
 

 

  
Abstract—A holey optical fiber with hexagonal modulation of 
the refractive index is studied with the aid of the Resonant 
Transmission Line (RTL) method. We show how to obtain an 
average approximation of the radial refractive index profile 
that helps to simplify the final lay out of the transmission line 
model for all three spatial components of the electric and 
magnetic fields respectively. 
 

Keywords—holey optical fiber, EM modes, transmission 
lines. 

I. INTRODUCTION 

HE field of fiber optics is a rapidly expanding sector in 
both academia and industry with a growing body of 

applications. Starting with the pioneering work of Kapany [1] 
who first coined the term, as well as Kao [2], [3] on the single-
mode fibers during the 20th century there is now a great variety 
of different realizations for both single-mode and multi-mode 
fibers. Apart from fiber optics wide applicability in 
communication technologies, there is also a decades long 
attempt to use this particular technology in another promising 
area which is that of tabletop laser based accelerators using the 
effect of plasma “wakefield” also called Laser Wakefield 
Accelerators (LWA) [4-7].  

 
While the present technology allows at least three types 

of possible photonic crystal fibers classified as band-gap 
fibers, Bragg fibers and holey fibers, the particular application 
in LWAs requires multi-mode fibers with a hole replacing the 
usual inner metal core in order to be able to accommodate an 
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amount of injected plasma which is then excited by a laser 
source. This method presents certain experimental challenges 
including computational problems especially in the area of 
very strong fields that can cause severe deviations from 
linearity due to the inherent dependence of the plasma 
refractive index to higher orders of the propagating electric 
field intensity.  

In order to simplify the calculation of the propagating modes 
as well as to facilitate the extraction of so called “leaky” 
modes from surface modes known as “cladding” modes around 
the interior core we use the previously introduced Resonant 
Transmission Line method (RTL) [8-10] which presents 
certain appealing characteristics due to its simplicity and speed 
in comparison with other more complex methodologies like 
FDTD and FEM methods. In section 2, we provide details for 
the general equations of the model for arbitrary refractive 
index. In section 3, we analyze the particulars of the holey 
fiber with layered hexagonal grid of holes. In section 4, we 
present the details for obtaining reduced field equations in the 
RTL method and in section 5, the obtained average refractive 
index is presented in the truncated model. 

II. TRUNCATION OF MAXWELL EQUATIONS 
We start from a conventional representation of a common 

circular cylindrical optical fiber separated in hexagonal layers 
with a set of an increasing number of air holes per layer.  For 
each circular cylindrical layer the associated Maxwell 
equations (for a constant wavelength i.e. constant frequency 
‘ω’) can be written as 

 

         (1) 

 
We assume standard dispersion characteristics as 

 and  where . 

We can then use the replacement . We normalize (1) 
to have the same MKSA units of V/m as 

 

        (2) 
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Standard variable separation in cylindrical 

coordinates immediately obtains from the first vector 
Maxwell equation  the following set of three partial 
differential equations (PDE) as 

 

     (3) 

 
We are interested in the radial field distribution so 

we take a full Fourier transform along the z and φ 
directions with their associated wave numbers given 
as β and l respectively. Across the angular direction 
all modes are taken (mod 2π) so that l is integer.  

 

       (4) 

 
In (5), we introduced   for 

the associated Fourier components. We can now 
replace β and r with their reduced components as 

 and  so that (4) takes the form 

 

      (5) 

 
With exactly the same procedure we also obtain 

from the second vector Maxwell equation the 
complementary PDE system 

 

       (6) 

 
 In (6), the symbol  is used to denote the conventional 

convolution operator after Fourier decomposition with the 
arbitrary function n(r,l) being the Fourier transform of the 
original refractive index n(r,φ). In the next section we describe 
an approximate scheme for analyzing the influence of the 
particular type of refractive index composed of a superposition 
of square steps as a cut-off filter effect for the resulting 
harmonics. 

III. REFRACTIVE INDEX MODULATION AS FILTERING 
 Ιn the particular case of a hexagonal holey fiber, one can 

analyze mode propagation, as a succession of thin cylindrical 
layers. To this aim, we separate the whole fiber circular cross-
section into a set of thin cylindrical layers allowed to extend 
beyond the cladding to take into account the surrounding air 
with n0=1. Each layer’s thickness δr = r1 + r2 is defined as 
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We can then approximate n(r,φ) as n(φ) for each <r> = δr/2. 

Οne can write a series approximation for the refractive index 
as .  Taking into account 
the symmetry of the Fourier transform we see that 

)()exp()()exp( llfjllfjl ′+⊗=⊗ ϕϕ  so that the 
expressions in the rhs of (6) spread around a spectrum of 
harmonics.  

This is also to be understood as a result of successive 
scatterings from the bored air holes. We can now use the 
natural geometry of the hexagonal lattice to see that for each 
set of holes we can have either 6k or 6(k+1) harmonics. As 
each thin cylinder crosses this alternating numbers it sees a 
different set of periodic rectangle functions that will be shown 
rigorously to contribute a different number of harmonics. For a 
common harmonic to pass through one must then take an 
integer product which leads to higher and higher harmonics 
thus cutting out the entire spectrum apart from the last highest 
frequency.  

We conclude that for holey optical fibers the approximation 
)(),( 22 rnlrn ≈  suffices for further analysis of the resulting 

equations. Τhe original system (6) becomes 
 

        (7) 

 
For a hexagonal pattern of holes we may utilize elementary 

analytical geometry to derive the two separate regions where 
the refractive index alternates between the vacuum value and 
the slightly higher value of the crystal material. We assume 
that along each separate layer a large circle corresponding to 
each cylindrical shell of radius r from the center of the fiber to 
the center of a smaller hole of radius r << r0 is cut while 
moving clockwise along the large circle.   

We prescribe a set of circles of successive radii r. For each 
small radius r we can find the air holes (in 1/6 angle of the 
PCF) which are cut by the r and we can calculate its arcs inside 
the air holes. The sum of these arcs divided by π/3 can give the 
average squared refractive index. In fact the square of the 
refractive index in this sum is equal to one, while the refractive 
index in the rest arc is the square of the silica refractive index. 
Hence the average refractive index can be easily calculated 
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along r. In figures 1-4, the average refractive indices of a 
hexagonal PCF of six layers as functions of the fraction r/d are 
shown. The figures were generated by the MATLAB code for 
various values of the fraction r0/d=0.49,0.40,0.30 and 0.20. 
Codes are given in Appendix A. We will proceed with the 
exact analysis of these in terms of the previously introduced 
general model of Resonant Transmission Lines (RTL) for one 
dimensional Sturm-Liouville problems.  

IV. TRANSMISSION LINE REDUCTION METHOD 
In order to utilize RTL, we need to find appropriate 

correspondence of the equations in (7) with a particular 
version of the Telegrapher’s equation for an ideal tuned 
transmission line (without ohmic losses) via the introduction of 
an equivalent set of potentials and currents. For this reason we 
take as defining relations the following equations 

 

 

 

 
 

 
In (8), we defined a new auxiliary function 

as . The Fourier transforms of the original field 
components can also be given from the inverse of (8) as 

 

 

 

 

 

 
 

The original equations take the equivalent form 
 

        (10) 

In (10), we have again defined the new auxiliary 
functions  as well as 

 . Regarding boundary 
conditions, we also notice that because of the continuity 
of   and  on the cylindrical surface of any 
layer, the same is also true for the new variables 

 The resulting system of coupled ordinary 
differential equations (ODEs) is equivalent with a pair 
of coupled ideal lossless transmission lines. 
The system in (10) can be turned into an eigenvalue 
problem with the ensatz of exponential dependence of 
all variables as  
 

  
 
where the zero indices denote constants, in which case 
we may transform (10) into an algebraic system as  
 

                              (11) 

 
Replacing   ,  , we obtain a 
set of two homogeneous equations 
 

      (12) 

This is equivalent to the condition  
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 (13) 
We immediately obtain the eigenvalues for the original 
problem in (10) as . Hence the system 
has two eigenvalues and two mutually excluded or 
“normal” eigenvectors. Replacing the value of ξ in (12) 
gives the eigenvector elements as  , 

for the negative branch and 
 for the positive branch. 

Their respective “current” eigenvectors are then given 
by  ,  and  , 

.   
 
We notice that M(r) is linear in l and exactly at –l we 
have (Vs, Is) = (Vd, Id). Thus we can consider as a 
unique solution, the set  with the integer ‘  ’ 
varying from , the first decoupled equation 
from (10) being 

          (14) 

 
Furthermore  are continuous functions at their 
boundaries although n(r) is varying from layer to layer 
because exactly at the boundaries we have  
and  . We then take the second decoupled 
equations as  
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             (15) 

 
Thus the set of two originally coupled transmission 
lines (10) is equivalent to two independent transmission 
lines (14) and (15). These two independent wave 
equations represent separately the two normal (E.H = 
0) electric and magnetic components. This is an 
inherent demand of optical fiber propagation due to 
birefringence effects. 
 
From standard transmission line theory, we know that 
we can approximate each thin cylindrical layer with an 
equivalent T-quadrupole circuit having the same 
dynamics as that described by (14) or (15). 

 

 
                     Fig. 1, Equivalent T-quarupole circuit for a thin 
cylindrical layer. 

  
With recourse to figure 1, for the pair of (Vs, Is) we 
have the defining relations 
 

 
  

For   the impedances can be approximated to 
match (11) as 
 

        (16) 

If , both  are “capacitive” reactances, 
however for ,  becomes “inductive”. By the 
same token, For  the approximate respective 
impedances of the T-circuit are given by (12) as 
 

           (17) 

 

We may now consider the succession of all cylindrical 
layers as a lumped circuit formed by a succession of 
equivalent T-circuits with only reactive elements. For 
given ‘ ’, the ‘β’’ values that lead to the resonance of 
the overall transmission line are the eigenvalues of the 
whole optical fiber. When a transmission line is in 
resonance at any point  of the line, the sum of 
reactive impedances arising from the successive T-
circuits on the left and right sides of  should be equal 
to zero. Hence, the overall resonance condition is given 
as 
 

        (18) 
 

Equation (18) can be used for building a fast RTL 
numerical method for finding the β propagation 
eigenvalues, with  being the overall reactive 
impedances of successive T-circuits on the left and 
right of , for either (14) or (15). Each of them gives in 
general a different set of values which may only come 
close to each other in cases of strong birefringence. The 
latter case does not pose a problem for perfect 
cylindrical symmetry where this effect is considered 
negligible. We also notice that relations 

 result in  and 
similarly for the other field components so that we 
always get  the proportionality being a 
generic characteristic of all optical fibers. 
In order to calculate the overall reactive impedances on 
the left and right of  we have find the impedances for 

 and . As we proceed to 0 or to  the 
remaining piece of transmission line becomes 
“homogeneous” i.e. its overall reactive impedance is 
equal to its characteristic impedance given as 

 . For 

 thus 
. Similarly, for  thus 

. For l=0   (open circuit 
at the center of the equivalent transmission line).  
It is useful to notice that in general we have the 
following equivalence between our formulation and the 
classic formulation for modes of optical fibers. 
1. For l=0  the modes (VS,IS )  are the TM modes ,while 

the modes  (VSS,ISS )  are the TE modes. 
2. For l>0  the modes (VS,IS )  are the HE modes ,while 

the modes  (VSS,ISS )  are their HE  birefringence modes. 
3. For l<0  the modes (VS,IS )  are the EH modes ,while 

the modes  (VSS,ISS )  are their EH  birefringence modes. 

V. CONCLUSIONS 
In the paper it was shown the analysis by which the holey 

fibers can be approximated by a set of two, independent and non 
homogeneous, Resonant Transmission Lines (RTLs), each one 
representing one mode of the birefringence. The simulation of 
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the holey fibers with RTLs, gives a new simple and effective 
method for the calculation of the eigenvalues of the RTLs 
representing the various modes of the holey fibers. Furthermore 
for each eigenvalue, the average values of E.M. fields for every 
thin cylinder (of radius r) of the holey fiber can be calculated by 
the related eigenfunctions of the RTLs. 

APPENDIX 
Average refractive index calculation method 
 

function ref=eur_refp(r) 
%PCF hexagonal 
global n1 d r0 R m rt ff crin 
  
% d=distance of the centers of the 
hexagonal lattice % m=number of lattice 
rows of air holes (m=6 in the figure 
below) 
% ro=radius of air holes r0<0.5*d  
% R=external radius of the fiber gladding 
R> m*d 
% If not given R=1.2*m*R 
if r<=d-r0;  
  ref=n1; 
elseif r>d-r0 && r<m*d+r0; 
 for nn=1:m ; 
 for 
n=1:nn;rr(nn,n)=nn*d*exp(j*2*pi/3)+(n-
1)*d; 
         rt(nn,n)=abs(rr(nn,n)); 
 end 
 end 
 f=0; 
 for nn=1:m; 
 for n=1:nn;rrr=rt(nn,n);drt=abs(rrr-r); 
 if drt<r0; ff=2*acos((r^2+rrr^2-
r0^2)/2/r/rrr);f=ff+f;end 
 end 
 end 
 ref=sqrt((f+(pi/3-f)*n1^2)/(pi/3)); 
else ref=n1; 
end 
% if r<rin; ref=1;end 
if r>R;ref=1; 
End 
 

 

Fig. 2 Holey Fiber of m=6 
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Fig. 3 Equivalent average refractive index for r0/d=0.49 and 

m=10 
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Fig. 4 Equivalent average refractive index for r0/d=0.40 and 
m=10 
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Fig. 5 Equivalent average refractive index for r0/d=0.30 and 

m=10 
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Fig. 6 Equivalent average refractive index for r0/d=0.20 and 
m=10 
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