
 

 

  
Abstract— Min-plus convolution is an algebra system that has 

applications to computer networks. Mathematically, the identity of 
min-plus convolution plays a key role in theory. On the other hand, the 
mathematical representation of the identity, which is computable with 
digital computers, is essential for further developing min-plus 
convolution (e.g., de-convolution) in practice. However, the identical 
element in min-plus convolution is defined as infinity over infinite 
interval, making digital computation of the identity difficult because 
digital computers only provide finite range of numbers for numerical 
computations. Consequently, the issue of numerical approximation of 
the identical element is worth discussing. This paper proposes a 
harmonic model for finite approximation of the identical element in 
the min-plus convolution. 
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I. INTRODUCTION 
IN-plus convolution has gained applications to, such as 
graph [1], discrete systems [2], quality of service in 

computer communication networks [3-6, 11-16]. This paper 
discusses a computation model of the identity of min-plus 
convolution that plays a key role in network calculus due to the 
importance of the identity in an algebra system from a view of 
mathematics. Such a discussion is rarely seen, to the best of our 
knowledge. 

Let +R  be the set of positive real numbers. For real functions 
f(x), g(x) (x ∈ +R ), the operation of min-plus convolution is 
given by 

f(x) ⊗ g(x) =
0
inf

u x≤ ≤
{f(u) + g(x− u)}                         (1-a) 

where ⊗ stands for the operation of min-plus convolution. In 
practical computations, the above infimum can be replaced by 
minimum. That is, for 0 ≤ u ≤ x, 

f(x) ⊗ g(x) = min{f(u) + g(x− u)}                            (1-b) 
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The existence of the identity in min-plus convolution is given 
by [5]. In order to define the identical element for ⊗, the 
enlargement of +R  is needed. In doing so, we consider 

+R = +R ∪{∞} [1, 2]. Then, the following 

I(x) =
,  0

0,  0
x
x

∞ >⎧
⎨ ≤⎩

                                                           (2) 

is defined as the identical element for ⊗ because 
f(x) ⊗ I(x) = I(x) ⊗ f(x) = f(x). 

From a view of functions, I(x) is a function of x, which 
represents infinity over infinite interval. From a view of 
computations, however, numerical computations of ∞ cannot be 
performed by digital computers as number range provided by 
digital computers for numerical computations is finite. Hence, 
comes a problem how to numerically approximate I. 

As known, the existence of the identity in min-plus 
convolution implies that the de-convolution of min-plus 
convolution exists though literature regarding de-convolution of 
min-plus convolution is rarely seen. However, de-convolution 
may come into practical use only if the representation of I(x) by 
using ordinary functions is available. Due to ∞, finite 
approximation has to be taken into account. This paper presents 
a harmonic model for finite approximation of I(x) based on the 
Fourier analysis in generalized functions.  

The paper is organized as follows. A harmonic model of I is 
derived in Section 2. Section 3 illustrates the numeric 
simulation of the present model. Section 4 concludes the paper. 

II. HARMONIC MODEL OF ( )I x  

Let δ(x) be the notation of the Dirac-δ function. Then [6, 
Chap. III], 

0
0

0

0

0,  
( )

,  

( ) 1.

x x
x x

x x

x x dx

δ

δ
∞

−∞

⎧ ≠⎧
− = ⎨⎪ ∞ =⎪ ⎩

⎨
⎪ − =⎪⎩
∫

                                              (3) 

The above integral does not exist in ordinary functions [7, Chap. 
10] but δ(x) has its root in the theory of generalized functions [8, 
9]. Eq. (4) is an expression of δ(x) (other equivalent expressions 
of δ(x) can be found in references, e.g., [7-10]). 

δ(x) = 1 1 cos( ).
2 k

kx
π π

∞

=−∞

+ ∑                                            (4) 

By taking into account a generalized periodic function given 
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by 

0

( )
n

x nTδ
∞

=

−∑ (T > 0), 

the discrete I is given by 

I(k) =
0

( ).
n

k nTδ
∞

=

−∑                                                      (5) 

In the continues case, 

I(x) =
0 0

lim ( ).
T n

x nTδ
∞

→ =

−∑                                                 (6) 

Following [9, p. 63] [10, p. 67-68], the discrete I can be 
expressed as 

I(k) =
1

2 4 2cos( ).
n

n k
T T T

π∞

=

+ ∑                                          (7) 

In the limit case, 

I(x) =
0 1

2 4 2lim cos( ) .
T n

n x
T T T

π∞

→ =

⎡ ⎤+⎢ ⎥
⎣ ⎦

∑                                (8) 

III. NUMERIC SIMULATION 
In practice, finite items of (7) are used for approximation. 

The finite approximation of (7) is given by 

I(k) ≈
1

2 4 2cos( ).
N

n

n k
T T T

π
=

+ ∑                                          (9) 

Errors caused due to finite approximation is expressed by 

e(N) =
1

4 2cos( ).
n N

n k
T T

π∞

= +
∑                                          (10) 

A. Error Caused by Finite Approximation  

Let N = 10, T = 9 and k = 0, 1, , 300. Then, the computation 
result with (9) is shown in Fig. 1. The errors are reflected in two 
aspects. One is that there are some components between each 
two conjoint xs, which obscure the computation result. This 
error is called error I. The other is that the magnitude of 
computation result is not ‘infinite’. We call it error II. 
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Fig. 1. Finite approximation with error I and error II. 

 

B. Convergence 
The convergence implies that both errors should decrease as 

N → ∞. The convergence is illustrated by Fig. 2 that shows the 
results when N = 100, 1,000, 10,000, and 100,000, respectively. 
From those figures, by eye, we see that two types of errors 

decrease as N increases. We use Fig. 3 to demonstrate the 
convergence. 
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Fig. 2. Observation of convergence. 
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Fig. 3. Error e(N). 

 

IV. CONCLUSION 
We have derived a harmonically numeric model on finite 

approximation of the identical element in min-plus convolution. 
The numerical simulation and convergence have been 
demonstrated. 
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