

Abstract—GPGPU (General-Purpose Computing on Graphics

Processing Units) is a parallel computation technique that has

become very popular with the advent of high performance and

relatively low priced programmable GPU (Graphics Processing Unit)

adapters and of the software tools required for general computing

(compilers for computing languages such as OpenCL, etc.). GPU

computing can offer massive computation acceleration for algorithms

that fulfill certain requirements and map well to the GPU

architecture. GPUs were originally developed for displaying and

processing raster images, and so can be applied efficiently for fast

processing of the rasterized geographic and other maps used in

geographic information systems such as GRASS GIS (Geographic

Resources Analysis Support System / Geographic Information

System). GRASS-RaPlaT (Radio Planning Tool for GRASS) is a

GRASS add-on for simulating radio signal propagation in actual

geographic environments. In the case of large areas and relatively

high resolution, simulations can become computationally demanding,

taking a considerable amount of time to accomplish. GPU

parallelization of radio propagation modules is therefore presented

and the results analyzed, together with the conditions that must be

fulfilled to employ GPU computation successfully and achieve

considerable computation speedup.

Keywords—Radio propagation simulation, GRASS, RaPlaT,

parallel processing, GPU computing.

I. INTRODUCTION

ADIO propagation planning is important for setting up a

transmitter or for building a network of transmitters and

predicting the signal strength at various locations during the

normal transmitter/network operation. Numerous professional

tools exist for this purpose, their common drawback being high

price and inability of the user to add his/her own propagation

models in a simple way. Open source solutions have been

developed to meet these problems. Usually, their

functionalities are limited compared to those of the

professional commercial tools, however, they are affordable

(free) and allow the user to add additional new propagation

models if needed. One such tool is GRASS-RaPlaT (Radio

Planning Tool for GRASS, RaPlaT for short) [1]-[4].

Radio coverage computation in RaPlaT is raster-based.

Although the computation for each point is not too complex,

the sheer number of raster points can make it quite demanding.

I. Ozimek, A. Hrovat, A. Vilhar, and T. Javornik are with the Department

of Communication Systems, Jozef Stefan Institute, Ljubljana, Slovenia

(phone: +386-1-477-3105; fax: +386-1-477-3111; e-mail:

igor.ozimek@ijs.si).

For example, a map covering 100 km×100 km with a

resolution of 25 m would require 16M raster points; improving

resolution to 5 m would require 400M points. The parallel

nature of the raster-based algorithm calls for a massive

parallelization approach, such as GPGPU (General-Purpose

Computing on Graphics Processing Units), that can result in

multiple times speedup of the whole computing process.

In the next section, GRASS-RaPlaT is briefly presented.

Section 3 gives a short description of possible approaches to

parallelization, with special emphasis on the GPU computing.

Section 4 presents parallelization of two GRASS-RaPlaT radio

signal propagation modules using GPGPU, analyzes the

results, and determines the conditions that must be fulfilled for

successful employment of GPU processing.

II. GRASS-RAPLAT

RaPlaT is an add-on to the well-known open source GRASS

GIS (Geographic Resources Analysis Support System /

Geographic Information System) [5], [6]. Since radio

propagation simulations are always performed within a

geographic area with a known terrain profile, a GIS system is a

reasonable framework for this task. GRASS is very suitable for

this purpose, since it is a well-established open source

software tool with a modular structure that allows additional

user-written modules to be added in a simple way.

RaPlaT consist of a number of GRASS-compatible

modules. Fig. 1 shows the RaPlaT functional block diagram

with modules presented as white rectangles and input/output

files as colored rhomboids. RaPlaT can optionally save the

results into a standard data base such as MySQL or

PostgreSQL.

RaPlaT core modules perform three distinct tasks that are

needed for computation of radio coverage (Fig. 2). The first

task is computation of the undirected (isotropic) signal fading

according to a chosen radio signal propagation model. A

considerable (and growing) number of different radio

propagation models are supported, each implemented as a

separate GRASS module written in the C language:

 The free space model.

 The Okumura-Hata model (the standard and COST231

versions).

 An extended Okumura-Hata model containing an

additional edge diffraction algorithm for NLOS (Non-

Line-of-Sight) situations and land-usage related fading.

 The Walfisch-Ikegami model (developed in the

GPU computation acceleration of GRASS GIS

modules for predicting radio-propagation

Igor Ozimek, Andrej Hrovat, Andrej Vilhar, Tomaž Javornik

R

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 76

framework of the COST231 project).

 The Longley/Rice model (ITM – Irregular Terrain

Model).

 The ITU-R Recommendation P.1546-4 model.

 The Urban model.

Fig. 2 RaPlaT core modules

An example of a radio signal fading map computed using

the simple Okumura-Hata model (the r.hata module), together

with the underlying geographic map, is shown in Fig. 3.

Fig. 3. Isotropic radio signal fading map [dB],

Okumura-Hata model (r.hata)

The next task, performed by the r.sector module, takes into

account the actual transmit antenna radiation pattern and

modifies the previously computed isotropic path loss map

accordingly. The antenna characteristics are specified in an

MSI-format file. This is a simple text file defining various

properties of an antenna, such as its name, manufacturer, radio

frequency, gain, polarisation, electrical tilt and, most

importantly, its radiation pattern in the horizontal and vertical

planes with one degree resolution. From these data, the 3-D

radiation pattern can be synthesized. An example of a fading

Fig. 1. GRASS-RaPlaT block diagram

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 77

map produced by r.sector is shown in Fig. 4.

Fig. 4. Directed radio signal fading map [dB], (r.sector)

The final task, performed by the r.MaxPower module, is to

use the actual transmit power value to compute the receive

signal strength map, which can be done not only for one

transmitter, but also for a whole radio transmitter network. Fig.

5 shows an example of the radio signal strength map produced

by r.MaxPower for the case of three transmitters (antennas) on

the same location, corresponding to an actual GSM base

station in Ljubljana. The radio strength is given in dBm for a

receiver with 0 dB antenna gain.

Fig. 5. Received signal strength [dBm] for three transmitters

on one location (r.MaxPower)

The r.MaxPower module can compute a number of results

other than the received signal strength. For LTE

communication systems, it can compute maps for RSSI

(Received Signal Strength Indicator), RSRP (Reference Signal

Received Power), RSRQ (Reference Signal Received Quality),

CINR (Carrier to Interference + Noise Ratio), maximum

spectral efficiency and for maximum throughput and

interference.

A RaPlaT user does not need to call all these modules

individually. Only the r.radcov module (written in Python),

which reads a CSV-format file with the description of the

transmitter network configuration and calls the previously

described modules as necessary, need be called. Each module

instance is executed as a sequential single-thread process;

however, r.radcov can call them concurrently for parallel

execution on a multi-core processor.

Besides the classical radio propagation models listed above,

an experimental ray-tracing module has also been implemented

in RaPlaT [7], [8].

The usability of RaPlaT has been proven by the fact that it

has been developed jointly with, and is used by the Slovenian

mobile operator Telekom as the core radio coverage

computation engine for their own in-house developed radio

planning tool.

III. PARALLEL COMPUTING AND GPU

The computational speed of a conventional SISD (Single

Instruction, Single Data) processor is limited by its clock

frequency, the number of clock cycles required for execution

of each instruction, and the instruction complexity. The other

important limiting factor is the time required to access memory

for reading and storing instructions and data. This can be

minimized by employing a fast on-chip cache memory.

For many years, SISD processor capabilities have been

increased by increasing the clock frequency and the execution

unit capabilities, employing techniques such as instruction-

level parallelism (instruction pipelining, out-of-order

execution, branch prediction, etc.) and hyper-threading (for

better utilization of various CPU functional blocks by

concurrently running two execution threads). This approach

reached its limit around 2003, when increasing the clock

frequency slowed down (largely governed by the processor

thermal power dissipation/cooling limitations), and the

execution speed could not be improved much more by

enlarging the CPU complexity. However, the maximum

number of transistors per chip still keeps rising – they are

employed to build higher level parallel structures i.e. multi-

core processors.

Another parallelization technique, known already from the

early years of digital computers, uses vector (co)processors –

SIMD (Single Instruction, Multiple Data). They allow parallel

execution of a single instruction (such as an integer or floating

point arithmetic operation) on multiple data, which can be

used to speed up the processing of vectors or matrices such as

are nowadays most often found in media content (e.g. a

picture, consisting of raster points, each of the points having

three color components). Due to the importance of the media

content processing, SIMD extensions are a standard

component of modern processors (e.g. MMX, SSE, and lately

AVX), as are the general fast FPU’s (Floating Point Units).

While general processors (CPUs) employ a certain amount

of parallelism, the latter is in no way massive. Multi-core

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 78

processors can integrate only a very limited number of cores

on a chip because of the problems with fast concurrent

memory access and cache coherency. Multi-core CPU

architecture provides high level parallelism of the MIMD

(Multiple Instruction, Multiple Data) type, which can

concurrently execute multiple independent processes or

relatively high level threads of a single process. SIMD

extensions, on the other hand, are low level parallel structures

that are most suitable for completely identical operations on

vector/matrix data. Current implementations usually support

only small vector sizes, e.g. four floating point values, suitable

for fast media content processing.

In the previous section we have already noted that GRASS-

RaPlaT, in its basic form, already supports parallel execution.

In the case of a transmitter network consisting of a number of

transmitters (antennas), computation of the radio signal fading

for each of them (the propagation model and r.sector modules)

can be executed in parallel on a multi-core processor by

r.radcov. The speedup achievable is limited by the rather small

number of available CPU cores. This approach can be

extended by running computations on a computer cluster,

instead of on a single computer, as shown in [9]. This can be

achieved by modification of GRASS-RaPlaT, but the main

drawback is the high cost of the computing cluster hardware

compared with that of the cost-effective GPU approach

described in the sequel. A further advantage of the GPU

solution is that it accelerates the execution of each individual

module and can thus be used for a single transmitter, while the

multi-core/cluster parallel computing is only applicable to a

transmitter network consisting of a number of transmitters.

A. GPU

With the advent of capable graphic adapters utilizing

programmable GPUs, a new vehicle for massively parallel

computing was born. GPUs have been created for performing

massive parallel computations on rasterized images. Their

development and production was driven by the large market

for computer games, which enabled their relatively low prices.

As GPUs became more and more general-purpose, capable

and accessible for programming, they started to be used for

general computing (GPGPU), first by using the existing

languages for graphic processing (such as OpenGL). Later,

dedicated GPGPU languages were developed.

Programming for GPU is based primarily on the C

language, although some other languages are often supported.

NVIDIA is recognized as the pioneer in the GPGPU field with

its CUDA (Compute Unified Device Architecture) parallel

computing platform, programming model and software tools

(compiler, etc.) [10]. A drawback of CUDA, however, is that it

only supports NVIDIA’s GPUs. An independent effort by the

Khronos Group industry consortium (including NVIDIA

among many others) resulted in OpenCL (Open Computing

Language) [11], an open standard for parallel programming of

heterogeneous systems.

Both CUDA and OpenCL use a similar programming

model, called SIMT (Single Instruction, Multiple Threads) by

NVIDIA, in which multiple independent threads are executed

concurrently, using a single instruction on multiple data.

However, this differs from vector processor SIMD and enables

conditional branching (if statement in C), by which, for each

branch, only the corresponding subset of data is processed and

the remainder wait for their turn (in an alternative branch or

after the branches merge again). Those parts of a program

(usually written in C) to be executed on GPU are programmed

as separate C-like modules. They define execution of a single

thread for a single data element.

The relative efficiency of the programs using CUDA or

OpenCL has been the topic of many papers [12-15]. While

they differ at some points, often in favor of CUDA – which is

not strange given its longer history and support for only

NVIDIA GPUs, these differences are, on average, not

substantial and the independence of the manufacturer of

OpenCL is certainly an advantage.

There is another approach to GPU programming, OpenACC

(Open Accelerators) [16]. Here, the procedures for GPU are

not coded as separate C-modules. Instead, the program is

written completely in the normal C language (or some other

supported language). The OpenACC compiler is instructed as

to which parts to execute on GPU (usually some parallelizable

loops) by additional #pragma statements in the code (which

would be ignored by a standard compiler).

The number of manufacturers of hardware platforms (i.e.

GPU processors) is rather limited, with AMD (formerly ATI)

being the only other manufacturer of devices with capabilities

comparable to those of NVIDIA.

IV. PARALLELIZATION, RESULTS AND ANALYSIS

In this section, our implementation of the GPU acceleration

for two GRASS-RaPlaT modules and their performance are

presented.

It must be noted that the existing GRASS-RaPlaT support

for parallel execution on multiple-core processors cannot be

combined with GPU execution, since this would cause

multiple parallel processes to compete for the same GPU

resources. It would only make sense if multiple GPU

processors/adapters were installed, and this is not yet

supported in the current version of the GPU-accelerated

RaPlaT modules.

A. Development tools

At first sight, the use of OpenACC is tempting, since it

enables GPU execution of C programs just by inserting

#pragma directives to instruct the compiler which parts should

be executed on GPU. However, this approach offers much less

control over the way a program is executed on GPU and, in

reality, it is far from trivial to do it correctly and efficiently.

We therefore took the other approach, and chose OpenCL, on

the basis of its hardware manufacturer’s independence.

B. Hardware

High performance GPU adapters are produced by NVIDIA

and AMD. NVIDIA was chosen, on the grounds of its leading

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 79

role in the GPGPU field. Their graphic adapters can be

divided into two groups, one for the massive consumer market,

and the other for professional use, the latter including the

Tesla adapter family specifically designed for GPU

computing. Professional and consumer-grade cards generally

share the same GPU microarchitecture but with different

computing capabilities, especially regarding the double

precision floating point computation speed.

The GPU implementation and testing presented here were

performed using two GPU adapters. The first, GeForce GTX

580, is a high performance consumer-grade adapter. Some

basic properties of this adapter are summarized in Table I.

Table I. Some basic properties of GeForce GTX 580

No. of cores 512
GPU /
Shader clock frequency 793 MHz / 1586 MHz

GPU adapter memory size 3 GB

GPU memory bandwidth 192.4 GB/s
(384-bit, 4008 MHz)

GPU adapter bus PCI-E 2.0 x 16
(max. 8 GB/s)

GFLOPS (SP / DP) 1624.064 / 203.008

The main reason for choosing it was its much lower price

than those of professional adapters while having capabilities

comparable to those of the much more expensive professional-

grade products (with the exception of its slower double

precision floating point operations). GTX 580 uses the Fermi

GPU microarchitecture. 32-bit single precision floating point

units are an integral part of its computing cores, and they are

also capable of 64-bit double precision floating point

processing but at half the speed of the single precision

operations. However, for the consumer-grade graphic adapters,

the double precision computations have been downgraded by a

factor of 4, becoming 8x slower than those of the single

precision operations. Single precision floating point

performance is calculated according to (1).

CORESSHADER NfGFLOPS 2 (1)

where fSHADER is the shader clock frequency, and NCORES is the

number of cores.

In the meantime, NVIDIA has developed a new, improved

GPU microarchitecture named Kepler, the main emphasis

being on reduced power consumption and better games

support. The 64-bit floating point units are no longer

integrated into the computing cores but are separate entities

available in appropriate quantities. For consumer-grade

adapters, their number is relatively small compared to the

number of cores, resulting in double precision floating point

computations being typically 24x slower than the speed of

single precision ones. Thus, if a consumer-grade graphic

adapter is used for general computing, a Fermi-based adapter

could still be the better choice.

For comparison, testing was performed with a very basic

and low-cost GPU adapter GeForce 210. It uses the Tesla

microarchitecture (not to be confused with the Tesla adapter

family), which is the predecessor of the Fermi

microarchitecture and supports only single precision floating

point operations. Some basic properties of this adapter are

summarized in Table II.

Table II. Some basic properties of GeForce 210

No. of cores 16
GPU /
Shader clock frequency 520 MHz / 1230 MHz

GPU adapter memory size 512 MB

GPU memory bandwidth 4.8 GB/s
(32-bit, 1200 MHz)

GPU adapter bus PCI-E 2.0 x 4
(max. 2 GB/s)

GFLOPS (SP) 39.360

Its floating point performance is calculated according to (1).

In terms of single precision GFLOPS, this adapter is 41.3

times slower than GTX 580.

NVIDIA CUDA / OpenCL compilers translate source code

to the PTX (Parallel Thread Execution) pseudo-assembly

language, which is common to all NVIDIA GPU

microarchitectures and computing capabilities, and is forward

compatible. PTX is translated at run time into the binary code

for a particular GPU processor by the compiler included in the

NVIDIA graphic adapter driver. For repetitive running of a

program, the binary code is kept in the memory and reused.

The process of PTX translation takes time, which can be

avoided by precompiling the binary code, but this makes the

program runnable only on a specific GPU microarchitecture.

In our case, the translation time was less than one second and

was excluded from the execution time measurements.

C. OS environment

NVIDIA supports MS Windows, Linux and Mac OS X

operating systems. GRASS supports all these operating

systems; however, until now RaPlaT has only been compiled

and tested under Linux (Ubuntu), which was also used for tests

presented in this article.

A limitation of GPU computing with consumer-grade

adapters is their run time limit of a few seconds on kernels.

This is implemented in the graphic adapter driver with the aim

of keeping the graphic card responsive for its supposedly

primary function – displaying the picture on the monitor.

Unfortunately, in MS Windows, this limitation is active even if

no monitor is connected to the adapter (although this can be

changed by tweaking the registry). The much more expensive

adapters from the Tesla family use another version of driver

without this limitation. In Linux (Ubuntu in our case), the

situation is better and an adapter without a monitor operates

without the run time limit on kernels.

Another limitation in MS Windows (but not in Linux) is that

GPU computation can only be run from the local physical

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 80

workstation’s console and not from a remote desktop session.

(However, remote work is possible with VNC, which actually

runs a local session on the host machine, and transfers the

screen image to the remote client.)

D. Parallelized RaPlaT modules

We have modified two RaPlaT propagation models for

execution on GPU, using OpenCL tools from NVIDIA – the

basic Okumura-Hata model, module r.hata, and the extended

Okumura Hata model, module r.hataDEM.

1) r.hata

The Okumura-Hata model [17] is a rather simple model that

ignores obstacles between the transmitter and receiver as well

as the land-usage related fading. It needs a DEM (Digital

Elevation Map) with terrain heights above sea level in metres,

like the one shown in Fig. 6.

Fig. 6. DEM for the region around the

city of Ljubljana

The computed path loss fading map (in dB) is relatively

simple, and hence not very accurate for complex environments

(Fig. 7).

Fig. 7. Path loss map computed by r.hata

Some computations are carried out only once, at the

beginning of the module execution, and do not contribute

significantly to the overall computing time. The computations

that matter for parallelization are those executed for each

raster point. In r.hata this is primarily the computation defined

by the following equation:

)log())log(55.69.44(

)log(82.13

dh

hLL UconstU

 (2)

where LU is the path loss in dB, LUconst is the pre-computed,

constant part of the path loss in dB, h is the effective transmit

antenna height in metres (relative to the receive point height),

and d is the distance between the transmitter and the receive

point in km.

According to (2), two base-10 logarithms (log(h) need only

be computed once), three multiplications and three

additions/subtractions must be computed. The computations

have a very regular structure with the calculation for each

raster point being performed independently of those for other

points. As such, it should be ideal for implementation on a

GPU processor. However, these computations are rather

simple and can be performed quickly, so that the GPU

processing overhead (fetching and storing the data from/to the

main graphic adapter memory, etc.) could constitute a

bottleneck. Therefore, a sufficient number of raster points

must be processed in parallel at every moment, so that GPU

can schedule their execution appropriately – computing some

points while others are waiting for data to be fetched/stored.

Our tests on GTX 580 (with 512 computing cores) have shown

that a few 10,000s of computation threads need to be launched

in parallel to achieve efficient GPU utilization.

The r.hata computational complexity is proportional to the

number of raster points. If the linear map dimension (e.g. x or

y while keeping the ratio between both approximately the

same) is denoted by n, the order of complexity is O(n
2
), which

is optimal for image raster processing.

2) r.hataDEM

The r.hataDEM module implements an extended Okumura-

Hata model. For LOS receive locations, it uses the basic

Okumura-Hata model. For NLOS receive locations, it

computes the path loss according to the edge diffraction effect

on the highest obstacle in a direct line between the transmitter

and the receive point [18, 19]. Additionally, it takes into

account the effects of land-usage (buildings, forests, etc.) at

the receive locations. This is given, in dB, by an additional

path loss raster map called a clutter map, such as that in Fig. 8.

Compared to the r.hata path loss map (Fig. 7), the resulting

map, in dB, is much more detailed and accurate, as seen in Fig.

9.

For LOS locations, the computation is basically the same as

that for r.hata and is described by (2). For NLOS locations,

the knife edge diffraction loss is calculated according to (3)

and (4):

2

1
log20

keL (3)

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 81

21

21)(2

dd

dd
h

 (4)

where Lke is the path loss due to the knife edge diffraction

effect in dB, h is the height of the highest obstacle above the

direct line between the transmitter and receiver, d1 and d2 are

the distances of the mobile and base stations from the obstacle,

and λ is the radio signal wavelength.

Fig. 8. Clutter map for the region around the

city of Ljubljana

Fig. 9. Path loss map computed by r.hataDEM

What is particularly important for computational complexity

is the fact that, for each point, a LOS/NLOS check that seeks

the highest obstacle along the direct line between the

transmitter and the receive point has first to be made. For each

receive point, the obstacle searching algorithm performs some

initial computations in addition to those described by (3) and

(4), but the important computationally demanding part is that

of traveling along the transmitter-receiver line, looking for

obstacles. Although only some basic computations are

performed in this loop (additions, subtractions,

multiplications), it increases the order of complexity by one

step higher, to O(n
3
), making r.hataDEM much slower than

r.hata, especially for a large number of raster points. It also

makes the algorithm irregular, in the sense that the

computation for each receive point depends not only on the

corresponding DEM raster point, but on all points on the line

between the transmitter and the receive point.

E. Execution performance

The execution performance of the GPU-accelerated version

of the r.hata and r.hataDEM modules and their original CPU-

only versions was compared for two geographic regions, the

first of which was the whole Slovenia region. The

corresponding DEM covered an area of 352 km×224 km with

a resolution of 25 m and a resulting raster size of

14081×8961= 126,179,841 points. Due to its large size and

the computational complexity of r.hataDEM, it was only used

for r.hata.

The second region was smaller, the region around the city of

Ljubljana, but with a greater resolution. The corresponding

DEM covered an area of 26.9 km×19.2 km with a resolution of

5 m, with a resulting raster size of 5381×3841 = 20,668,421

points. It was used for both r.hata and r.hataDEM modules.

In both cases, the transmitter was placed in Ljubljana at the

JSI location (an actual mobile phone base station location).

1) r.hata

The performance of the CPU execution (with the usual

double floating point precision) and of the GPU execution

with single and double floating point precision for the Slovenia

region is presented in Tables III and IV. The numerical results

computed with single and double precision were not

completely identical but the differences were negligible for our

use. Table III shows the execution times when only one raster

row at a time (14081 points) is computed, while Table IV

shows the times when many raster rows at a time are sent from

CPU to GPU for computing – all 8961 rows for GeForce GTX

580, 1000 rows for GeForce 210.

The column ‘Calculations’ contains the execution time for

the computationally intensive part of the module. In the case of

GPU acceleration, this time comprises the time spent by CPU

to copy the data from CPU to GPU memory, launch the

execution of the GPU part of the program and copy the results

back to the CPU memory. Each of these processes is sent to

the GPU task queue as a separate task. The waiting (latency)

times caused by the GPU task mechanism are included in the

GPU execution times.

The column ‘Complete’ contains the times required for

complete execution of the module (CPU and GPU). For r.hata

this time is much larger than the GPU computation time,

limiting the overall acceleration to only 2x, which makes GPU

acceleration a rather pointless activity. The majority of this

time is spent on reading and writing large GRASS raster maps

(DEM, path loss map, ca. 126M points), using GRASS library

calls, which is a rather slow process. The computation itself is

simple and performed very quickly by GPU, hence the time

required for reading and writing the maps dominates.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 82

Table III. Execution time for r.hata, Slovenia

region, one row at a time

 Calculations Complete
CPU (DP) 12.54s 24.00s
GTX 580 DP 2.56s (4.9×) 14.30s (1.7×)
GTX 580 SP 2.08s (6.0×) 13.81s (1.7×)
210 SP 5.75s (2.2×) 17.31s (1.4x)

Table IV. Execution time for r.hata, Slovenia

region, many rows at a time

 Calculations Complete
CPU (DP) 12.54s 24.00s
GTX 580 DP 0.86s (14.6×) 12.26s (2.0×)
GTX 580 SP 0.47s (26.5×) 11.92s (2.0×)
210 SP 3.53s (3.6×) 14.88s (1.6×)

The differences in GPU execution times between Tables III

and IV are substantial and are due mostly to the latency times

of the GPU task queue processing. This can be seen from

Tables V and VI, which show only net data copy and GPU

execution times without the time lost by GPU task queue

processing.

Table V. Net GPU time for r.hata, Slovenia

region, one row at a time

 Data copy GPU execution
GTX 580 DP 0.20s 0.60s
GTX 580 SP 0.20s 0.14s
210 SP 1.00s 2.80s

Table VI. Net GPU time for r.hata, Slovenia

region, many rows at a time

 Data copy GPU execution
GTX 580 DP 0.20s 0.48s
GTX 580 SP 0.20s 0.083s
210 SP 0.77s 2.61s

GPU execution times in Tables V and VI for GeForce 210

computations and for double precision GTX 580 computations

are similar. This is not the case with GTX 580 single precision

computations, which means that one row of data (14081 points

– computation threads) is not sufficient for efficient utilization

of its 512 cores in the case of the relatively simple Okumura-

Hata algorithm. It can also be seen that, for a large number of

computation threads (Table VI), the ratio of the execution

performances of the two adapters (2.61 / 0.083 = 31) is not

greatly different from that of their theoretical performances

(41.3).

The difference in GPU execution performance between

single and double floating point precision (5.8-fold for a large

number of computation threads, Table VI) is smaller than the

raw difference in the speed of single and double precision

floating point operations (8-fold for our consumer-grade

graphic adapter). This is so because not all the GPU program

instructions actually perform floating point computations.

The results from Tables III and IV are shown in Figs. 10

and 11.

Fig. 10. Relative r.hata execution speedup,

Slovenia region, one row at a time

Fig. 11. Relative r.hata execution speedup,

Slovenia region, many rows at a time

The execution performance of r.hata for the Ljubljana

region is presented for CPU and double precision GPU

execution only in Tables VII and VIII, for single and for all

rows at a time, respectively. For computation of many rows at

a time (Table VIII), the acceleration is approximately the same

as that for the Slovenia region (Table IV) and the execution

times are proportional to the number of points (ca. 21M in this

case), as expected.

Table VII. r.hata for Ljubljana region,

one row at a time

 Calculations Complete
CPU (DP) 2.03s 3.83s
GTX 580 DP 0.80s (2.5×) 2.82s (1.4×)

Table VIII. r.hata for Ljubljana region,

all rows at a time

 Calculations Complete
CPU (DP) 2.03s 3.83s
GTX 580 DP 0.14s (14.5×) 2.03s (1.9×)

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 83

2) r.hataDEM

As already described, r.hataDEM is computationally much

more complex and, due to its obstacle-searching procedure,

lacks the very regular structure of the r.hata algorithms that

would be very desirable for efficient GPU implementation.

Nevertheless, GPU was clearly able to cope well with its partly

irregular structure. Our relatively straightforward

implementation of the original CPU code on GPU resulted in a

highly efficient implementation with exceptionally large

acceleration (Table IX), reaching 194x for single precision

computation. Even taking into account the reading and writing

of the GRASS maps (DEM, clutter map, path loss map), the

acceleration was still 87x for the single precision computation,

justifying the use of GPU implementation of this module.

Table IX. r.hataDEM for Ljubljana region

(all rows at one time)

 Calculations Complete
CPU (DP) 508.43s 511.62s
GTX 580 DP 5.81s (87.5×) 9.05s (56.6×)
GTX 580 SP 2.62s (194.0×) 5.86s (87.3×)
210 (SP) 110.27s (4.6×) 113.51 (4.5×)

The results from Table IX are graphically represented in

Fig. 12.

Fig. 12. Relative r.hataDEM execution speedup,

Ljubljana region (all rows at one time)

V. CONCLUSION

GPU processing for two GRASS RaPlaT modules, r.hata

and r.hataDEM has been implemented and their achieved

accelerations compared. While the overall acceleration for the

former was very much lower, due to its lower computational

complexity than that of the file reading/writing overhead, the

acceleration of the second module was very satisfactory.

Certain conditions must be fulfilled for efficient

implementation of GPU processing. First, the number of

parallel computations must be large enough to utilize fully the

GPU processor. In general, this number must be orders of

magnitude greater than the number of GPU cores, so that the

GPU internal scheduler can always switch execution to those

threads with available data instead of waiting for the data to be

transferred from/to the main GPU memory (which is a fast

process but with rather large latencies). In the present case, in

which large raster maps with around 126M and 21M points

were processed, this was not a problem.

The GPU computation part must be sufficiently complex to

make negligible the time spent for overhead tasks performed

by CPU. In the present case, the most time consuming task was

reading and writing the GRASS raster maps. For this reason,

the r.hata module, with its relatively simple GPU-accelerated

algorithm, achieved a very weak overall acceleration of only 2-

fold. On the other hand, the r.hataDEM module, with its much

more complex computations, achieved an exceptional 194x

acceleration (for single precision computations), fully

justifying its GPU implementation.

In general, algorithms suitable for effective GPU

acceleration should be as regular as possible, i.e. without much

cross connections between parallel threads and using

input/output local data from data blocks that can be kept inside

the fast on-chip registers and memory cache. Transferring data

to/from the GPU main memory is a rapid process, but with

considerable latencies that can slow down the processing

unless other waiting threads have data available and can

immediately continue their execution. The present r.hataDEM

module is not ideal in this respect. Nevertheless, the GPU

processor was able to cope well with its irregularities and

achieved very high acceleration.

REFERENCES

[1] GRASS-RaPlaT web page, http://www-e6.ijs.si/RaPlaT/GRASS-

RaPlaT_main_page.htm

[2] A. Hrovat, I. Ozimek, A. Vilhar, T. Celcer, I. Saje, T. Javornik, “An

open-source radio coverage prediction tool”, Latest Trends on

Communications, 14th WSEAS International Conference on

Communications, Corfu Island, Greece, 23-25 July 2010, pp. 135-140.

[3] A. Hrovat, I. Ozimek, A. Vilhar, T. Celcer, I. Saje, T. Javornik, “Radio

coverage calculations of terrestrial wireless networks using an open-

source GRASS system”, WSEAS Transactions on Communications,

Vol. 9, No. 10, 2010, pp. 646-657.

[4] A. Hrovat, A. Vilhar, I. Ozimek, T. Javornik, E. Kocan, “GRASS-

RaPlaT radio planning tool for GRASS GIS system”, Proceedings of

21st International Conference on Applied Electromagnetics and

Communications (ICECom 2013), 14-16 October 2013, Dubrovnik,

Croatia.

[5] GRASS Development Team, 2012. Geographic Resources Analysis

Support System (GRASS) Software. Open Source Geospatial

Foundation Project. http://grass.osgeo.org

[6] M. Neteler, M. H. Bowman, M. Landa, M. Metz, “GRASS GIS: a multi-

purpose open source GIS”, Environmental Modelling & Software, Vol.

31, 2012, pp. 124-130.

[7] A. Vilhar, A. Hrovat, I. Ozimek, T. Javornik, “Efficient open-source

ray-tracing methods for rural environment”, Recent Researches in

Communications and Computers, 16th WSEAS International

Conference on Computers, Kos Island, Greece, 14-17 July 2012, pp. 51-

56.

[8] A. Vilhar, A. Hrovat, I. Ozimek, T. Javornik, “Shooting and bouncing

ray approach for 4G radio network planning”, International Journal of

Communication, Vol. 6, No. 4, 2012, pp. 166-174,

http://www.naun.org/multimedia/NAUN/ communications/16-589.pdf

[9] L. Benedičič, F. A. Cruz, T. Hamada, P. Korošec, “A GRASS GIS

parallel module for radio-propagation predictions”, International

Journal of Geographical Information Science, Vol. 28, No. 4, 2014, pp.

799-823.

[10] NVIDIA CUDA, Parallel Programming and Computing Platform,

http://www.nvidia.com/object/cuda_home_new.html

[11] OpenCL, The open standard for parallel programming of heterogeneous

systems, https://www.khronos.org/opencl/

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 84

http://www-e6.ijs.si/RaPlaT/GRASS-RaPlaT_main_page.htm
http://www-e6.ijs.si/RaPlaT/GRASS-RaPlaT_main_page.htm
http://grass.osgeo.org/
http://www.naun.org/multimedia/NAUN/%20communications/16-589.pdf
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/

[12] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, J. Dongarra,

“From CUDA to OpenCL: towards a performance-portable solution for

multi-platform GPU programming”, Parallel Computing, Vol. 38, No.

8, 2012, pp. 391-407.

[13] K. Karimi, N. G. Dickson, F. Hamze, “A performance comparison of

CUDA and OpenCL”, Cornell University Library, 16 May 2011,

http://arxiv.org/abs/1005.2581

[14] J. Fang, A. L. Varbanescu, H. Sips, “A comprehensive performance

comparison of CUDA and OpenCL”, 2011 International Conference on

Parallel Processing (ICPP), Taipei City, 13-16 Sept. 2011, p.p. 216-

225.

[15] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, H. Kobayashi,

“Evaluating performance and portability of OpenCL programs”, The

Fifth International Workshop on Automatic Performance Tuning

iWAPT, 22nd June 2010, Berkeley, USA,

http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-

Koyama-Takizawa-Kobayashi.pdf

[16] OpenACC, Directives for Accelerators, http://www.openacc-

standard.org/

[17] M. Hata, “Empirical formula for propagation loss in land mobile radio

services”, IEEE Transactions on Vehicular Technology, Vol. 29, No. 3,

August 1980.

[18] A. McNamara, C. W. I. Pistorious, J. A. G. Maherbe, Introduction to

the Uniform Geometrical Theory of Diffraction, Artech House, 1990.

[19] S. R. Saunders, Antennas and propagation for wireless communication

systems, John Wiley & Sons, 1999.

Igor Ozimek was born in Ljubljana, Slovenia, in 1957. He received the

B.Sc., M.Sc., and Ph.D. degrees in Electrical Engineering from the University

of Ljubljana, Slovenia, in 1980, 1988 and 1993, respectively.

He spent six months at the University of Westminster, London, UK, as a

visiting scientist. He is currently a researcher in the Department of

Communication Systems at the Jožef Stefan Institute. His research interests

include digital communications, GPU processing, and computer networks.

Andrej Hrovat was born in Novo mesto, Slovenia, in 1979. He received the

B.Sc. and M.Sc. degrees in Electrical Engineering from the University of

Ljubljana, Slovenia, in 2004 and 2008, respectively. He obtained the Ph.D.

degree in Electrical Engineering from the Jožef Stefan International

Postgraduate School, Slovenia, in 2011.

He is currently a researcher in the Department of Communication Systems

of the Jožef Stefan Institute and assistant at the Jožef Stefan International

Postgraduate School. His research interests include radio signal propagation,

channel modeling, terrestrial and satellite fixed and mobile wireless

communications, radio signal measurements and emergency communications.

Andrej Vilhar was born in Ljubljana, Slovenia, in 1979. He received the

B.Sc. and Ph.D. degree in Electrical Engineering from the University of

Ljubljana, Slovenia, in 2004 and 2009, respectively.

He spent one year at the French aerospace lab ONERA, Toulouse, as a

post-doc researcher. He is currently a researcher at the Department of

Communication Systems of the Jožef Stefan Institute. His previous research

interests include network modeling and mobility management in IPv6

networks. Currently, he is focusing on radio signal propagation and channel

modeling, with the emphasis on terrestrial network planning and on the

microwave satellite signal measurements.

Tomaž Javornik was born in Kočevje, Slovenia, in 1962. He received the

B.Sc., M.Sc., and Ph.D. degree in Electrical Engineering from the University

of Ljubljana, Slovenia, in 1987, 1990 and 1993, respectively.

He spent six months at the University of Westminster, London, UK, as a

visiting scientist. He is currently a senior researcher in the Department of

Communication Systems at the Jožef Stefan Institute and assistant professor

at the Jožef Stefan International Postgraduate School. His research interests

include radio signal propagation channel modeling in terrestrial and satellite

communication systems, adaptive coding and modulation, adaptive antenna

and MIMO systems, wireless optical communication, cooperative

communication, adaptive coding and modulation, relay communication and

self-organizing networks.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 85

http://arxiv.org/abs/1005.2581
http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf
http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf
http://www.openacc-standard.org/
http://www.openacc-standard.org/

