
 

 

  
Abstract—We use the previously introduced Resonant 

Transmission Line (RTL) method for numerically tackling the 
problem of a 1D quantum wire with arbitrary curvature 
allowing fast, efficient computation of both eigenvalues and 
eigenfunctions. Analysis reveals a strict dependency of the 
energy eigenvalues to the curvature magnitude with significant 
lowering and even vanishing of the first harmonic beyond a 
threshold value which severely affects excitability of each 
eigenfunction .   
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I. INTRODUCTION 
N a recent series of publications Stockhofe and 

Schmelcher [1] as well as Zambetaki et al., [2] propose a 
treatment of the Schrodinger equation in a curvilinear 

coordinate system for one dimensional quantum waveguides.  
We examine this recently introduced case of the 

Schrodinger equation on a curved one dimensional path, in the 
light of the proposed Resonant Transmission Line (RTL) 
simulation and the related numerical method. By a 
segmentation process we show how to extend this in the case 
of any curved wire of arbitrary curvature.  

The calculation of eigenvalues is simplified using the 
resonance condition of the equivalent RTL and for each 
eigenvalue the eigenfuctions can be calculated also 
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numerically. We show that for special shaped quantum wires 
the basic “Energy” of excitation can be reduced significantly.  

II. DESCRIPTION OF THE RTL METHOD 
A generic equivalence of the Schrodinger problem or the 

general Sturm-Liouville problem in one dimension has been 
established in [3], [4] and [5], which is valid not only for ODE 
problems but also for PDEs in separable coordinate systems. 
To this aim, we consider the representation of a non 
homogeneous lossless transmission line defined along its 
geometric length s, with V(s) and I(s) its voltage and current 
values and X(s), Y(s) its “reactance” and “admittance” per 
length unit respectively. The general PDE representation of 
such a line is given as 
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( ) ( ) ( )
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V s jX s I s
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      (1) 

 
It is very easy to show that the set (1) is equivalent  to the 

generic Sturm-Liouville equation  
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This the exact same form of the corresponding Schrödinger 

operator under the identification of the wavefunction y(s) with 
the current I(s) and the voltage V(s) with the 

expression 1 ( )
( ) lj y s

Y s
∂ . Considering an infinitesimal length 

transmission line ds where both admittance and reactance can 
be taken as constant, the description becomes identical with 
that of the so called T-quadrupole circuit shown in fig 1.  

Simulation of Quantum Wires with Resonant 
Transmission Lines 

 
 

       C. D. Papageorgiou, T. E. Raptis and A. C. Boucouvalas 

  

 

I 

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 11, 2017

ISSN: 1998-4480 22



 

 

 
 
Fig. 1 Schematic of a 4-port T-circuit. 
 
The respective impedances are then given as 
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In (3) we identify the local transmission factor as 

( ) ( ) ( )s j X s Y sγ = and the input impedance 

as ( ) ( ) / ( )Z s j s Y sγ= − . For ( ) 1s dsγ <<  we can always 
approximate this with a proper choice of the step ds as 
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A succession of such T-quardupoles can be used to 

approximate a transmission line with continuously varying 
parameters of reactance and admittance. In any real non 
homogeneous transmission line, both γ2 as well as Y(s) are 
functions of the excitation frequency ω associated with the 
energy parameter E. The frequency values, for which the 
whole line becomes tuned so as to achieve maximal power 
transmission, are the resonant values which stand for the line 
eigenvalues and the corresponding current values along the 
line are the line’s eigenfunctions.  

From the well known properties of transmission lines, for 
any such resonant line, the total reactances calculated from the 
left and right terminals towards any intermediate point must 
equal each other with opposite signs. Hence, the resonant 
values of frequencies or energies can be found from the roots 
of the total function with L1,2 the total lengths towards any 
central point as 

 
0)()( 21 =+ LXLX RL       (5) 

 
Given the terminal impedances, the left and right totals can 

be calculated for any E value.  

 
Having found the eigenvalues from the roots of (5), it is 

equally possible to extract the exact shape of the 
eigenfunctions from the current values as follows. From the 
general theory of the telegrapher’s equation we know that a 
solution via a transfer matrix can always be written in the form 

of a dynamical system 1
ˆ

−= nnn T xx , where ],[ nnn IV=x , 
the voltage-current vector and Tn an array of the form  
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In (6) we used ds=xn-xn-1. 

III. THIN CURVED WIRES AS QUANTUM POTENTIAL WELLS 
Without any external electric field acting on a quantum 

wire, free electrons will be affected by the wire’s curvature and 
some deviation from the original smooth envelope of their 
eigenfunctions should be expected.  

To analyze the situation we assume a parametric 
representation of the curve on which the wire lies given by 
three scalar functions of an abstract parameter s as x(t), y(t) 
and z(t) and take a split into N sections by an arbitrary choice 

of t1, …, tN such that 0
222 lzyx <∆+∆+∆ with l0 a 

sufficiently small length with 1( ) ( )i i n i nx x t x t −∆ = −  etc for 
Δy, Δz. Any individual section will then have its own radius of 
curvature R given by the relation (7) 
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 (7) 

In (7), simple and double dots stand for the 1st ans 2nd 
derivatives with respect to the parameter t and their evaluation 
is taking place in the middle point of each 
section 1( ) / 2n nt t −+ . 

We can easily prove that the parameter t can always be 
replaced by the length s along the curved thin wire given by 

2 2 2

0

t

s x y z dt′ ′ ′= + + ⋅∫                                                             

This means that for any set of consecutive   parameter 
values tn the respective values of sn and σn can be numerically 
calculated.  

Thus at the present paper the curvature σ can be considered 
as function of the length parameter s. 

The Schrödinger equation for a curved one dimensional 
(thin) wire developed along its parametric length s with 

Ls ≤≤0 is given by 

δs 

s+δs s 
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In (8), the standard curvature is given by the local radius R 

via )(/1)( sRs =σ . This, homogeneous, linear 2nd order 
ODE can be solved with the aid of the Resonant Transmission 
Line (RTL) technique previously introduced by Papageorgiou 
et.al in [3] and used already in a variety of other 2nd order 
ODEs and PDEs.  

Following the analysis there, equation (1) reduces to the 
case of a transmission line with 

4/)()(,1)( 2 sss σε +=Χ=Υ which give the local 
propagation constant at each point as 

 
( )4/)()( 22 ss σεγ +−=         (9) 

 
We take every small part of the curved wire of length δs as 

equivalent to a T-quadrupole of impedances ZB and ZP with 
reference to figure 1, being given as   
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We also take the terminal impedances of the equivalent 

line at the boundaries s =0 and L to be infinite so as to make 
y(s) zero at these points.  

We now consider a varying curvature which introduces an 
equivalent effective potential of geometric origin and we 
compute the resulting eigenvalues and eigenfunctions. To this 
purpose, we divide the wire in small parts of length δs along 
which we may take the curvature to be practically constant. 

Each such element is then equivalent to the T-quadrupole 
parametrized as in (2) and (3). The whole wire is then 
equivalent to a lossless non homogeneous transmission line 
made by the succession of T-quadrupoles terminated at infinite 
impedances. We now have the freedom to choose any arbitrary 
intermediate point and calculate the respective “left” and 
“right” impedances as functions of the energy ε. Eigenvalues 
will then correspond to the roots of the 
function )()( εε RL ZZ +    

The respective eigenfunctions are then directly obtained for 
each and any eigenvalue from the values of the respective 
currents of the T-quadrupoles through the application of a 
Transfer Matrix on a set of initial conditions as explained in 
App. A.  in the form 
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 (11) 
Initial values are taken as V0 =1 and I0 = 0. For 

infinitesimal displacements, (4) can always be approximated as  
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  (12) 
 
The trajectory obtained this way contains the 

representation of the eigenfunction from the current values [I1, 
I2,…In] at the chosen points of the curved wire. 

From quantum mechanical properties it is known that the 
square of   y(sn)= In , represents the expected probability of the 
free electron to be placed at the point sn . Thus for a large 
number of free electrons of the curved wire the squared values 
of the set  [I1, I2,…In] are giving the electric charge at the set 
of points [s1, s2,…sn] . 

We then naturally anticipate that under an external 
excitation there will be a tendency of free electrons to be 
present at these points proportionally to their squared 
“currents”. We performed a numerical exploration of the 
effects of curvature in the one dimensional wire model.  

Since the first harmonic with the lower energy eigenvalue 
appears to be the most important for any energy transfer 
mechanism, as well as for the maximal concentration of the 
free electron density, we concentrate on this case.  

For the first harmonic we expect to have two zeros at the 
terminal points (0, L) and a single maximum in an intermediate 
point. We chose to examine a case of a curved planar 
symmetric wire of  length L = 1  subdivided in three areas as 
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The middle part corresponds to an arc with 

radius 1( 2 ) /R L L ϕ= −   while φ in stands for the arc angle. 
Results of our simulations are shown in figure 2 where the 
eigenvalue of the first harmonic is plotted as a function of the 
arc φ for the characteristic ratio n1=0.28. Also in the figures 
3,4,5 we show the first three eigenfunctions of  curved 
quantum wires as described before with characteristics  
{n1=0.4 &  φ =1100}, {n1=0.25 &  φ =1800} ,{n1=0.1 &  φ 
=2700} are plotted. The relevant MATAB codes are shown in 
Appendix I  
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FIG. 2 CURVED WIRE SEGMENT FOR N1=0.28 IN GRADES. 
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Fig. 3  
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Fig. 4  
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Fig. 5 

IV. DISCUSSION AND CONCLUSIONS 
By the previous analysis it becomes evident that the 

curvature effect results in a kind of amplification of the free 
electron concentration. The resulting lowering of the energy 
eigenvalue is also suggestive of the fact that lower external 
energy source can now more easily excite this particular 
fundamental mode. The authors intend to use and extend this 
analysis into the difficult subject of understanding the current 
distribution in excited curved antenna systems which remains 
largely unsolved.  In a recent paper [6] we also proposed that 
this curvature effect of modified Li-Ion Batteries of a number 
of SAMSUNG Galaxy S7 mobiles, could be the main reason 
of their abrupt, catastrophic explosions.    

APPENDIX 
 

function fz=wirezero1 
% calculates the eigenvalues of the curved 
symmetric wire of length=1 
% Of two rectilinear parts of length n1  
% And a central curved part of length 1-
2n1 and of angle cr (in grades) 
% using the function wire2 
  
global n1 cr fy 
  
N=1000; 
N1=n1*N; 
N2=N-2*N1;  
fz=0; 
for n=1:2001;x(n)=(n-1)/20; 
    y(n)=wire2(x(n));end  
L=0; 
for n=1:2000; yy(n)=y(n)*y(n+1); 
 if yy(n)<0 && y(n)>0;L=L+1; 
       fz(L)= fzero(@wire2,[x(n),x(n+1)]); 
    end 
end 
fy=fz; 
 
 
 
function y=wire2(e) 
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% root finder for a curved wire of length 
1, with two symetric equal 
% rectilinear parts of n1<0.5 length, and 
an intermediate curved part of N2/N 
% length, with a radious  R extending in 
an angle cr=(angle in degrees) 
  
global n1 cr 
  
N=1000; 
N1=n1*N; 
N2=(N-2*N1);  
dz=1/N; 
R=(N2/N)/(cr*(pi/180));   
zz=10^8;  
for n=1:N1+N2; 
    w1=0; 
    x=N*dz-(n-1)*dz+dz/2; 
   if n>N1; 
       w1=1/4/R^2; 
    end 
    cc=-e-w1; 
    zb=j*cc*dz/2; 
    zp=j/dz; 
    zz=(zz+zb)*zp/(zz+zb+zp)+zb; 
     
end 
z1=zz; 
zz=10^8; 
for n=1:N1; 
    
    x=N*dz-(n-1)*dz+dz/2; 
    cc=-e; 
    zb=j*cc*dz/2; 
    zp=j/dz; 
    zz=(zz+zb)*zp/(zz+zb+zp)+zb; 
end  
y=imag(zz+z1); 
 
 
 
function wire33 
%eigenfunction for a given eigenvalue on a 
wire described by wire1 function 
  
global fy xx yy rr ww 
for nn=1:3 
    e=fy(nn); 
N=1000; 
dz=1/N; 
  
zz=[1;0]; 
f(1)=zz(2); 
xx(1)=1; 
for n=1:N; 
    x=N*dz-(n+1/2)*dz; 
    xx(n+1)=x+dz/2; 
    cc=-wire1(x)-e; 
    A=[1 -j*cc*dz;j*dz 1]; 
    zz=A*zz; 
    f(n+1)=zz(2); 
     
end  

if nn==1;yy=imag(f);end; 
if nn==2;rr=imag(f);end 
if nn==3;ww=imag(f);end  
end 
yy(1)=0;rr(1)=0;ww(1)=0;  
plot(xx,yy,xx,rr,xx,ww);grid on 
 
 
function y=wire1(x) 
% The Geometric potential of a curved wire 
length 1 of two recilinear parts  
% of length n1<0.5 and one curved 
intermediate part of length N2/N of 
constant 
% curvature 1/R ;cr=angle of the curved 
part in degrees (180 degrees=pi) 
global n1 cr 
N=1000; 
N1=n1*N; 
N2=(N-2*N1); 
dz=1/N; 
R=(N2/N)/(pi*cr/180); 
n=x/dz; 
    y=0; 
     if n>N1 && n<N1+N2; 
      y=1/4/R^2; 
    end 
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