
 

 

  
Abstract—Macrodiversity reception containing of macrodiversity 

selection combining (SC) receiver and two microdiversity SC 
receivers in the presence of short term fading, long term fading and 
co-channel interference is considered in this article. Desired signal 
experiences Weibull short term fading, correlated Gamma long term 
fading and co-channel interference experiences α-κ-µ short term 
fading and correlated Gamma long term fading. In this article, 
probability density function and cumulative distribution function of 
Weibull random process and α-κ-µ random process ratio are 
evaluated. Theses expressions are used for evaluation cumulative 
distribution function of signal to interference ratio at outputs of 
microdiversity SC receivers and cumulative distribution function of 
macrodiversity SC receiver output signal to interference ratio. Outage 
probability can be evaluated from cumulative distribution function. 
The influence of Weibull short term fading nonlinearity parameter, α-
κ-µ short term fading severity parameter, α-κ-µ short term fading 
nonlinearity parameter, α-κ-µ short term fading Rician factor, 
Gamma long term fading severity parameter and Gamma long term 
fading correlation coefficient are analyzed. 
 

Keywords—α-κ-µ short term fading, Gamma fading, 
macrodiversity reception, microdiversity reception, outage 
probability, selection combining (SC), Weibull short term fading.  

I. INTRODUCTION 
HORT term fading, long term fading and co-channel 
interference degrade outage probability, average bit error 

probability, system capacity, level crossing rate and average 
fade duration of wireless mobile communication radio system 
[1]. Macrodiversity technique reduces short term fading 
effects, long term fading effects and co-channel interference 
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effects on outage probability. Macrodiversity SC receiver 
selects microdiversity SC receiver with higher signal envelope 
average power at inputs resulting in Gamma long term fading 
reduction and microdiversity SC receiver selects the branch 
with the highest signal to interference ratio resulting in short 
term fading effects reduction and co-channel interference 
effects reduction [1] - [3].   

There are several distributions that are used to describe 
signal envelope in fading channels including Weibull 
distribution and α-κ-µ distribution [4]. Weibull distribution 
can describe small scale signal envelope variation in nonlinear, 
non line of sight multipath fading channel. This distribution 
has parameter α related to nonlinearity of environment. For 
α=2, Weibull distribution reduces to Rayleigh distribution; for 
α goes to infinity Weibull fading channel becomes no fading 
channel.  

The α-κ-µ distribution has three parameters [5]. The 
parameter α is nonlinearity parameter; κ is Rician factor and 
can be evaluated as a ratio of  dominant component power and 
scattering components powers; and µ is short term fading 
severity parameter [6] [7]. The α-κ-µ distribution is general 
distribution and a few distributions can be derived from this 
distribution as special cases. For α=2, the α-κ-µ distribution 
reduces to κ-µ distribution; for κ=0, the α-κ-µ reduces to α-µ 
distribution; for κ=0 and µ=1, the α-κ-µ distribution reduces to 
Weibull distribution; for α=2 and µ=1, the α-κ-µ distribution 
reduces to Rician distribution; for α=2 and κ=0, the α-κ-µ 
distribution reduces to Nakagami-m distribution and for α=2, 
κ=0 and µ=1, the α-κ-µ distribution reduces to Rayleigh 
distribution. 

The analysis of wireless communication system 
performance in α-k-μ fading channel subjected to shadowing is 
done in [8]. Second-order statistics for the envelope of α-κ-μ 
fading channels are derived in [9]. 

There are more works in open literature considering 
macrodiversity system performance in the presence of large 
scale fading, small scale fading  and co-channel interference. 
In [10], macrodiversity system with macrodiversity SC 
receiver and two microdiversity SC receivers operating over 
Gamma shadowed Weibull multipath fading channel in the 
presence of Weibull co-channel interference is considered and 
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level crossing rate is evaluated. Outage probability of 
macrodiversity reception in the presence of Rayleigh short 
term fading and co-channel interference subjected to Rayleigh 
small scale fading is evaluated in [11].  

Outage probability of macrodiversity with two 
microdiversity SC receiver in the presence of Nakagami-m 
short term fading, Gamma long term fading and co-channel 
interference is efficiently evaluated as expression in the closed 
form in [12].  

In this paper, macrodiversity system is applied to reduce 
short term fading effects, long term fading effects and co-
channel interference effects on system performance. Desired 
signal is subjected to Weibull short term fading and Gamma 
long term fading and co-channel interference experiences α-κ-
µ short term fading and Gamma long term fading. Outage 
probability of Weibull random variable and α-κ-µ random 
variable ratio is evaluated and this expression is used for 
calculation outage probability of microdiversity SC receivers 
and macrodiversity SC receiver. The results, derived in this 
paper, can be used in performance analysis of macrodiversity 
reception in the presence of short term fading, long term 
fading and co-channel interference. 

II. RATIO OF WEIBULL RANDOM VARIABLE AND Α-Κ-µ 
RANDOM VARIABLE 

The Weibull random process and α-κ-µ random process 
ratio is: 
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where x1 follows Weibull distribution [4]: 
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α is Weibull short term fading nonlinearity parameter. 
The random variable x is Rayleigh distributed: 
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Ω1 is average power of x. 
Random variable y1 follows α-κ-µ distribution [6]: 
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κ is Rician factor; α is nonlinearity parameter; Ω2 is average 
power of y1; y follows κ-µ distribution: 
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Probability density function of z1 is: 
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Cumulative distribution function of z1 is: 
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III. PERFORMANCE OF MACRODIVERSITY SYSTEM 
Model of macrodiversity system considered in this paper is 

presented in Fig. 1.  
Probability density function of xij, i=1,2; j=1,2 is: 

( )
2

, 0, 1, 2, 1, 2
ij

i
ij

x
ij

x ij ij
i

x
p x e x i j

α −
Ω= ⋅ ≥ = =

Ω
. 

      (8) 
Random variables yij follows α-κ-µ distribution: 
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Fig.1. System model 

 

Cumulative distribution function of z1 is: 
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Joint probability density function (JPDF) of Ω1 and Ω2 is: 
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where c is Gamma long term fading severity parameter, ρ is 
correlation coefficient, and Ω0 is average value of Ω1 and Ω2.   

Joint probability density function (JPDF) of s1 and s2 is: 
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where c1 is Gamma long term fading severity parameter of 
interference, β is average value of s1 and s2. 

Macrodiversity receiver selects microdiversity SC receiver 
with higher signal envelope average power at inputs. 

 Accordingly, cumulative distribution function of 
macrodiversity SC receiver output signal to interference ratio 
is: 
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Let's introduce some integrals to solve previous equation. 
The integral J1 is: 
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The integral J2 is: 
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Previous two-fold integral can be solved by using the 
formulae [13]: 
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where ( )2 1 , , ;F a b c z is Gauss hypergeometric function [14] 
[15]. 

For integral J2, the parameters are: 
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After substituting, the integral J2 is [16]: 
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The integral J3 is: 
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For integral J3, the parameters are: 
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After substituting, the expression for integral J3 becomes:  
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The integral J4 is: 
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The parameters for solving the integral J4 by formulae (16) 
are: 
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2 3 1 1 22 2 2p i c j i i µ= + + + + +  

1
1α
β

=  

( )2 2
0

1
1

α
ρ

=
Ω −

 

( )1a kµ= +  

2b z=  

1 2 2n i i µ= + +  

1 2 3 1 1 22 2 2p p i c j i i µ α+ = + + + + + +  

1 2 3 12 2p p n i c j α+ − = + + +  

1 1 2 2p n i iα µ− = − − −  

After substituting, the expression for integral J4 ensues: 

( )( ) 1 2 2
4 2

11
i i

J k
z

α µ

αµ
− − −

= +  

( ) ( )( ) 3 12 2
2

3 1 1 2 02 2 2 1
i c j

i c j i i
α

µ ρ
+ + +

⋅Γ + + + + + Ω −  

( ) ( )
( )

3 1

3 1 1 2

2 2
2 2 2

i c j
i c j i i

α α
µ α

Γ + + + Γ

Γ + + + + + +
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( ) ( )2
0

2 1 3 1 3 1 1 2 2

1 1
2 2 , , 2 2 2 ;1

k
F i c j i c j i i

z

ρ µ
α α µ α

β

 Ω − +
 + + + + + + + + + −  
 

 

 (21) 

After putting the formulas (14), (17), (19) and (21) in (13), 
we obtain cumulative distribution function of macrodiversity 
SC receiver output signal to interference ratio. Since the 
outage probability is defined as probability that receiver output 
signal envelope falls down the predefined threshold, 
mathematically, the outage probability is actually CDF of 
macrodiversity SC receiver output signal and deffined by [17, 
eq. (2.23)]: 

( ) ( )out th thP P zγ γ= < , 

where γth is the threshold value. 

IV. NUMERICAL RESULTS 
Outage probability of macrodiversity system in the 

presence of Weibull desired signal, Gamma small scale fading 
and α-κ-µ co-channel interference versus macrodiversity SC 
receiver output signal to interference ratio is presented in Fig. 
2 to 4. for several values of Gamma long term fading severity 
parameter, Gamma long term fading correlation coefficient, 
Weibull short term fading nonlinearity parameter, α-κ-µ short 
term fading nonlinearity parameter, α-κ-µ short term fading 
Rician factor and the α-κ-µ short term fading severity 
parameter. 

When resulting signal to interference ratio increases, the 
outage probability increases also. The influence of signal to 
interference ratio at outage probability is higher for lower 
values of signal to interference ratio. Outage probability 
decreases when Rician factor increases.  

The influence of Rician factor on the outage probability is 
higher for lower values of signal to interference ratio. Also, the 
influence of Rician factor on the outage probability is higher 
for lower values of Rician factor. 

 

 
Fig. 2. Outage probability of macrodiversity system versus 

output signal to interference ratio 

 
Fig. 3. CDF of macrodiversity system versus output signal 

to interference ratio z 

 

 
 Fig. 4. CDF of macrodiversity system depending on output 

signal to interference ratio z 

 
When signal to interference ratio goes to infinity, outage 

probability goes to one. Outage probability decreases when 
Gamma long term fading severity parameter decreases. The 
impact of Gamma long term fading severity parameter on the 
outage probability is higher for lower values of Rician factor 
and lower values of signal to interference ratio. 

Correlation coefficient of Gamma long term fading goes 
from zero to one. When correlation coefficient goes to one, 
macrodiversity system operates as microdiversity. Outage 
probability decreases when correlation coefficient decreases. 
The influence of correlation coefficient on outage probability 
is higher for lower values of Rician factor and signal to 
interference ratio. Outage probability decreases when Weibull 
short term fading nonlinearity parameter increases. The 
influence of Weibull nonlinearity parameter on outage 
probability is higher for lower values of Rician factor and 
lower values of Weibull short term fading severity parameter. 
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V. CONCLUSION 
In this paper, macrodiversity system with macrodiversity 

SC receiver and two microdiversity SC receivers in the 
presence of short term fading and long term fading is 
considered. Desired signal is affected by Weibull multipath 
fading and correlated Gamma long term fading, and 
interference signal is affected by α-κ-µ short term fading and 
also Gamma long term fading. Macrodiversity reception is 
used to mitigate short term fading effects, long term fading 
effects and co-channel interference effects on outage 
performance. 

Macrodiversity receiver combines signals from antennas at 
base stations to select microdiversity with higher signal 
envelope average power resulting in long term fading 
reduction. Microdiversity combines signal envelopes from 
multiple antennas at base stations selecting the branch with the 
highest signal to interference ratio resulting in short term 
fading and co-channel interference effects reduction. 

In this paper, probability density function and cumulative 
distribution function of Weibull and α-κ-µ random process 
ratio are efficiently calculated and used for cumulative 
distribution functions of signal to interference ratio at outputs 
of microdiversity SC receivers and macrodiversity SC receiver 
output signal to interference ratio evaluation. 

By using derived formulas, outage probability of 
macrodiversity in the presence of Weibull short term fading, 
Gamma long term fading and Weibull co-channel interference 
can be determined. The influence of Weibull short term fading 
nonlinearity parameter, Gamma long term fading severity 
parameter, Gamma long term fading correlation coefficient, 
the α-κ-µ short term fading Rician factor, the α-κ-µ short term 
fading nonlinearity parameter and the α-κ-µ short term fading 
severity parameter on the outage probability is analyzed.    

Outage probability decreases when Gamma long term 
fading severity parameter, Weibull short term fading severity 
parameter and α-κ-µ short term fading severity parameter 
increases. Also, outage probability increases when Rician 
factor increases. 
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