



Abstract— This paper presents an incremental formal modeling

of the Remote Authentication Dial-In User Service (RADIUS) using

event B method. The RADIUS protocol is a distributed client/server

protocol that protects networks against unauthorized access. We

model the protocol step by step by using refinement, a technique of

event B. The first step will be the modeling of the most abstract

specification of the protocol. Then by the second refinement more

details of the protocol specification will be added to the model. By

this approach, the model will be a more explicit representation of the

target protocol by each refinement. Through a refinement approach,

we prove that the abstract goals concerning message exchange of the

RADIUS protocol are satisfied. In the developed Event-B models of

the RADIUS protocol described in this paper, all proofs are

generated and discharged by the Rodin tool. Our Specification is very

general and contains basic message exchange process of RADIUS

Client/server.

Keywords—Event-b,Formal specification, RADIUS, Refinement.

I. INTRODUCTION

asically created by Livingston Enterprise which was later

acquired by Lucent , and as defined by IETF‘s RFC 2865

(RADIUS authentication and authorization) and RFC 2866

(RADIUS accounting), RADIUS is based on the client-server

model and message exchanges takes place over User Datagram

Protocol (UDP). The Network Access Server (NAS) acts as a

RADIUS client which passes on the user request to the

RADIUS server. The other RADIUS clients may be wireless

access points, routers, and switches. The RADIUS server

performs authentication, authorization, and accounting (AAA)

for users after it receives requests from the client. The

communication between the client and the server is encrypted

using a private key which is never sent over the network. Both

Sanae El Mimouni is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail: sanae.elm@ gmail.com).

Rajaa Filali is with LMPHE laboratory, University of Mohammed V,

Faculty of sciences ,Rabat ,Morocco(e-mail: rajaafilali@gmail.com).

Anas Amamou is with LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat, Morocco (e-mail: amamou.anas@yahoo.fr).

Bahija Boulamaat is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail:

boulamaatbahija@gmail.com).

Mohamed Bouhdadi is with LMPHE laboratory, University of Mohammed

V, Faculty of sciences, Rabat, Morocco (e-mail: bouhdadi@fsr.ac.ma).

the client and server are configured with this secret before

communication can take place, and it fails if the secret does

not match at both ends.

This article is an extended version of a conference paper that

appeared as [1].

 Even with the practical significance of RADIUS protocol,

unfortunately there isn’t a formal specification for it like as

done to CSMA/CD Protocol using model checking [2] or petri

Nets [3] or even using formal design patterns [4] .So we try to

present a formal approach for the protocol. We developed our

model specification in Event-B[5][6].We liberally used

refinements, both of machines and of contexts. We give a great

deal of attention to proofs. Consequently, we now have a

specification of RADIUS protocol where all proof-obligations

have been discharged.

 The RADIUS protocol was first defined in RFC 2058 [7], in

January 1997, this RFC contains proposed standard. Also in

January 1997 RADIUS accounting was introduced in RFC

2059 [8], status of which is informational. Later in April 1997

these RFCs were obsolete by RFC 2138 [9] and RFC 2139

[10]. Former of these is proposed standard and latter

informational. Then in June 2000 RFC 2865 [11] defined

RADIUS draft standard and obsoleted RFC 2138. In same

month informational RFC 2866 [12] RADIUS accounting

obsoleted RFC 2139.For our paper we based on the RFC

2865.

 This paper is organized as follows. In Section 2 we will give

an informal introduction to the RADIUS protocol, and a brief

description of the event B method, then, we introduce Rodin,

which is the tool support for Event-B. The main part of this

paper, Section 3 describes our strategy of refinement,

Moreover we will specify our protocol using event B. Section

4 summarizes the results and draws a conclusion.

II. BASIC CONCEPTS

 In this section, we provide some background information on

the RADIUS protocol, the Event-B formal method, and then

present Rodin platform.

A. RADIUS protocol

The Remote Authentication Dial-in User Service (RADIUS)

[11] is an IETF-defined Client/server protocol and software

that enables remote access servers to communicate with a

An Incremental Refinement Approach to a

Development of the Remote Authentication

Dial-In User Service Protocol

Sanae El Mimouni, Rajaa Filali, Anas Amamou, Bahija Boulamaat and Mohamed Bouhdadi

B

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 43

mailto:amamou.anas@yahoo.fr

central server to authenticate dial-in users and authorize their

access to the requested system or service [11]. It is commonly

used to provide centralized Authentication, Authorization, and

Accounting (AAA) for dial-up, virtual private network, and,

wireless network access.

The RADIUS protocol is based on a Client/server model. A

Network Access Server (NAS) operates as a client of

RADIUS. The client is responsible for passing user

information to designated RADIUS servers, and then acting on

the response which is returned.

RADIUS servers are responsible for receiving user

connection requests, authenticating the user, and then returning

all configuration information necessary for the client to deliver

service to the user.

A RADIUS server can act as a proxy client to other

RADIUS servers or other kinds of authentication servers.

The operation of the RADIUS protocol involves six types of

message exchanges between the client and the server, as

described in the following sections and a simple procedure of

RADIUS communication is shown in the figure 1:

• Access-Request: Sent by a RADIUS Client to request

authentication and authorization for a network access

connection attempt. It determines whether a user is allowed

access to a specific NAS, and any other specific service.

• Access-Accept: Sent by a RADIUS server in response to

an Access-Request message when all conditions are met. The

message informs the RADIUS Client that the connection

attempt is authenticated and authorized and it contains the list

of configuration values for the user.

• Access-Reject: Sent by a RADIUS server in response to

an Access-Request message if any condition is not met. This

message informs the RADIUS Client that the connection

attempt is rejected. A RADIUS server sends this message if

either the credentials are not authentic or the connection

attempt is not authorized.

• Access-Challenge: Sent by a RADIUS server in response

to an Access-Request message if all conditions are met and

RADIUS server wishes to issue a challenge to which the user

must respond. The Client in response resubmits its original

Access-Request with a new request ID, response (encrypted),

and including the Attribute from the Access-challenge.

• Accounting-Request: Sent by a RADIUS Client to specify

accounting information for a connection that was accepted.

• Accounting-Response: Sent by the RADIUS server in

response to the Accounting-Request message. This message

acknowledges the successful receipt and processing of the

Accounting-Request message.

Fig. 1 Basic message exchange process of RADIUS

The following shows how RADIUS operates as shown in

the figure above:

1. The user enters the username and password.

2. Having received the username and password, the

RADIUS client sends an authentication request (Access-

Request) to the RADIUS server.

3. The RADIUS server compares the received user

information with that in the Users database. If the

authentication succeeds, it sends back an Access-Accept

message containing the information of user’s right. If the

authentication fails, it returns an Access-Reject message.

4. The RADIUS client accepts or denies the user according

to the returned authentication result. If it accepts the user, it

sends an accounting start request (Accounting-Request) to the

RADIUS server, with the value of Status-Type being “start”.

5. The RADIUS server returns a start-accounting response

(Accounting-Response).

6. The subscriber accesses the network resources.

7. The RADIUS client sends a stop-accounting request

(Accounting-Request) to the RADIUS server, with the value of

Status-Type being “stop”.

8. The RADIUS server returns a stop-accounting response

(Accounting-Response).

9. The subscriber stops network resource accessing.

In this paper we model a simple RADIUS procedure of

communication without considering accounting messages.

B. Event B method

Formal methods are mathematical based techniques which

are used for describing the properties of a system.

They provide a systematic approach for the specification,

development and verification of software and hardware

systems and because of the mathematical basis we can prove

that a specification is satisfied by an implementation [13].

Event-B is a formal method for specifying, modeling and

reasoning about systems. An evolution of the B-Method

developed by Jean-Raymond Abrial [14]. Event-B is now

centered on the general notion of events. The formal concepts

used in Event-B are by no means new. They were proposed a

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 44

long time ago in a number of parent formalisms, such as

Action Systems [15][16][17], TLA+ [18][19], and UNITY

[20].

Event-B is a formal modeling method for developing

systems via step-wise refinement [21][22], based on first-order

logic. Event-B models are organized in terms of two basic

components: contexts and machines. Machines and contexts

can be inter-related: a machine can be refined by another one,

a context can be extended by another one and a machine can

see one or several contexts as shown in figure 2.

Machine

Variables

Invariants

Events

Theorems

Other Machine

Fig. 2 Event-B Machines and Contexts

- Contexts specify the static part of a model. They may contain

carrier sets (similar to types), constants, axioms (containing

carrier sets and constants), and theorems (expressing

properties derivable from axioms).

-Machines specify behavioral properties of the models. They

may contain variables defining the state of a machine,

invariants constraining that state, and events (describing

possible state changes). Each event is composed of a set of

guards and a set of actions. Guard state the necessary

conditions under which an event may occur, and actions

describe how the state variables evolve when the event occurs.

 Contexts/Machines may be refined from more abstract to

more concrete contexts/machines. Event-B models are

systematically structured in refinement chains.

Building a model usually starts with a very abstract model

of the system, and then gradually details are added through

several modeling steps in such a way that leads us towards a

suitable implementation; this approach is called refinement

[21][22].Thus, instead of building a single model in a flat

manner, we have a sequence of models, where each of them is

supposed to be a refinement of the previous.

From a given model M1, a new model M2 can be built as a

refinement of M1. In this case, model M1 is called an

abstraction of M2, and model M2 is said to be a concrete

version of M1. A concrete model is said to refine its

abstraction. Each event of a concrete machine refines an

abstract event or refines skip. An event that refines skip is

referred to as a new event since it has no counterpart in the

abstract model.

A key concept in Event-B is proof-obligation (PO)

capturing the necessity to prove some internal property of the

model such as typing, invariant preservation by events, and

correct refinements. Strong tool support is provided in order to

support this proof process.

Event-B is not specific to embedded systems design but it is

currently being investigated by several industrial from

different sectors (automotive, transportation, space) in the

context of the DEPLOY project [23].

In Event-B, an event is defined by the syntax: EVENT e

WHEN G THEN S END , Where G is the guard, expressed as

a first-order logical formula in the state variables, and S is any

number of generalized substitutions, defined by the syntax

S ::= x := E(v) | x := z : | P(z). The deterministic substitution,

x := E(v), assigns to variable x the value of expression E(v),

defined over set of state variables v. In a non-deterministic

substitution, x := z : | P(z), it is possible to choose non-

deterministically local variables, z, that will render the

predicate P(z) true. If this is the case, then the substitution,

x := z, can be applied, otherwise nothing happens.

It is also important to indicate that the most important

feature provided by Event-B is its ability to stepwise refine

specifications. Refinement is a process that transforms an

abstract and non-deterministic specification into a concrete

and deterministic system that preserves the functionality of the

original specification. During the refinement, event

descriptions are rewritten to take new variables into account.

This is performed by strengthening their guards and adding

substitutions on the new variables. New events that only assign

the new variables may also be introduced. Proof obligations

(POs) are generated to ensure the correctness of the refinement

with respect to the abstract model. Event-B is supported by

several tools, currently in the form a platform called Rodin.

C. Rodin Platform

Rodin is an Eclipse-based development environment for

Event-B. It is open source and provides an environment for

system modeling and analyses, including support for checking

specification correctness and for refinement proofs. While

constructing an Event-B program, Rodin will automatically

generate a set of POs for the program under consideration.

Each PO is a logical formula, whose validity implies that

certain correctness properties are satisfied by the program

under consideration. In Rodin, the correctness properties

include:

1. The Event-B program is not in an invalid state (i.e. a state

where some invariant might not hold).

2. The behaviour of a concrete Event-B program will

correspond to the behavior of its abstract program.

The first property is ensured by proving that the invariant is

preserved and by proving the well-definedness of predicates

[24]. The second one, i.e. the correspondence between abstract

and concrete Event-B programs, is usually called the

refinement PO.

 There are three kinds of POs which can be generated from

Rodin to ensure that the refinement is correct [24]:

– Guard strengthening (GRD)

– Action simulation (SIM)

Context

Carrier Sets

Constants

Axioms

Theorems

Other Context

sees

sees

refines extends

sees

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 45

– Equality of a preserved variable (EQL)

Obligations are proved either automatically or manually. In

automatic mode, Rodin uses some predefined proof tactics

made up of internal and external provers to discharge the

obligations. In interactive mode, the user “guides” the proof

attempts by applying some simple proof steps to simplify the

obligations before invoking some trusted external provers to

finish the proofs. As interactive proofs require manually

interventions, it is usually considered as some costs of

developing formal models. More teaching materials on Event-

B and Rodin can be found at [25].

III. SPECIFYING RADIUS PROTOCOL USING EVENT B

A. Refinement strategy

In this short section, we present our strategy for constructing

the RADIUS protocol specially the message type exchanges

that take place between the Client and the Server, which is

shown in the figure below. This will be done by means of an

initial model followed by one refinement.

Fig. 3 Simple procedure of RADIUS communication

 The initial model essentially presents message

exchange between the client and the server without

considering any condition.

 In the first refinement, we introduce the condition that

take side the client status and we add a timer.

B. Initial Model

The initial model of RADIUS protocol is presented as

follow:

The context is made of two sets Requests and the

Responses. These sets represent the message type exchanges

that take place between the Client and the Server. Which are

Access_Request, Access_Accept, Access_Challenge, and

Access_Reject.

SETS

Requests

Responses

CONSTANTS

Access_Request

Access_Accept

Access_Reject

Access_Challenge

AXIOMS

axm1 : Access_Request ∈ Requests

axm2 : Access_Accept ∈ Responses

axm3 : Access_Reject ∈ Responses

axm4 : Access_Challenge ∈ Responses

END

Then we can use two variables to represent the paquets send

by the client and the server: paquet_client to denote the request

that have been sent, and paquet_server to indicate the

response that have been given.

VARIABLES

paquet_client

paquet_server

INVARIANTS

inv1 : paquet_client ⊆ Requests

inv2 : paquet_server ⊆ Responses

Initially, there are no requests of the client or responses from

the server hence both variables are initialed by 0.

INITIALISATION

act1 : paquet_client ≔0

act2 : paquet_server ≔0

When the client chooses to use RADIUS, it creates an

"Access_Request" containing some information and sends it to

the server side. We do not discuss in this paper the information

that is in the message; we just focus about the operation that

happened between the client and the server.

clt_access_request

ANY

msg

WHERE

grd1 : msg = Access_Request

grd2 : msg ∉ paquet_client

THEN

act1 : paquet_client ≔ paquet_client ∪ {msg}

END

Access-Accept packets are sent by the RADIUS server, and

provide specific configuration information necessary to begin

delivery of service to the user.

srv_access_accept

ANY

msg

WHERE

grd1 : msg = Access_Accept

grd2 : msg ∉ paquet_server

RADIUS

Client

RADIUS

Server

Access-Request

Access-Challenge

Access-Request

Access-Accept

Ou Access-Reject

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 46

THEN

act1 : paquet_server ≔ paquet_server ∪ {msg}

END

 srv_acces_challenge

ANY

msg

WHERE

grd1 : msg = Access_Challenge

grd2 : msg ∉ paquet_server

THEN

act1 : paquet_server ≔ paquet_server ∪ {msg}

END

srv_access_reject

ANY

msg

WHERE

grd1 : msg = Access_Reject

grd2 : msg ∉ paquet_server

THEN

act1 : paquet_server ≔ paquet_server ∪ {msg}

END

C. First refinement

 We are going to refine our abstract model to a more concrete

one, by adding new variables and modifying our existing

events. For this we introduce the client status and a timer. We

define a carrier set named STATUS. It is made of three

distinct elements: valid, invalid, moreinfo, which present the

RADIUS client status.

SETS

Statut

CONSTANTS

valid

invalid

moreinfo

AXIOMS

axm1 : Statut ={valid, invalid, moreinfo}

axm2 : valid≠ invalid

axm3 : moreinfo ≠ invalid

axm4 : moreinfo ≠ valid

END

We can use in this refinement three variables to represent

client status, which can be valid, invalid or moreinfo, the

variables T and Time to indicate the timing.

VARIABLES

client_st

T

Time

INVARIANTS

 inv1 : client_st ∈ Statut

 inv2 : T ∈ ℕ

 inv3 : Time ∈ BOOL

 inv4 : client_st=valid ⇒(∀ m·m∈ Responses ∧ m

=Access_Accept)

 inv5 : client_st=moreinfo ⇒(∀ m·m∈ Responses ∧

m =Access_Challenge)

 inv6 : ∀ m·m∈ Responses ∧ m =Access_Reject⇒

client_st=invalid

The Access-Request is submitted to the RADIUS server via

the network. If no response is returned within a length of time,

the request is re-sent a number of times.

Upon receipt of an Access-Request from a valid client, an

appropriate reply must be transmitted

clt_access_request

REFINES

clt_access_request

ANY

msg

WHERE

grd1 : msg = Access_Request

grd2 : msg ∉ paquet_client

grd3 : Time = FALSE

THEN

act1 : paquet_client ≔ paquet_client ∪ {msg}

act2 : Time ≔ TRUE

END

 If the client is valid then the RADIUS server sends Access-

Accept response to the client.

srv_access_accept

REFINES

srv_access_accept

ANY

msg

WHERE

grd1 : msg = Access_Accept

grd2 : msg ∉ paquet_server

grd3 : client_st = valid

THEN

act1 : paquet_server ≔ paquet_server ∪ {msg}

END

 If any condition is not met, the RADIUS server sends an

"Access-Reject" response indicating that this user request is

invalid.

srv_acces_challenge

REFINES

srv_acces_challenge

ANY

msg

WHERE

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 47

grd1 : msg = Access_Challenge

grd2 : msg ∉ paquet_server

grd3 : client_st = moreinfo

THEN

act1 : paquet_server ≔ paquet_server ∪ {msg}

END

srv_access_reject

REFINES

srv_access_reject

ANY

msg

WHERE

grd1 : msg = Access_Reject

grd2 : msg ∉ paquet_server

grd3 : client_st = invalid

THEN

act1 :

paquet_server ≔ paquet_server ∪ {msg}

END

 The server can respond to this new Access- Request with

either an Access-Accept, an Access-Reject, or another Access-

Challenge.

The last event in our model is the event of timing.

time

WHEN

grd1 : Time = TRUE

THEN

act1 : T ≔ T+1

END

IV. CONCLUSION

In this paper we have presented formal modeling of the

RADIUS protocol using Event B.

 In this approach the modeling process starts with an

abstraction of the protocol which specifies the goals of the

protocol. In our case study, presents message exchange

between the client and the server without considering any

condition are the main protocol goals. The abstract level of our

Event-B model shows these goals in a very general way, and

then during refinement level, features of the protocol are

modeled and the goals are achieved in a detailed way.

 The use of Event-B and Rodin as a formal modeling

environment has several advantages. Firstly, the model can be

gradually developed by step-wise refinements, which allows

hierarchical design exploration at different abstraction levels.

Secondly, the obligation to discharge POs ensures full model

consistency throughout all levels.

For our future work, we would like to develop a Diameter

protocol which is similar to RADIUS and compare them in

event B method.

REFERENCES

[1] S. El Mimouni,R. Filali,A. Amamou,B. Boulamat and M. Bouhdahi,

“A Mechanically and Incremental Development of the Remote

Authentication Dial-In User Service Protocol “ ,Proceedings of the 1st

International Conference on Mathematical Methods & Computational

Techniques in Science & Engineering (MMCTSE 2014), pp.199-203.

2014

[2] M. Sirjani, M.M. Jaghoori, S. Forghanizadeh, M. Mojdeh, and A.

Movaghar. “Model Checking CSMA/CD Protocol using an Actor-Based

Language”, in the Proceedings of the International Conference on

Software Engineering, WSEAS, February 2004.

[3] E. Antonidakis, “Conferencing protocols and petri net analysis”,

WSEAS Transactions on Computers, vol. 5, no 12, pp. 3112-3118,

2006.

[4] X. B. Li, F.X ZHAO , “Formal development of a washing machine

controller by using formal design patterns,” Proceedings of the 3rd

WSEAS International Conference on COMPUTER ENGINEERING and

APPLICATIONS (CEA'09) , pp. 127–132, 2009.

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.

Cambridge University Press, 2010.

[6] M.,Butler, “Incremental Design of Distributed Systems with Event-B”.

In: Marktoberdorf Summer School 2008 Lecture Notes. IoS (November

2008)

[7] C. Rigney, A. Rubens, W. Simpson and S. Willens, RFC 2058: Remote

Authentication Dial In User Service (RADIUS). [Online].Available:

www.ietf.org/rfc/rfc2058.txt, January 1997.

[8] C. Rigney, RFC 2059: Radius Accounting [Online].Available:

www.ietf.org/rfc/rfc2059.txt , January 1997.

[9] C. Rigney, A. Rubens, W. Simpson and S. Willens, RFC 2138: Remote

Authentication Dial In User Service (RADIUS). [Online] Available:

www.ietf.org/rfc/rfc2138.txt, April 1997.

[10] C. Rigney, RFC 2139: Radius Accounting [Online].Available:

www.ietf.org/rfc/rfc2139.txt, April 1997.

[11] C. Rigney, A. Rubens, W. Simpson and S. Willens, RFC 2865: Remote

Authentication Dial In User Service (RADIUS). [Online]. Available:

www.ietf.org/rfc/rfc2865.txt , June 2000.

[12] C. Rigney, RFC 2866: Radius Accounting [Online].Available:

www.ietf.org/rfc/rfc2866.txt, June 2000

[13] M. Jeannette, A. Wing. “specifier’s introduction to formal methods”.

IEEE Computer, 23(9):8–24, 1990

[14] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge

University Press, 1996.

[15] R.-J. Back,” Decentralization of process nets with centralized

control”.2nd ACM SIGACT–SIGOPS Symposium on Principles of

Distributed Computing, 1983.

[16] R.-J. Back, Refinement Calculus II: Parallel and Reactive Programs. In:

de Bakker J. W., de Roever W. P., Rozenberg G. (eds.), Lecture Notes in

Computer Science, Springer, vol 430, pp. 67-93, 1990.

[17] R. J. Back and R. Kurki-Suonio. “Distributed cooperation with action

systems”. ACM Transactions on Programming Languages and Systems.

10(4): 513–554, 1988.

[18] L. Lamport. Specifying Systems:” The TLA+ Language and Tools for

Hardware and Software Engineers”. Addison-Wesley, 1999.

[19] L.Lamport, “The temporal logic of actions,” Transactions on

Programming Languages and Systems (TOPLAS), vol.16 no.3, pp. 872-

923, 1994.

[20] K. Chandy, J. Misra, “Parallel Program Design: a Foundation”,

Addison-Wesley, 1989.

[21] W.-P. de Roever and Kai Engelhardt “Data Refinement: Model-oriented

Proof Theories and their Comparison” Cambridge Tracts in Theoretical

Computer Science, vol. 46. Cambridge University Press, Cambridge

(1998)

[22] A. Rezazadeh, M. Butler, N. Evans.: “Redevelopment of an Industrial

Case Study Using Event-B and Rodin.” In: BCS- ACS Christmas 2007

Meeting – Formal Method. In: Industry (2007)

[23] DEPLOY FP7 Project, [Online].Available: http://www.deploy-

project.eu , January 2014.

[24] J.R Abrial.: Summary of Event-B proof obligations (2008), [Online].

Available: http://www.docstoc.com/docs/7055755/

[25] Event-B and RODIN. Available: http://wiki.event-b.org, April 2011.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 13, 2019

ISSN: 1998-4480 48

http://www.docstoc.com/docs/7055755/

