
 

 

 

Abstract—GPGPU (General-Purpose Computing on Graphics 

Processing Units) is a parallel computation technique that has 

become very popular with the advent of high performance and 

relatively low priced programmable GPU (Graphics Processing Unit) 

adapters and of the software tools required for general computing 

(compilers for computing languages such as OpenCL, etc.). GPU 

computing can offer massive computation acceleration for algorithms 

that fulfill certain requirements and map well to the GPU 

architecture. GPUs were originally developed for displaying and 

processing raster images, and so can be applied efficiently for fast 

processing of the rasterized geographic and other maps used in 

geographic information systems such as GRASS GIS (Geographic 

Resources Analysis Support System / Geographic Information 

System). GRASS-RaPlaT (Radio Planning Tool for GRASS) is a 

GRASS add-on for simulating radio signal propagation in actual 

geographic environments. In the case of large areas and relatively 

high resolution, simulations can become computationally demanding, 

taking a considerable amount of time to accomplish. GPU 

parallelization of radio propagation modules is therefore presented 

and the results analyzed, together with the conditions that must be 

fulfilled to employ GPU computation successfully and achieve 

considerable computation speedup. 

 

Keywords—Radio propagation simulation, GRASS, RaPlaT, 

parallel processing, GPU computing.  

I. INTRODUCTION 

ADIO propagation planning is important for setting up a 

transmitter or for building a network of transmitters and 

predicting the signal strength at various locations during the 

normal transmitter/network operation. Numerous professional 

tools exist for this purpose, their common drawback being high 

price and inability of the user to add his/her own propagation 

models in a simple way. Open source solutions have been 

developed to meet these problems. Usually, their 

functionalities are limited compared to those of the 

professional commercial tools, however, they are affordable 

(free) and allow the user to add additional new propagation 

models if needed. One such tool is GRASS-RaPlaT (Radio 

Planning Tool for GRASS, RaPlaT for short) [1]-[4]. 

Radio coverage computation in RaPlaT is raster-based. 

Although the computation for each point is not too complex, 

the sheer number of raster points can make it quite demanding. 
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For example, a map covering 100 km×100 km with a 

resolution of 25 m would require 16M raster points; improving 

resolution to 5 m would require 400M points. The parallel 

nature of the raster-based algorithm calls for a massive 

parallelization approach, such as GPGPU (General-Purpose 

Computing on Graphics Processing Units), that can result in 

multiple times speedup of the whole computing process. 

In the next section, GRASS-RaPlaT is briefly presented. 

Section 3 gives a short description of possible approaches to 

parallelization, with special emphasis on the GPU computing. 

Section 4 presents parallelization of two GRASS-RaPlaT radio 

signal propagation modules using GPGPU, analyzes the 

results, and determines the conditions that must be fulfilled for 

successful employment of GPU processing. 

II. GRASS-RAPLAT 

RaPlaT is an add-on to the well-known open source GRASS 

GIS (Geographic Resources Analysis Support System / 

Geographic Information System) [5], [6]. Since radio 

propagation simulations are always performed within a 

geographic area with a known terrain profile, a GIS system is a 

reasonable framework for this task. GRASS is very suitable for 

this purpose, since it is a well-established open source 

software tool with a modular structure that allows additional 

user-written modules to be added in a simple way. 

RaPlaT consist of a number of GRASS-compatible 

modules. Fig. 1 shows the RaPlaT functional block diagram 

with modules presented as white rectangles and input/output 

files as colored rhomboids. RaPlaT can optionally save the 

results into a standard data base such as MySQL or 

PostgreSQL. 

RaPlaT core modules perform three distinct tasks that are 

needed for computation of radio coverage (Fig. 2). The first 

task is computation of the undirected (isotropic) signal fading 

according to a chosen radio signal propagation model. A 

considerable (and growing) number of different radio 

propagation models are supported, each implemented as a 

separate GRASS module written in the C language: 

 The free space model. 

 The Okumura-Hata model (the standard and COST231 

versions). 

 An extended Okumura-Hata model containing an 

additional edge diffraction algorithm for NLOS (Non-

Line-of-Sight) situations and land-usage related fading. 

 The Walfisch-Ikegami model (developed in the 

GPU computation acceleration of GRASS GIS 

modules for predicting radio-propagation 
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framework of the COST231 project). 

 The Longley/Rice model (ITM – Irregular Terrain 

Model). 

 The ITU-R Recommendation P.1546-4 model. 

 The Urban model. 

 

 
 

Fig. 2 RaPlaT core modules 

 

An example of a radio signal fading map computed using 

the simple Okumura-Hata model (the r.hata module), together 

with the underlying geographic map, is shown in Fig. 3. 

 

 
 

Fig. 3.  Isotropic radio signal fading map [dB],  

Okumura-Hata model (r.hata) 

 

The next task, performed by the r.sector module, takes into 

account the actual transmit antenna radiation pattern and 

modifies the previously computed isotropic path loss map 

accordingly. The antenna characteristics are specified in an 

MSI-format file. This is a simple text file defining various 

properties of an antenna, such as its name, manufacturer, radio 

frequency, gain, polarisation, electrical tilt and, most 

importantly, its radiation pattern in the horizontal and vertical 

planes with one degree resolution. From these data, the 3-D 

radiation pattern can be synthesized. An example of a fading 

 
Fig. 1.  GRASS-RaPlaT block diagram 
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map produced by r.sector is shown in Fig. 4. 

 

 
 

Fig. 4.  Directed radio signal fading map [dB], (r.sector) 

 

The final task, performed by the r.MaxPower module, is to 

use the actual transmit power value to compute the receive 

signal strength map, which can be done not only for one 

transmitter, but also for a whole radio transmitter network. Fig. 

5 shows an example of the radio signal strength map produced 

by r.MaxPower for the case of three transmitters (antennas) on 

the same location, corresponding to an actual GSM base 

station in Ljubljana. The radio strength is given in dBm for a 

receiver with 0 dB antenna gain. 

 

 
 

Fig. 5.  Received signal strength [dBm] for three transmitters  

on one location (r.MaxPower) 

 

The r.MaxPower module can compute a number of results 

other than the received signal strength. For LTE 

communication systems, it can compute maps for RSSI 

(Received Signal Strength Indicator), RSRP (Reference Signal 

Received Power), RSRQ (Reference Signal Received Quality), 

CINR (Carrier to Interference + Noise Ratio), maximum 

spectral efficiency and for maximum throughput and 

interference. 

A RaPlaT user does not need to call all these modules 

individually. Only the r.radcov module (written in Python), 

which reads a CSV-format file with the description of the 

transmitter network configuration and calls the previously 

described modules as necessary, need be called. Each module 

instance is executed as a sequential single-thread process; 

however, r.radcov can call them concurrently for parallel 

execution on a multi-core processor. 

Besides the classical radio propagation models listed above, 

an experimental ray-tracing module has also been implemented 

in RaPlaT [7], [8]. 

The usability of RaPlaT has been proven by the fact that it 

has been developed jointly with, and is used by the Slovenian 

mobile operator Telekom as the core radio coverage 

computation engine for their own in-house developed radio 

planning tool. 

III. PARALLEL COMPUTING AND GPU 

The computational speed of a conventional SISD (Single 

Instruction, Single Data) processor is limited by its clock 

frequency, the number of clock cycles required for execution 

of each instruction, and the instruction complexity. The other 

important limiting factor is the time required to access memory 

for reading and storing instructions and data. This can be 

minimized by employing a fast on-chip cache memory. 

For many years, SISD processor capabilities have been 

increased by increasing the clock frequency and the execution 

unit capabilities, employing techniques such as instruction-

level parallelism (instruction pipelining, out-of-order 

execution, branch prediction, etc.) and hyper-threading (for 

better utilization of various CPU functional blocks by 

concurrently running two execution threads). This approach 

reached its limit around 2003, when increasing the clock 

frequency slowed down (largely governed by the processor 

thermal power dissipation/cooling limitations), and the 

execution speed could not be improved much more by 

enlarging the CPU complexity. However, the maximum 

number of transistors per chip still keeps rising – they are 

employed to build higher level parallel structures i.e. multi-

core processors. 

Another parallelization technique, known already from the 

early years of digital computers, uses vector (co)processors – 

SIMD (Single Instruction, Multiple Data). They allow parallel 

execution of a single instruction (such as an integer or floating 

point arithmetic operation) on multiple data, which can be 

used to speed up the processing of vectors or matrices such as 

are nowadays most often found in media content (e.g. a 

picture, consisting of raster points, each of the points having 

three color components). Due to the importance of the media 

content processing, SIMD extensions are a standard 

component of modern processors (e.g. MMX, SSE, and lately 

AVX), as are the general fast FPU’s (Floating Point Units). 

While general processors (CPUs) employ a certain amount 

of parallelism, the latter is in no way massive. Multi-core 
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processors can integrate only a very limited number of cores 

on a chip because of the problems with fast concurrent 

memory access and cache coherency. Multi-core CPU 

architecture provides high level parallelism of the MIMD 

(Multiple Instruction, Multiple Data) type, which can 

concurrently execute multiple independent processes or 

relatively high level threads of a single process. SIMD 

extensions, on the other hand, are low level parallel structures 

that are most suitable for completely identical operations on 

vector/matrix data. Current implementations usually support 

only small vector sizes, e.g. four floating point values, suitable 

for fast media content processing. 

In the previous section we have already noted that GRASS-

RaPlaT, in its basic form, already supports parallel execution. 

In the case of a transmitter network consisting of a number of 

transmitters (antennas), computation of the radio signal fading 

for each of them (the propagation model and r.sector modules) 

can be executed in parallel on a multi-core processor by 

r.radcov. The speedup achievable is limited by the rather small 

number of available CPU cores. This approach can be 

extended by running computations on a computer cluster, 

instead of on a single computer, as shown in [9]. This can be 

achieved by modification of GRASS-RaPlaT, but the main 

drawback is the high cost of the computing cluster hardware 

compared with that of the cost-effective GPU approach 

described in the sequel. A further advantage of the GPU 

solution is that it accelerates the execution of each individual 

module and can thus be used for a single transmitter, while the 

multi-core/cluster parallel computing is only applicable to a 

transmitter network consisting of a number of transmitters. 

A. GPU 

With the advent of capable graphic adapters utilizing 

programmable GPUs, a new vehicle for massively parallel 

computing was born. GPUs have been created for performing 

massive parallel computations on rasterized images. Their 

development and production was driven by the large market 

for computer games, which enabled their relatively low prices. 

As GPUs became more and more general-purpose, capable 

and accessible for programming, they started to be used for 

general computing (GPGPU), first by using the existing 

languages for graphic processing (such as OpenGL). Later, 

dedicated GPGPU languages were developed. 

Programming for GPU is based primarily on the C 

language, although some other languages are often supported. 

NVIDIA is recognized as the pioneer in the GPGPU field with 

its CUDA (Compute Unified Device Architecture) parallel 

computing platform, programming model and software tools 

(compiler, etc.) [10]. A drawback of CUDA, however, is that it 

only supports NVIDIA’s GPUs. An independent effort by the 

Khronos Group industry consortium (including NVIDIA 

among many others) resulted in OpenCL (Open Computing 

Language) [11], an open standard for parallel programming of 

heterogeneous systems. 

Both CUDA and OpenCL use a similar programming 

model, called SIMT (Single Instruction, Multiple Threads) by 

NVIDIA, in which multiple independent threads are executed 

concurrently, using a single instruction on multiple data. 

However, this differs from vector processor SIMD and enables 

conditional branching (if statement in C), by which, for each 

branch, only the corresponding subset of data is processed and 

the remainder wait for their turn (in an alternative branch or 

after the branches merge again). Those parts of a program 

(usually written in C) to be executed on GPU are programmed 

as separate C-like modules. They define execution of a single 

thread for a single data element. 

The relative efficiency of the programs using CUDA or 

OpenCL has been the topic of many papers [12-15]. While 

they differ at some points, often in favor of CUDA – which is 

not strange given its longer history and support for only 

NVIDIA GPUs, these differences are, on average, not 

substantial and the independence of the manufacturer of 

OpenCL is certainly an advantage. 

There is another approach to GPU programming, OpenACC 

(Open Accelerators) [16]. Here, the procedures for GPU are 

not coded as separate C-modules. Instead, the program is 

written completely in the normal C language (or some other 

supported language). The OpenACC compiler is instructed as 

to which parts to execute on GPU (usually some parallelizable 

loops) by additional #pragma statements in the code (which 

would be ignored by a standard compiler). 

The number of manufacturers of hardware platforms (i.e. 

GPU processors) is rather limited, with AMD (formerly ATI) 

being the only other manufacturer of devices with capabilities 

comparable to those of NVIDIA. 

IV. PARALLELIZATION, RESULTS AND ANALYSIS 

In this section, our implementation of the GPU acceleration 

for two GRASS-RaPlaT modules and their performance are 

presented. 

It must be noted that the existing GRASS-RaPlaT support 

for parallel execution on multiple-core processors cannot be 

combined with GPU execution, since this would cause 

multiple parallel processes to compete for the same GPU 

resources. It would only make sense if multiple GPU 

processors/adapters were installed, and this is not yet 

supported in the current version of the GPU-accelerated 

RaPlaT modules. 

A. Development tools 

At first sight, the use of OpenACC is tempting, since it 

enables GPU execution of C programs just by inserting 

#pragma directives to instruct the compiler which parts should 

be executed on GPU. However, this approach offers much less 

control over the way a program is executed on GPU and, in 

reality, it is far from trivial to do it correctly and efficiently. 

We therefore took the other approach, and chose OpenCL, on 

the basis of its hardware manufacturer’s independence. 

B. Hardware 

High performance GPU adapters are produced by NVIDIA 

and AMD. NVIDIA was chosen, on the grounds of its leading 
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role in the GPGPU field. Their graphic adapters can be 

divided into two groups, one for the massive consumer market, 

and the other for professional use, the latter including the 

Tesla adapter family specifically designed for GPU 

computing. Professional and consumer-grade cards generally 

share the same GPU microarchitecture but with different 

computing capabilities, especially regarding the double 

precision floating point computation speed. 

The GPU implementation and testing presented here were 

performed using two GPU adapters. The first, GeForce GTX 

580, is a high performance consumer-grade adapter. Some 

basic properties of this adapter are summarized in Table I. 

 

Table I.  Some basic properties of GeForce GTX 580  

 

No. of cores 512 
GPU /  
Shader clock frequency 793 MHz / 1586 MHz 

GPU adapter memory size 3 GB 

GPU memory bandwidth 192.4 GB/s  
(384-bit, 4008 MHz) 

GPU adapter bus PCI-E 2.0 x 16  
(max. 8 GB/s) 

GFLOPS (SP / DP) 1624.064 / 203.008 
 

The main reason for choosing it was its much lower price 

than those of professional adapters while having capabilities 

comparable to those of the much more expensive professional-

grade products (with the exception of its slower double 

precision floating point operations). GTX 580 uses the Fermi 

GPU microarchitecture. 32-bit single precision floating point 

units are an integral part of its computing cores, and they are 

also capable of 64-bit double precision floating point 

processing but at half the speed of the single precision 

operations. However, for the consumer-grade graphic adapters, 

the double precision computations have been downgraded by a 

factor of 4, becoming 8x slower than those of the single 

precision operations. Single precision floating point 

performance is calculated according to (1). 

 

CORESSHADER NfGFLOPS  2  (1) 

 

where fSHADER is the shader clock frequency, and NCORES is the 

number of cores. 

In the meantime, NVIDIA has developed a new, improved 

GPU microarchitecture named Kepler, the main emphasis 

being on reduced power consumption and better games 

support. The 64-bit floating point units are no longer 

integrated into the computing cores but are separate entities 

available in appropriate quantities. For consumer-grade 

adapters, their number is relatively small compared to the 

number of cores, resulting in double precision floating point 

computations being typically 24x slower than the speed of 

single precision ones. Thus, if a consumer-grade graphic 

adapter is used for general computing, a Fermi-based adapter 

could still be the better choice. 

For comparison, testing was performed with a very basic 

and low-cost GPU adapter GeForce 210. It uses the Tesla 

microarchitecture (not to be confused with the Tesla adapter 

family), which is the predecessor of the Fermi 

microarchitecture and supports only single precision floating 

point operations. Some basic properties of this adapter are 

summarized in Table II. 

 

Table II.  Some basic properties of GeForce 210 

 

No. of cores 16 
GPU /  
Shader clock frequency 520 MHz / 1230 MHz 

GPU adapter memory size 512 MB 

GPU memory bandwidth 4.8 GB/s  
(32-bit, 1200 MHz) 

GPU adapter bus PCI-E 2.0 x 4  
(max. 2 GB/s) 

GFLOPS (SP) 39.360 
 

Its floating point performance is calculated according to (1). 

In terms of single precision GFLOPS, this adapter is 41.3 

times slower than GTX 580. 

NVIDIA CUDA / OpenCL compilers translate source code 

to the PTX (Parallel Thread Execution) pseudo-assembly 

language, which is common to all NVIDIA GPU 

microarchitectures and computing capabilities, and is forward 

compatible. PTX is translated at run time into the binary code 

for a particular GPU processor by the compiler included in the 

NVIDIA graphic adapter driver. For repetitive running of a 

program, the binary code is kept in the memory and reused. 

The process of PTX translation takes time, which can be 

avoided by precompiling the binary code, but this makes the 

program runnable only on a specific GPU microarchitecture. 

In our case, the translation time was less than one second and 

was excluded from the execution time measurements. 

C. OS environment 

NVIDIA supports MS Windows, Linux and Mac OS X 

operating systems. GRASS supports all these operating 

systems; however, until now RaPlaT has only been compiled 

and tested under Linux (Ubuntu), which was also used for tests 

presented in this article. 

A limitation of GPU computing with consumer-grade 

adapters is their run time limit of a few seconds on kernels. 

This is implemented in the graphic adapter driver with the aim 

of keeping the graphic card responsive for its supposedly 

primary function – displaying the picture on the monitor. 

Unfortunately, in MS Windows, this limitation is active even if 

no monitor is connected to the adapter (although this can be 

changed by tweaking the registry). The much more expensive 

adapters from the Tesla family use another version of driver 

without this limitation. In Linux (Ubuntu in our case), the 

situation is better and an adapter without a monitor operates 

without the run time limit on kernels. 

Another limitation in MS Windows (but not in Linux) is that 

GPU computation can only be run from the local physical 
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workstation’s console and not from a remote desktop session. 

(However, remote work is possible with VNC, which actually 

runs a local session on the host machine, and transfers the 

screen image to the remote client.) 

D. Parallelized RaPlaT modules 

We have modified two RaPlaT propagation models for 

execution on GPU, using OpenCL tools from NVIDIA – the 

basic Okumura-Hata model, module r.hata, and the extended 

Okumura Hata model, module r.hataDEM. 

 

1) r.hata 

The Okumura-Hata model [17] is a rather simple model that 

ignores obstacles between the transmitter and receiver as well 

as the land-usage related fading. It needs a DEM (Digital 

Elevation Map) with terrain heights above sea level in metres, 

like the one shown in Fig. 6. 

 

 
 

Fig. 6.  DEM for the region around the  

city of Ljubljana 

 

The computed path loss fading map (in dB) is relatively 

simple, and hence not very accurate for complex environments 

(Fig. 7). 

 

 
 

Fig. 7.  Path loss map computed by r.hata 

 

Some computations are carried out only once, at the 

beginning of the module execution, and do not contribute 

significantly to the overall computing time. The computations 

that matter for parallelization are those executed for each 

raster point. In r.hata this is primarily the computation defined 

by the following equation: 

 

)log())log(55.69.44(

)log(82.13

dh

hLL UconstU




 (2) 

 

where LU is the path loss in dB, LUconst is the pre-computed, 

constant part of the path loss in dB, h is the effective transmit 

antenna height in metres (relative to the receive point height), 

and d is the distance between the transmitter and the receive 

point in km. 

According to (2), two base-10 logarithms (log(h) need only 

be computed once), three multiplications and three 

additions/subtractions must be computed. The computations 

have a very regular structure with the calculation for each 

raster point being performed independently of those for other 

points. As such, it should be ideal for implementation on a 

GPU processor. However, these computations are rather 

simple and can be performed quickly, so that the GPU 

processing overhead (fetching and storing the data from/to the 

main graphic adapter memory, etc.) could constitute a 

bottleneck. Therefore, a sufficient number of raster points 

must be processed in parallel at every moment, so that GPU 

can schedule their execution appropriately – computing some 

points while others are waiting for data to be fetched/stored. 

Our tests on GTX 580 (with 512 computing cores) have shown 

that a few 10,000s of computation threads need to be launched 

in parallel to achieve efficient GPU utilization. 

The r.hata computational complexity is proportional to the 

number of raster points. If the linear map dimension (e.g. x or 

y while keeping the ratio between both approximately the 

same) is denoted by n, the order of complexity is O(n
2
), which 

is optimal for image raster processing. 

 

2) r.hataDEM 

The r.hataDEM module implements an extended Okumura-

Hata model. For LOS receive locations, it uses the basic 

Okumura-Hata model. For NLOS receive locations, it 

computes the path loss according to the edge diffraction effect 

on the highest obstacle in a direct line between the transmitter 

and the receive point [18, 19]. Additionally, it takes into 

account the effects of land-usage (buildings, forests, etc.) at 

the receive locations. This is given, in dB, by an additional 

path loss raster map called a clutter map, such as that in Fig. 8. 

Compared to the r.hata path loss map (Fig. 7), the resulting 

map, in dB, is much more detailed and accurate, as seen in Fig. 

9. 

For LOS locations, the computation is basically the same as 

that for r.hata and is described by (2). For NLOS locations, 

the knife edge diffraction loss is calculated according to (3) 

and (4): 

 

2

1
log20





keL  (3) 
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where Lke is the path loss due to the knife edge diffraction 

effect in dB, h is the height of the highest obstacle above the 

direct line between the transmitter and receiver, d1 and d2 are 

the distances of the mobile and base stations from the obstacle, 

and λ is the radio signal wavelength. 

 

 
 

Fig. 8.  Clutter map for the region around the  

city of Ljubljana 

 

 
 

Fig. 9.  Path loss map computed by r.hataDEM 

 

What is particularly important for computational complexity 

is the fact that, for each point, a LOS/NLOS check that seeks 

the highest obstacle along the direct line between the 

transmitter and the receive point has first to be made. For each 

receive point, the obstacle searching algorithm performs some 

initial computations in addition to those described by (3) and 

(4), but the important computationally demanding part is that 

of traveling along the transmitter-receiver line, looking for 

obstacles. Although only some basic computations are 

performed in this loop (additions, subtractions, 

multiplications), it increases the order of complexity by one 

step higher, to O(n
3
), making r.hataDEM much slower than 

r.hata, especially for a large number of raster points. It also 

makes the algorithm irregular, in the sense that the 

computation for each receive point depends not only on the 

corresponding DEM raster point, but on all points on the line 

between the transmitter and the receive point. 

 

E. Execution performance 

The execution performance of the GPU-accelerated version 

of the r.hata and r.hataDEM modules and their original CPU-

only versions was compared for two geographic regions, the 

first of which was the whole Slovenia region. The 

corresponding DEM covered an area of 352 km×224 km with 

a resolution of 25 m and a resulting raster size of 

14081×8961= 126,179,841 points. Due to its large size and 

the computational complexity of r.hataDEM, it was only used 

for r.hata. 

The second region was smaller, the region around the city of 

Ljubljana, but with a greater resolution. The corresponding 

DEM covered an area of 26.9 km×19.2 km with a resolution of 

5 m, with a resulting raster size of 5381×3841 = 20,668,421 

points. It was used for both r.hata and r.hataDEM modules. 

In both cases, the transmitter was placed in Ljubljana at the 

JSI location (an actual mobile phone base station location). 

 

1) r.hata 

The performance of the CPU execution (with the usual 

double floating point precision) and of the GPU execution 

with single and double floating point precision for the Slovenia 

region is presented in Tables III and IV. The numerical results 

computed with single and double precision were not 

completely identical but the differences were negligible for our 

use. Table III shows the execution times when only one raster 

row at a time (14081 points) is computed, while Table IV 

shows the times when many raster rows at a time are sent from 

CPU to GPU for computing – all 8961 rows for GeForce GTX 

580, 1000 rows for GeForce 210. 

The column ‘Calculations’ contains the execution time for 

the computationally intensive part of the module. In the case of 

GPU acceleration, this time comprises the time spent by CPU 

to copy the data from CPU to GPU memory, launch the 

execution of the GPU part of the program and copy the results 

back to the CPU memory. Each of these processes is sent to 

the GPU task queue as a separate task. The waiting (latency) 

times caused by the GPU task mechanism are included in the 

GPU execution times. 

The column ‘Complete’ contains the times required for 

complete execution of the module (CPU and GPU). For r.hata 

this time is much larger than the GPU computation time, 

limiting the overall acceleration to only 2x, which makes GPU 

acceleration a rather pointless activity. The majority of this 

time is spent on reading and writing large GRASS raster maps 

(DEM, path loss map, ca. 126M points), using GRASS library 

calls, which is a rather slow process. The computation itself is 

simple and performed very quickly by GPU, hence the time 

required for reading and writing the maps dominates. 
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Table III.  Execution time for r.hata, Slovenia  

region, one row at a time 

 

 Calculations Complete 
CPU (DP) 12.54s 24.00s 
GTX 580 DP 2.56s (4.9×) 14.30s (1.7×) 
GTX 580 SP 2.08s (6.0×) 13.81s (1.7×) 
210 SP 5.75s (2.2×) 17.31s (1.4x) 

 

Table IV.  Execution time for r.hata, Slovenia  

region, many rows at a time 

 

 Calculations Complete 
CPU (DP) 12.54s 24.00s 
GTX 580 DP 0.86s (14.6×) 12.26s  (2.0×) 
GTX 580 SP 0.47s  (26.5×) 11.92s  (2.0×) 
210 SP 3.53s (3.6×) 14.88s (1.6×) 

 

The differences in GPU execution times between Tables III 

and IV are substantial and are due mostly to the latency times 

of the GPU task queue processing. This can be seen from 

Tables V and VI, which show only net data copy and GPU 

execution times without the time lost by GPU task queue 

processing. 

 

Table V.  Net GPU time for r.hata, Slovenia  

region, one row at a time 

 

 Data copy GPU execution 
GTX 580 DP 0.20s 0.60s 
GTX 580 SP 0.20s 0.14s 
210 SP 1.00s 2.80s 

 

Table VI.  Net GPU time for r.hata, Slovenia  

region, many rows at a time 

 

 Data copy GPU execution 
GTX 580 DP 0.20s 0.48s 
GTX 580 SP 0.20s 0.083s 
210 SP 0.77s 2.61s 

 

GPU execution times in Tables V and VI for GeForce 210 

computations and for double precision GTX 580 computations 

are similar. This is not the case with GTX 580 single precision 

computations, which means that one row of data (14081 points 

– computation threads) is not sufficient for efficient utilization 

of its 512 cores in the case of the relatively simple Okumura-

Hata algorithm. It can also be seen that, for a large number of 

computation threads (Table VI), the ratio of the execution 

performances of the two adapters (2.61 / 0.083 = 31) is not 

greatly different from that of their theoretical performances 

(41.3). 

The difference in GPU execution performance between 

single and double floating point precision (5.8-fold for a large 

number of computation threads, Table VI) is smaller than the 

raw difference in the speed of single and double precision 

floating point operations (8-fold for our consumer-grade 

graphic adapter). This is so because not all the GPU program 

instructions actually perform floating point computations. 

The results from Tables III and IV are shown in Figs. 10 

and 11. 

 
 

Fig. 10.  Relative r.hata execution speedup,  

Slovenia region, one row at a time 

 

 
 

Fig. 11.  Relative r.hata execution speedup,  

Slovenia region, many rows at a time 

 

The execution performance of r.hata for the Ljubljana 

region is presented for CPU and double precision GPU 

execution only in Tables VII and VIII, for single and for all 

rows at a time, respectively. For computation of many rows at 

a time (Table VIII), the acceleration is approximately the same 

as that for the Slovenia region (Table IV) and the execution 

times are proportional to the number of points (ca. 21M in this 

case), as expected. 

 

Table VII.  r.hata for Ljubljana region,  

one row at a time 

 

 Calculations Complete 
CPU (DP) 2.03s 3.83s 
GTX 580 DP 0.80s  (2.5×) 2.82s  (1.4×) 

 

Table VIII.  r.hata for Ljubljana region,  

all rows at a time 

 

 Calculations Complete 
CPU (DP) 2.03s 3.83s 
GTX 580 DP 0.14s  (14.5×) 2.03s  (1.9×) 
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2) r.hataDEM 

As already described, r.hataDEM is computationally much 

more complex and, due to its obstacle-searching procedure, 

lacks the very regular structure of the r.hata algorithms that 

would be very desirable for efficient GPU implementation. 

Nevertheless, GPU was clearly able to cope well with its partly 

irregular structure. Our relatively straightforward 

implementation of the original CPU code on GPU resulted in a 

highly efficient implementation with exceptionally large 

acceleration (Table IX), reaching 194x for single precision 

computation. Even taking into account the reading and writing 

of the GRASS maps (DEM, clutter map, path loss map), the 

acceleration was still 87x for the single precision computation, 

justifying the use of GPU implementation of this module. 

 

Table IX.  r.hataDEM for Ljubljana region 

(all rows at one time) 

 

 Calculations Complete 
CPU (DP) 508.43s 511.62s 
GTX 580 DP 5.81s  (87.5×) 9.05s  (56.6×) 
GTX 580 SP 2.62s (194.0×) 5.86s  (87.3×) 
210 (SP) 110.27s (4.6×) 113.51 (4.5×) 

 

The results from Table IX are graphically represented in 

Fig. 12. 

 
 

Fig. 12.  Relative r.hataDEM execution speedup,  

Ljubljana region (all rows at one time) 

V. CONCLUSION 

GPU processing for two GRASS RaPlaT modules, r.hata 

and r.hataDEM has been implemented and their achieved 

accelerations compared. While the overall acceleration for the 

former was very much lower, due to its lower computational 

complexity than that of the file reading/writing overhead, the 

acceleration of the second module was very satisfactory. 

Certain conditions must be fulfilled for efficient 

implementation of GPU processing. First, the number of 

parallel computations must be large enough to utilize fully the 

GPU processor. In general, this number must be orders of 

magnitude greater than the number of GPU cores, so that the 

GPU internal scheduler can always switch execution to those 

threads with available data instead of waiting for the data to be 

transferred from/to the main GPU memory (which is a fast 

process but with rather large latencies). In the present case, in 

which large raster maps with around 126M and 21M points 

were processed, this was not a problem. 

The GPU computation part must be sufficiently complex to 

make negligible the time spent for overhead tasks performed 

by CPU. In the present case, the most time consuming task was 

reading and writing the GRASS raster maps. For this reason, 

the r.hata module, with its relatively simple GPU-accelerated 

algorithm, achieved a very weak overall acceleration of only 2-

fold. On the other hand, the r.hataDEM module, with its much 

more complex computations, achieved an exceptional 194x 

acceleration (for single precision computations), fully 

justifying its GPU implementation. 

In general, algorithms suitable for effective GPU 

acceleration should be as regular as possible, i.e. without much 

cross connections between parallel threads and using 

input/output local data from data blocks that can be kept inside 

the fast on-chip registers and memory cache. Transferring data 

to/from the GPU main memory is a rapid process, but with 

considerable latencies that can slow down the processing 

unless other waiting threads have data available and can 

immediately continue their execution. The present r.hataDEM 

module is not ideal in this respect. Nevertheless, the GPU 

processor was able to cope well with its irregularities and 

achieved very high acceleration. 
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