

Information useful for the analysis must be extracted before 

compensation takes place. 

In reality, direct and indirect relationships introduce a 

functional constraint among couples of sensors. Denote by 

f{(i,j),(u,v)} the functional relationship between the generic j-th 

sensor of unit i and the v-th sensor of unit u. The nodes of G 

are the network sensors where the arcs represent the 

relationships among couples of sensors. Given a network, not 

all the (N×M)(N×M−1) relationships in G are relevant. 

The reduced dependency graph is then derived from G and 

defined as graph GR={V,E} where V is the set of nodes of the 

graph representing the N×M sensors and E a set collecting all 

arcs associated with functional relationships whose correlation 

is above a threshold. The level of dependency associated with 

relationship f{(i,j),(u,v)} is here chosen to be the linear 

correlation index between two data streams Xi,j and Xv,u. We 

remove from GR all the isolated nodes. Fig. 9 shows us the 

graph-based representation of the sensor network proposed in 

Fig. 8. We have 4 units; each unit is a sub-graph representing 

the sensors with bindings [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)   Modeling the functional relationship between two same type 

sensors by using Hidden Markov model 

We assume that the relationship among couple of sensors 

f{(i,j)(u,v)} can be modeled either as a time invariant (TI) 

dynamic system or as a finite sequence of TI dynamic systems 

satisfying the HMM hypotheses. 

Let us imagine to model a f{(i,j)(u,v)} with the Single-Input 

Single-Output (SISO) linear model. A given SISO locally 

approximates the output. 

A training dataset is composed of NT {input, output} couples 

and a loss function whose minimization provides us an 

estimation of the optimal parameter. 

Under the assumption that each involved f{(i,j),(u,v)} 

function satisfies the exponential stability for closed loop. 

It comes out that under the above assumption and a 

sufficiently large N the distribution underlying the parameter 

vectors is defined as the multivariate Gaussian, with a mean 

and covariance matrix P. 

HMM with parameters ruled by a mixture of Gaussians 

becomes a natural solution to approximate f{(i,j),(u,v)}. The 

HMM nodes of the represent in reality a probabilistic 

ensemble of used LTI models minimizing the model bias if a 

training set is sufficiently informative. By used modeling 

 
Fig. 8 Direct and indirect relationships in the network [12] 

 
Fig. 9 The dependency graph of sensor network of Fig. 8 [12] 
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parameters with HMM, we mitigate the effect of model bias 

and time variance provided that the defined training set is 

sufficiently informative as well and it explores time variance 

and nonlinearity [12]. 

 

3) Cognitive fault diagnosis system 

The FDS is organized as the two-layer architecture, shown 

in Fig. 10. The lower level is composed by a set of change 

detection tests (CDTs) observing the stationarity of a 

relationship associated with a couple of sensors in GR. Each 

HMM-CDT works in the parameter space to detect variations 

in the relationship between two involved sensors. The CDT is 

not able to distinguish among changes induced by a fault in a 

sensor, an environmental change in P or a false positive 

generated by a model bias since such classes are 

indistinguishable. To address this issue the upper level of the 

FDS has been designed to be able to discriminate among 

faults, changes in P and false positives by exploiting 

information associated with the network graph GR. The upper 

level of the FDS relies on the cognitive algorithm aggregating 

decisions and log-likelihood information provided by the 

HMM-CDT in the lower level [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)   The HMM-based change detection test 

The proposed HMM-CDT aims at evaluating, by means of 

HMM, the evolution over time of the estimated parameters 

approximating the relationship f{(i,j),(u,v)}; X(i,j) is the output 

and X(u,v) the input of the LTI. Estimated parameters are 

estimated on overlapping windows of NT data. 

The HMM-CDT requires training of HMM devoted to 

model the relationship between sensors (i,j) and (u,v) is trained 

by the Baum-Welch algorithm [13]. 

During the operational life, the parameter is estimated on 

the s-th window of data and the log-likelihood that is 

computed with the Viterbi algorithm [14]. 

When the log-likelihood decreases below a threshold Th, a 

change in the relationship is detected (the sequence of inputs is 

no more recognized by the learning machine). The threshold 

Th can be defined by a responsible operator who is able to 

exploit a-priori available information [12]. 

b)   The cognitive aggregation level 

The cognitive level aggregates the information coming from 

all sensor units to distinguish among faults, changes in P and 

false positives induced by model bias in the HMM-CDT. 

Differently from the HMM-CDTs executed sequentially, the 

cognitive aggregation level is activated only in response to a 

detection alarm raised by at least HMM-CDT. Detections and 

log-likelihoods of others CDTs are used to assess and, 

possibly, identify the change. 

The motivating idea is that a change in P for a given type of 

sensors must be also perceived by a set of other CDTs, at least 

as a decrement in the log-likelihood values, which are not 

necessarily below the threshold. Differently, in the case of 

faults, only the CDTs associated with relationships that have 

either as input or output the faulty sensor are affected by the 

change. Finally, if a false positive occurs, other involved 

CDTs should not be affected. 

To evaluate the reliability of the information coming from 

HMM-CDTs we introduce a reliability index for the HMM. 

Weights are computed on the training set; the weighted 

reduced graph is the reduced graph that is augmented with the 

weight information. 

Definitions are constructed as follows: 

 Let E
+
 be the set of functional relationships such that 

either the source or the target node of the arc is used X(i,j). 

 Let E
−
 be the set of functional relationships such that 

either the source or the target node of the arc is used X(v,u). 

 Let E
P
 be the set of functional relationships whose 

defined source or target node is neither X(iq,jq) nor X(vq,uq). 

After a change detected in f{(i,j)(v,u)} the remaining 

functional relationships of the weighted reduced dependency 

graph are partitioned into sets E
+
, E

−
 and E

P
. The reason for 

the partitioning is described as follows: 

 a fault in sensor X(i,j) affects the functional relationships in 

E
+ 

but not in E
−
 and E

P
, 

 a fault in sensor X(v,u) affects the functional relationships in 

E
−
 but not in E

+
 and E

P
, 

 a change in P affects the functional relationships in all 

groups, in E
−
, E

+ 
and E

P
, 

 a model bias, affecting HMM, would mostly affect the 

relationship between (i,j) and (u,v) but not the relationships 

in E
−
, E

+ 
and E

P
 provided that approximating relationships 

are characterized by different bias contributions. 

An example of partitioning is shown in Fig. 11a; in Fig. 11b 

a change is detected in functional relationship f{(3,3)(1,3)}. 

The definitions are used as follows: 

 

 

 

 

 

 

 

 

 
Fig. 10 Configuration of the proposed fault diagnosis system [12] 
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Defined index of the data window where the HMM-CDT 

detected a change, the proposed aggregation level computes 

the normalized sum of the log-likelihoods, suitably weighted, 

of the arcs in E
+
, E

−
 and E

P
. 

The core of the cognitive aggregation level is thus the 

ability to compute S
+
, S

−
 and S

P
 by exploiting information 

coming from all the relationships of the weighted reduced 

dependency graph. S
+
, S

−
 and S

P
 measure how the change 

detected in the functional relationship f{(i,j)(v,u)} is perceived 

in other relationships. If a fault affects sensor (i,j), S
+
 should 

decrease, while S
−
 and S

P 
should not. Similarly used, if a fault 

affects sensor (u,v), S
−
 should decrease, S

+
 and S

P
 not. If a 

change in P occurs, S
P
 should decrease as well as S

+
 and S

−
. 

To detect decreases in S
+
, S

−
 and S

P
 we rely on a simple 

thresholding mechanism that calculates thresholds T
+
, T

− 
and 

T
P
 which can be scaled by a coefficient factor specified as  

to increase the robustness with regard to false positives. We 

suggest selecting a condition as  since we want to 

detect decreases in the likelihood that did not yet raised an 

alarm. In reality, if we consider , then we would 

require that the weighted average of the likelihoods decreases 

below the weighted average of the thresholds for change 

detection Ths but this is nonsense since relationships in E
+
, E

−
 

and E
P
 did not detect a change yet. 

To sum up, the cognitive aggregation level acts as follows: 

 If S
P
 decreases below threshold T

P
, a change in P is 

successfully identified. 

 If S
P
>T

P
 and S

+
<T

+
 (or S

−
<T

−
), a fault in sensor X(i,j) (or in 

X(v,u)) is effectively detected. 

 If S
P
>T

P
 and S

+
>T

+
 and S

−
>T

−
, a false positive which is 

induced by a model bias is detected. 

If both S
+
 and S

−
 are above their respective thresholds, we 

can raise the alarm fault in either X(i,j) or X(v,u) but we cannot 

isolate the affected sensor since not enough information is 

available in the system [12]. 

IV. FUNCTIONAL BENEFITS 

The introduced diagnostic systems provide us an efficient 

solution how to avoid or reduce possible faults coming from 

some sensors and modules in the ISES RE. The second benefit 

is an elimination of the congestion in a network caused by 

wide traffic anomalies when clients make experimenting. 

These diagnostic systems should cooperate with the RLMS 

that performs accommodation actions based on scenarios in 

case of detected and identified ill events occurred during the 

experimentation. The scheme, presented in Fig. 12, shows an 

implementation of the diagnostic systems inside the MS unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

This paper has presented the analysis of advanced 

communication among particular units of the ISES remote 

experiment, and provided you possible improvements by using 

three different diagnostic systems. It has been the objective of 

our work to analyze the low-level communication to 

understand its basic principles. The further part of this 

objective has been focused on diagnosing occasional faults 

occurred during the communication of separate ISES hardware 

modules and involved sensors. It includes the detection, 

identification and quantification as well intended for existing 

wide traffic anomalies in a network. We have analyzed the 

suitable diagnostic approaches to implement into the ISES 

remote experiment to avoid or significantly reduce such ill 

events at process time of experimenting. 

Our conclusions may be formulated as follows. 

1) The experimentation based on the ISES remote 

experiment is a new approach of teaching and learning in 

comparison with traditional forms of education. 

2) The Measureserver
®
 is a core unit of the ISES remote 

experiment responsible for communicating between 

clients and physical hardware modules. 

3) The internal units diagnosis is a suitable approach for 

monitoring and evaluating the internal communication 

between the Measureserver
®
 and the AD/DA convertor to 

 
Fig. 11 The proposed cognitive aggregation level: a) the reduced 

weighted dependency graph; b) an example of arcs partitioning into 

defined groups E+, E− and EP given a change detected in the 

functional relationship f{(3,3),(1,3)} [12] 

 

 

 
Fig. 12 Implementation of the internal units diagnosis (IUD) together 

with the network traffic diagnosis (NTD) and the fault diagnosis 

system (FDS) in the Measureserver® unit 
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avoid faults coming from the ISES physical hardware. 

4) The network traffic diagnosis fits to the wide traffic 

anomalies occurring in a network for the purpose of 

detecting, identifying and quantifying them, and to report 

ill events to responsible administrators and active clients 

using the ISES remote experiment. 

5) The cognitive fault diagnosis system is an advanced 

approach integrated into the Measureserver
®
 to avoid 

occasional faults coming from sensors as the components 

of the ISES physical hardware, which can negatively 

affect sometimes the ISES remote experiment functioning. 

6) We also plan an improvement of these diagnostic systems 

concerning intelligent corrections performed when faults 

or anomalies come into the system. 
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