

Abstract—This paper deals with the functionality of SIP and

design of an efficient and optimized process for routing SIP
messages. It is used for creation of VoIP calls. This routing logic, in
a form of a script, should be faster and simpler than current
implementations. It should not include any functionality that is not
necessary for initiating VoIP calls on LAN.

Keywords—efficient routing, Kamailio, SIP.

I. INTRODUCTION
OWADAYS there is a large number of multimedia
applications, which require a creation and a management

of multimedia session for their correct operation. In most
cases, the session consists of constant exchange of data
between two or more end users.

We must take into consideration the fact that this
communication is made difficult by the abilities of the end
users. They can connect to a network and move freely within
it. Their connection to the network may change with the
change of an end point they are currently connected to. The
end users may also address each other with different names.
There is a multitude of protocols that can transfer media such
as voice, image, text and data in real time [11].

The Session Initiation Protocol (SIP) [1], [2] cooperates
with them. It enables the end users, known as User Agents
(UA), to find one another on the network and negotiate the
parameters of session. SIP allows the creation of network
infrastructure [5], [7], [9] consisting of UA and SIP servers

This article was created with the support of the Ministry of Education,

Science, Research and Sport of the Slovak Republic within the Research and
Development Operational Program for the project University Science Park of
STU Bratislava, ITMS 26240220084, co-funded by the European Regional
Development Fund. This article is a part of research activities conducted at
Slovak University of Technology Bratislava, Faculty of Electrical Engineering
and Information Technology, Institute of Telecommunications, within the
scope of the project "Grant programme to support young researchers of STU -
Optimization of resources allocation in IPTV systems".

F. Csoka is with the Institute of Telecommunications, Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology in
Bratislava, Slovakia; e-mail: filip.csoka@gmail.com.

I. Baronak is with the Institute of Telecommunications, Faculty of
Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Slovakia; e-mail: baronak@ut.fei.stuba.sk.

E. Chromy is with the Institute of Telecommunications, Faculty of
Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Slovakia; e-mail: chromy@ut.fei.stuba.sk.

L. Kockovic is with the Institute of Telecommunications, Faculty of
Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Slovakia; e-mail: kockovic@ut.fei.stuba.sk.

[3], which process and route request from users.

II. CURRENT STATE
The vast majority of existing open source SIP servers are

too complex to be used for testing SIP User Agent
applications. Even those designed to run on LAN contain
abundance of function, which are counterproductive from
phone application (tested point of view). They have been
designed to offer as much functionality as possible in
reasonable amount of time, with very little optimization.

III. SIP
SIP is an application layer protocol that creates, modifies

and terminates multimedia sessions [10], [12]. It is most
commonly used to make VoIP calls, although it can have other
applications as well. For example, it can be used to initiate
direct file transfers between end users. SIP protocol does not
provide any service, rather it allows implementation of various
services.

It operates on a simple REQUEST → RESPONSE
principle. Clients generate requests and receive responds from
other clients or servers. The syntax of SIP is fairly similar to
HTTP. A specific form of URI (Uniform Resource Identifier)
called “SIP URI” is used for addressing.

There are six request messages defined in RFC 3261 and all
have a fairly similar structure. They consist of Request-Line
followed by several header fields. The Request-Line
comprises of the used request method (for example INVITE,
REGISTER, BYE …) and the SIP URI of the recipient of the
request. Following header fields have all the same structure:
“name of the field: value assigned to that field”. For example
the header field max-forwards may look like this: “Max-
Forwards: 70”. The mandatory header fields of INVITE
request (the message used to initialize connection) are:
1) Via – fields are added to the original message by SIP

servers routing the message, they contain addresses and
information used for routing of responds,

2) From – SIP URI of the user that send the request,
3) To – SIP URI of a user to whom the request is addressed,
4) Contact – contact field contains an IP address that can be

used to contact the sender of SIP message directly,
5) Call-ID – should contain identifier of call that is unique

across the network,
6) CSeq – consists of a number that is incremented during

Analyze of SIP Messages and Proposal of SIP
Routing

F. Csoka, I. Baronak, E. Chromy and L. Kockovic

N

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 109

call with every new generated request,
7) Max-Forwards – is an equivalent of time-to-leave field

from IP, it is decremented each time the message is
processed by a SIP server.

Additional header fields may be present, depending on type

of request and the service requested by the message.
A SIP message may consist of a body following the header

fields. Additional information may be encoded in it using SDP
or XML (such as supported codecs, status of the device …).

SIP response messages have almost the same structure as
requests, except the Request-Line is replaced by Status-Line.
It describes the response to our request using a code (codes
almost the same as in HTTP) and a reason phrase that explains
what the code means to a human reading it, for example
“SIP/2.0 200 OK” response message means that our request
has been accepted by its recipient. The header fields used in
responds are the same one as those used in requests.

A. The Algorithm Proposal
Our goal was to design a highly efficient and optimized

algorithm that analyzes and routs SIP messages. This
algorithm should only take actions intended to route the
message as quickly as possible. Without adding any
unnecessary delay to this process. To achieve that, we needed
to design an algorithm, which would allow devices to register
and route messages in the most efficient possible manner.

The easiest way to achieve this, was to create a simple
software that constantly listens at chosen port (standard SIP
port 5060). And analyse all incoming SIP messages, saves
them into pre-allocated structures and variable, thus making
individual header fields of the message easily addressable.

The next step was to create a routing script. A short
program that is executed for each of these received SIP
messages regardless of their type. The function of our
program is depicted by following flow diagrams.

First step (Fig. 1) in our message processing is checking the
variable corresponding to contents of Max-Forwards header
field. If the value is zero, it is safe to assume that the message
is either looped, or it cannot reach its recipient. We must
generate a SIP response message “483 Too Many Hops” with
header fields corresponding to the original request and send it
to the source of the request. If the value is not zero, we

decrement it by one and continue with message processing.

Next step is size check (Fig. 2). We cannot allow users to

generate requests of unlimited size, it could overload our
system. There is no limit to what can be attached to the body
of a SIP message. A picture to identify the caller, compressed
video and many others. That is why we have to discard
messages with size larger than reasonable number. We chose
two megabytes as limit value. Any message larger than 2 MB
will be discarded and its sender is send SIP response message
“513 Message Too Large”. If the size is smaller, we can
continue with message processing.

These first two steps of our script were only preliminary
checks and are followed by a short informative block. Since
we have chosen that our server should work as a SIP Proxy
server, we must be able to inform the end users about this fact.
The simplest way to do that, is to insert a new header field
Record-Route (Fig. 3) to every message before we forward it
to its destination. Obviously, it is not necessary to add
anything to REGISTER message. It is addressed to server
itself and is not forwarded further.

Presence of Record-Route header fields informs end points
(for example SIP phones), that the routing device should be
addressed all signaling communication, until the end of call
(or session). Depending on their configuration the end devices
may choose to ignore this information. It could cause the

Fig. 2 size check

Fig. 3 header insertion

Fig. 1 loop detection

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 110

server performance issues when handling large amount of
calls. However this problem will surface when this routing
algorithm is not programmed directly, but implemented in SIP
server that monitors transaction (such as Asterisk, Kamailio
…) [4], [6], [8].

After the preliminary inspection of the received SIP
message is concluded and the informative header field is
inserted we may begin the routing of the message. Statistically
fifty percent of all processed messages are requests and fifty
percent are responds (during basic call setup server routes 6
messages, 3 request and 3 responds). Responds carry within
them addresses of the next hop and entire routing path. That is
why it is extremely important to check whether the message is
a response before we decide to make any time consuming
operation (such as searching through database).

The server must digest (Fig. 4) his own Via header field. It
is deleted from the message and the address in the next Via
field is used as a destination address for adjusted message. The
message is then recreated from the variables and structures,
which were filled by parsing the original message and then
adjusted by the routing process so far. Message generated this
way is subsequently sent to the IP address in the top Via
header field. Approximately fifty percent of messages are
processed this way.

The remaining fifty percent is harder to process from the
point of required time. They are requests and their destination
needs to be found.

First step in this process is domain check (Fig. 5). SIP
server checks whether the message is addressed to him or to a
device registered in the domain of our server. If the message is
addressed to a different domain from our own, the server finds
the address of this domain in his database and adds new Via
header field with his information to the received message. The
message is reconstructed same as before and sent to the
address found during this domain lookup. If the name of the
address is not found in the database, the message is sent to the
first domain on the list. This gives us at least some chance that
the message gets delivered. Since it is unlikely that other
servers will register at our server, the domains and their
addresses need to be edited to the database manually.

If the message is addressed to our domain, we must
consider two possibilities. First is that the message is
addressed to the server itself. In our server architecture, it can
only be addressed to the server in registration. So the routing
process will continue by checking whether the message is a

registration.
In case of positive REGISTER detection (Fig. 6), the server

has to make a new AOR (address of record) database entry,
for which the user name in SIP URI is extracted along with
the contact address in the Contact header field. Once the AOR
is created server can discard the original request (since its
purpose has been fulfilled). And inform sender of successful
registration in a form of “200 OK” SIP message, which is one
again generated from the header fields of original request.

The process if fairly similar when the received request is
not addressed to the server, but rather to a user registered at

our server.
Please notice that the most time and resources consuming

process, which is user lookup (Fig. 7), has been saved for last.

Fig. 5 domain check

Fig. 6 REGISTER detection

Fig. 7 user lookup

Fig. 4 response detection

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 111

It may take considerably more time than the rest of the routing
combined. Based on the size of the database and number of
registered users. If the user with corresponding name is not
found, server generates the well-known message “404 Not
Found” and sends it to the sender of the request. The message
is once again generated using the information contained in the
original request. The message may be discarded. If the lookup
was successful, the request gets reconstructed and a new Via
header field is attached to it. The message is then forwarded to
the address found in the database.

There are only three ways in which this routing algorithm
may end (Fig. 8). First is an error state, during which the
original request is discarded and sender is informed why the
request was invalid. These states are depicted red. Second is
acceptance, the algorithm has received valid registration in
form of REGISTER message and accepted it. The sender is
informed by a “200 OK” message. This state is shown as
green. The last state is forwarding of the received message to
its desired destination. This state is Blue.

IV. CONCLUSION
Although this script may seem complicated, it is actually a

bare minimum needed for ensuring functionality of Session
Initiation Protocol in computer networks. It has been
optimized and any reduction of processing steps would result
at least in possible errors, but most likely in collapse of the
communication. It is possible to implement support for
additional services and expand at the cost of efficiency and
speed of routing. The testing had been executed by replacing
routing script of Kamailio with our own. Basic LAN
configuration provided with this system had an average call
rate of 17962.381 calls per second. On the same hardware
configuration and the same Kamailio server with our routing
script, the system had a call rate of 38975.679 calls per
second. This configuration is ideal for endpoint application
testing, because it does not introduce any unnecessary delay
into message routing process.

REFERENCES
[1] SIP: Session Initiation Protocol, RFC 3261, 2002.
[2] A. Johnston, SIP: Understanding the Session Initiation Protocol.

Norwood: Artech House, 2009, 395 pages.
[3] Session Initiation Protocol (SIP): Locating SIP Servers, RFC 3263,

2002.
[4] Kamailio SIP Server Wiki. (2015, October 23). Kamailio SIP Server

(SER): New Features in v4.1.x [Online]. Available:
http://www.kamailio.org/wiki/features/new-in-4.1.x

[5] F. Gonclaves, Building Telephony Systems with OpenSIPS 1.6.
Birmingham, UK, 2010, 264 pages.

[6] B.-A. Lancu, D.-C.Mierla, (2015, October 23) Kamailio (OpenSER)
1.2.0 - Performance Tests [Online]. Available:
http://www.kamailio.org/docs/openser-performance-tests/

[7] F. Gonclaves, Building Telephony Systems with OpenSER. Birmingham,
UK, 2008, 303 pages.

[8] Kamailio SIP Server Wiki. (2015, October 23). Kamailio SIP Server
v4.1.x (stable): Core Cookbook [Online]. Available:
http://www.kamailio.org/wiki/cookbooks/4.1.x/core#loadmodule

[9] V. Kumar, M. Korpi, S. Sengodan. “IP Telephony with H.323
Architectures for Unified Networks and Integrated Services”, John
Wiley & Sons, 2001, 605 pages.

[10] M. Voznak, J. Rozhon, “Methodology for SIP infrastructure
performance testing”, WSEAS Transactions on Computers, vol 9, issue
9, 2010, pp. 1012-1021.

[11] M. Halas, S. Klucik, S, “Modelling the probability density function of
IPTV traffic packet delay variation”, Advances in Electrical and
Electronic Engineering, vol. 10, issue 4, 2012, pp. 259-263, doi:
10.15598/aeee.v10i4.726.

[12] M. Voznak, J. Rozhon, “Approach to stress tests in SIP environment
based on marginal analysis”, Telecommunication Systems, vol. 52, issue
3, 2013, pp. 1583-1593, doi: 10.1007/s11235-011-9525-1.

F. Csoka was born in Bratislava, Slovakia in 1992. He is a student at the
Institute of Telecommunications, Faculty of Electrical Engineering and
Information Technology of Slovak University of Technology (FEI STU)
Bratislava. He focuses on VoIP scalability and security.
I. Baronak was born in Zilina, Slovakia, on July 1955. He received the
electronic engineering degree from Slovak Technical University Bratislava in
1980. Since 1981 he has been a lecturer at Department of Telecommunications
STU Bratislava. Nowadays he works as a professor at Institute of
Telecommunications of FEI STU Bratislava. Scientifically, professionally and
pedagogically he focuses on problems of digital switching systems, ATM,
Telecommunication management (TMN), NGN, IMS, VoIP, QoS, problem of
optimal modeling of private telecommunication networks and services.
E. Chromy was born in Velky Krtis, Slovakia, in 1981. He received the
Master degree in telecommunications in 2005 from Faculty of Electrical
Engineering and Information Technology of Slovak University of Technology
(FEI STU) Bratislava. In 2007 he submitted PhD work. Nowadays he works
as assistant professor at the Institute of Telecommunications of FEI STU
Bratislava.
L. Kockovic was born in Nove Zamky, Slovakia, in 1987. He received the
Master degree in telecommunications in 2012 from Faculty of Electrical
Engineering and Information Technology of Slovak University of Technology
(FEI STU) Bratislava. In his PhD work he focuses on the IPTV and video
delivering for users in wireless networks. Nowadays he works as assistant
professor at the Institute of Telecommunications of FEI STU Bratislava

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 112

Fig. 8 routing logic

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 9, 2015

ISSN: 1998-4480 113

