
 

 

  
Abstract—An approach to develop the FPGA of a flexible key 

RSA encryption engine that can be used as a standard device in the 
secured communication system is presented. The VHDL modeling of 
this RSA encryption engine has the unique characteristics of 
supporting multiple key sizes, thus can easily be fit into the systems 
that require different levels of security. A simple nested loop addition 
and subtraction have been used in order to implement the RSA 
operation. This has made the processing time faster and used 
comparatively smaller amount of space in the FPGA. The hardware 
design is targeted on Altera STRATIX II device and determined that 
the flexible key RSA encryption engine can be best suited in the 
device named EP2S30F484C3. The RSA encryption implementation 
has made use of 13,779 units of logic elements and achieved a clock 
frequency of 17.77MHz. It has been verified that this RSA 
encryption engine can perform 32-bit, 256-bit and 1024-bit 
encryption operation in less than 41.585us, 531.515us and 790.61us 
respectively. 
 

Keywords—RSA, FPGA, Communication, Security, 
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I. INTRODUCTION 

HE recent explosion of electronic data communications 
and computer networks have made it very much important 

to develop new ways to guarantee their security. With this 
increasing demand of security in the communication channel, 
the development of a new and efficient hardware security 
module has started to get the primary preference. 

A vast numbers and wide varieties of works have been done 
on this particular field of hardware implementation of RSA 
encryption algorithm. A hardware implementation of RSA 
encryption scheme has been proposed by Khalil, et al. in [1], 
where they use Montgomery algorithm with modular 
multiplication and systolic array architecture. A similar 
approach has been taken by Kim, et al. in [2]. This design 
scheme focuses on the implementation of a 1024-bit RSA 
cryptographic processor. But both these designs have the 
drawback of a slower processing time, though some of them 
use a faster clock. Shand, et al. have proposed a software 
implementation of RSA cryptography in [3]. A different 
approach has been taken by Chris, et al. in [4] for 
implementing RSA cryptographic scheme. But, it does not 
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provide the flexibility of using many practical applications as 
it can only be implemented with a fixed key size.  

This work approaches hardware implementation of RSA 
encryption scheme using the modular exponentiation 
operation. Simple nested loop addition and subtraction has 
been used to implement the modular exponentiation operation 
[4], which helps to reduce the processing time. In this design, 
it is possible to change the key size of RSA according to the 
application requirement.  

II. DESIGN OVERVIEW 

An exceptional feature that can be found in the RSA 
algorithm [5] is that it allows most of the components used in 
encryption to be re-used in the decryption process, which can 
minimize the resulting hardware area. In RSA, a plaintext 
block M is encrypted to a cipher text block C by: 

 
C = M e  mod n               (1) 

 
The plaintext block is recovered by: 
 

M = Cd  mod n                (2) 
 
RSA encryption and decryption are mutual inverses and 

commutative as shown in equation (1) and (2), due to 
symmetry in modular arithmetic. One of the potential 
application for which this design of RSA has been targeted is 
the Secured Voice Communication. In this application, the 
voice input is fed into an Analog to Digital Converter (ADC). 
The ADC changes the continuous analog voice input to a 
continuous stream of binary bits. The purpose of the 
compression module in this process is to supply the 
compressed data to the encryption module for a fast operation. 
The encryption module takes care of the security. The process 
at the receiving end is same as the process that has been 
followed at the sending end except that the sequence of the 
module is reverse. The encryption engine covers both the 
operation of Encryption and Decryption. 

A. Basic RSA Operations 
The RSA algorithm requires computation of the modular 

exponentiation, which is broken into a series of modular 
multiplications by the application of exponentiation heuristics. 
Recall that the RSA encryption process is only the 
mathematical operation, c = me mod n [5]. This mathematical 
operation has involved a few modular operations; modular 
exponentiation, modular multiplication, modular addition, 
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and subtraction operations on large integers [6]. Detail 
algorithms of the above operations for hardware 
implementation have been stated in the following sections. 

B. Modulus Exponentiation Operation 
The modular exponentiation operation is simply an 

exponentiation operation where multiplication and squaring 
operations are modular. The exponentiation heuristics 
developed for computing Me are applicable for computing Me 
(mod n). In the domain of hardware implementation, an 
intelligent algorithm is needed in order to reach a higher 
efficiency. Hence, exponentiation is achieved by performing a 
number of squaring and multiplications.  

Given the integers M, e, and n, the e has to be changed to 
binary in order to start the algorithm to compute Me. There are 
two variations which depend on the direction by which the 
bits of e are scanned: Left-to-Right (LR) and Right-to- Left 
(RL). The LR binary method is more widely known which has 
been listed in pseudo codes shown in Fig. 1 [6]. 

 
 
 
 
 
 
 
 
 

 
 

 
Fig. 1: Algorithm for Modulus Exponentiation Operation 
 
Let us assume e = 43 = 1010112. So the h = 6 (e contains 6 

bits). Using Left-to-Right method, as e5 = 1, C = M algorithm 
starts as the following table 1. 

 
TABLE I 

LR METHOD OF COMPUTING EXPONENTIATION 
i ei Step 2a Step 2b 

4 0 M2 M2 

3 1 (M2)2 M4 x M 

2 0 (M5)2 M10 

1 1 (M10)2 M20 x M 

0 1 (M21)2 M42 x M = M43 

  

C. Modulus Multiplication Operation 
The modular multiplication problem is defined as the 

computation of P = A x B (mod n), given the integers A, B, 
and n. It is usually assumed that A and B are positive integers 
with 0 ≤ A, B < n. 

The modulus multiplication operation is needed after the 
separation of exponentiation into a number of squaring and 
multiplication. There are basically four general approaches for 
computing the product P [1, 2, 3, 6]: Multiply and then divide, 
Interleaving multiplication and reduction, Brickell’s method 

and Montgomery’s method. 
All approaches above have a common disadvantage that it 

doubles up the number of bits for each multiplication. For 
example, when two 32-bit numbers are multiplied together 
will cost a 64-bit result and hence a large register is needed to 
store this result. 

A modified algorithm is used in this design which will be 
discussed in Section E. The modified algorithm overcomes the 
problem by separating the multiplication operation into a 
number of modular addition operations. 

D. Modulus Addition Operation 
The modular addition problem is defined as the 

computation of S = A + B (mod n) given the integers A, B, and 
n. It is usually assumed that A and B are positive integers with 
0 ≤ A, B < n. The most common method of computing S is as 
follows: 
 

1. Compute S = A + B. 
2. Then S = S - n. 
3. If S ≥ 0, then repeat step 2, else S = S. 

 
Note that modular addition involves subtraction operation 

in step 2. 

E.  Complete Algorithm 
The difficult part of RSA encryption/decryption lies on the 

modulus calculation of c = me mod n, to get the encrypted 
message “c”. To calculate the encrypted message “c”, it 
involves exponentiation that requires large amount of 
combinational logic, which increases exponentially with the 
number of bits being multiplied. 

The only realistic way to accomplish this is by using a 
sequential circuit, which realizes the exponentiation as a series 
of multiplications, and multiplication could also be realized as 
a series of shifts and conditional additions [4] which has 
already been illustrated in Section B where an exponentiation 
is separated into a number of multiplications and squaring. 
Each multiplication can be realized by a series of additions 
which has been discussed in Section D. Note that to reduce the 
hardware size, modulus (mod n) is performed as a number of 
subtractions inside the multiplication loops. Based on the 
algorithm described above, a Finite State Machine (FSM) has 
been developed as shown in Fig. 2. Later, with the reference 
of this FSM, the VHDL code for the design has been 
developed. 

In conclusion, RSA encryption requires a large loop to 
perform exponentiation, with a smaller inner loop to perform 
the multiplication. Within the multiplication loop, additions 
are used to substitute the multiplication. For each loop in 
addition, the divisor or modulus is subtracted from the 
working result whenever the working result becomes larger 
than the divisor, and leaving the modulus when encryption is 
done. 

 

Left-to-Right Method 
 
Output C = Me 
(e contains h-bits) 
1. if eh-1 = 1, then C:=M else C:=1 
2. for i = h-2 down to 0 
2a. C:= C x C 
2b. if ei = 1, then C:= C x M 
3. return C 
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Fig. 2: Finite State Machine (FSM) of RSA Core Module 

III. VHDL MODELING 

The combined RSA module consists of 5 sub-modules as 
shown in Fig. 3. 

 

 
 

Fig. 3: Overview of RSA Hardware Design 
 
All these modules including with the RSA combine module 

has been described briefly in the following sections: 

A. RSA PREPROCESS Module 
RSA_PREPROCESS in Fig. 3 converts serial incoming bits 

to parallel. Fig. 4 shows the hardware model layout. 
 
 
 
 

 
 
 
 
 
 

Fig. 4: RSA PREPROCESS Hardware Module Layout 
 
DataIn and DataOut are the serial input and parallel output 

respectively. Start pulse starts the conversion process. The 
Valid signal goes high when the conversion is completed. 

B. RSA PREBUFFER Module 
RSA_PREBUFFER temporarily stores the incoming 

message block and with a valid signal from the RSA_CORE 
module, it passes the message block to the CORE module for 
further process.  

C. RSA CORE Module 
RSA_CORE module performs the encryption and 

decryption process. This module has been implemented based 
on the algorithm listed in the previous section. The VHDL 
coding of this module is written based on the FSM diagram 
described in the previous section as well. 

An Arithmetic Logic Unit (ALU) has been used in the 
RSA_CORE module to perform the necessary additions, 
subtractions and others. Registers have been used to hold the 
results of the ALU operation temporarily and a state machine 
described earlier is used to control the operation of the ALU, 
route the desired signals to the ALU inputs, and latch the ALU 
output to the desired register. The ALU accepts 
32/64/128/512/1024 bits data as input, and produces an output 
with the same bit length. The input is stored temporarily in a 
register (34/66/130/514/1026 bits) where arithmetic 
operations are performed. The result is then moved to the 
output port when the operation is done. The design uses four 
registers (each 34/66/130/514/1026 bits) to hold the results, 
and 2 registers (5/6/7/9/10 bits) to hold the loop variables. The 
extra 2 bits are used in order to prevent overflowing during 
add operations. The layout of the RSA_CORE module is 
shown in Fig. 5. 

 

 
Fig. 5: RSA CORE Module Hardware Layout 

 
In Fig. 5: 

• M is the plaintext for encryption, or the cipher text for 
decryption. 

• E and N_C are public key (e, n) used for encryption, or 
private key (d, n) used for decryption. 

Valid

DataOut

DataIn

 
 

RSA_PREPROCESS 

CL

Star
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• SIZE provides the key size that is needed for 
encryption/decryption process. 

• RST sets the state machine implemented in 
RSA_CORE architecture to the initial idle state. 

• GO switches the state machine from idle state to the 
next state. 

• C is the cipher text produced by encryption, or the 
plaintext recovered by decryption. 

• DONE is high when the encryption or decryption 
operation is completed, otherwise it is always low. 

D. RSA POSTBUFFER Module 
RSA_POSTBUFFER module is used to store the incoming 

message blocks temporarily to avoid data missing. Then the 
message block transferred to the POSTPROCESS module. 

E. RSA POSTPROCESS Module 
RSA POSTPROCESS module performs the reverse process 

of the RSA PREPROCESS module. The module is a parallel 
to serial converter. The hardware model layout is shown in 
Fig. 6. 

 
 
 
 
 
 
 
 
 

Fig. 6: RSA POSTPROCESS Hardware Module Layout 
 
Here, DataIn is a parallel input, and Serial is a serial output. 

With a Done pulse, the conversion process starts and complete 
the conversion with a high Valid signal. 

F. RSA COMBINE Module 
RSA_COMBINE is the combination of 5 different 

modules: CORE, PREPROCESS, PREBUFFER, 
POSTBUFFER and POSTPROCESS. These five modules are 
linked together as illustrated in the Fig. 7. 
 

 
 

Fig. 7: Design Model for the Combine RSA Module 
 

The VHDL coding of each and every module is coded as a 
separate entity and finally combined together with a top level 
design. 

IV. SIMULATION, SYNTHESIS AND DISCUSSION 

A.  Theoretical Result of the Simulation Process 
To begin the testing of encryption /decryption process, a set 

of RSA parameters has calculated. Then the calculated 
parameters have been fed into the RSA_CORE module and 
the results have been compared with the theoretical values.  

Assumed that p = 7, q = 9. To generate the two keys, the 
product is computed as, n = p x q = 63. The Euler’s Totient 
function of n is computed as, φ = 48. Public key e is randomly 
chosen such that e and φ is relatively prime. Here, e = 5 has 
been chosen. Finally, the Extended Euclid’s algorithm is used 
to compute the decryption key, d. The private key for 
decryption obtained as d = 29. Thus, public key = (5, 63), 
private key = (29). 

The encryption process has been started by assuming the 
message, M = 7. Lastly, by using equation 1, the Cipher text 
C has been calculated as C = 49. 

B.  Simulation Results of the RSA CORE Module 
The timing simulation is performed by using the RSA 

parameters that have been developed earlier in this section. In 
this part the timing simulation of the RSA_CORE module is 
performed for 5 different key sizes. For each of the key size 
following input set is used: 
 

Encryption  :    Message, M = 716 

Public key, E = 516 

Modulus, N = 3F16 

Decryption  :    Message, M = 3116 

Public key, E = 1D16 

Modulus, N = 3F16 

 
The simulation result of the Encryption and Decryption 

process with a key size of 512-bits is shown in Fig. 8.  
Fig. 8(a) depicts the encryption process, while Fig. 8(b) 

shows the corresponding decryption process. The timing 
simulation is performed with 50ns simulation clock period (20 
MHz). 
 

 
 

Fig. 8: a) Encryption with 512-bits Key Size 
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Fig. 8: b) Decryption with 512-bits Key Size 
 

The parameters in Fig. 8 follow the RSA_CORE modules 
parameters. It can be noticed that all the inputs are in 
hexadecimal, while the output “C” is in decimal format. The 
input and output signals are divided into several 256-bits 
blocks because MaxPlus II only supports 256 bits in one 
single block. Thus to incorporate with MaxPlus II and to view 
the simulation result properly, the 512-bits signals are divided 
into groups. In the system, with the high “GO” signal, the 
calculation starts. The output “C” is giving the final result 
when the output “DONE” changed to ‘1’ (high state). 
According to the mathematical calculations that is presented 
early in this section, the encryption of a message valued ‘7’ 
with the encryption key ‘5’ and modulus value ‘63’ giving the 
result C= ‘49’ . In Fig. 8(a), it can be seen that when the 
DONE signal goes high, the output signal “C” shows ‘49’. 
Thus it can be concluded that the encryption process works 
successfully. Fig. 8(b) shows the decryption process to get 
back the original message, ‘7’. Likewise part (a), this figure is 
also having all the input and output signals. Here, the input 
message block “M” is fed with the cipher text that is obtained 
from Fig. 8(a). The input “ E” is changed to the private key, d 
= ‘29’ (1DH) to carry out the decryption. Original message 
that is obtained when the “DONE” = ‘1’ (high state) is ‘7’. By 
comparing both the figures above, it can be seen that the 
decryption process is performed successfully as well. The 
same process is followed to verify the functionality of the 
system with the key size 32, 64, 128 and 1024-bits. For each 
key size, the output is verified with the theoretical output and 
in all instances both the obtained and theoretical output is 
successfully matched. 

C. Simulation Result of the RSA COMBINE Module 
The timing simulation of RSA_COMBINE module is 

performed with the same set of keys and message, which is 
used earlier. Fig. 9 shows the timing simulation of the 
encryption process with a 512-bits key size. 

 
 
 

 
 
Fig. 9: Encryption Timing Simulation of COMBINE Module 

 
The output obtained here is ‘49’ which is same with 

calculated value. In binary, 49 = 01100012, which is observed 
at the output pin serial. The pin done_complete indicated the 
encryption was completed. Note that any bits after 
done_complete = ‘1’ is not a part of encrypted result. Thus the 
functionality of the design tested successfully. 

D. Synthesis 
The VHDL code is synthesized onto Altera STRATIX II 

device family. The synthesis tool has chosen the device 
EP2S30F484C3 for an efficient implementation of the flexible 
key RSA encryption engine. From the synthesis result, it is 
found that the device has utilized 13,779 units of Logic 
Elements (LEs) out of 33,880 units of total available which is 
about 41% utilization of the chosen device. By comparing this 
result with the synthesis result in the earlier ones, it is found 
that the total number of LEs have been decreased quite 
significantly. All different modules of RSA encryption engine 
is successfully tested and verified with a frequency of 20 
MHz. The RTL view for the combine module is shown in Fig. 
10. 

 

 
Fig. 10: RTL view of RSA Combine 

V. HARDWARE IMPLEMENTATION 

The project is successfully configured and downloaded to 
the STRATIX II EP2S30F484C3, tested and validated. The 
following steps are performed: 

 
1. Prepare project for hardware design 
2. Set-up 
3. Apply power 
4. Configure the STRATIX II device 
5. Configure the Pattern Generator (PG) and Logic  

Analyzer (LA) devices 
6. Test and verify results 
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In the set-up, the Altera DSP Development Board is 
connected to a laptop using an Altera byteblaster download 
cable. On the other hand, both the PG and LA mainframes are 
connected to the laptop through a USB cable. All the three 
devices are then connected together using signal connectors, 
ground lines, probes and jumper wires. Power is applied to the 
board by connecting the 5.0-V DC power supply adapter 
provided in the DSP kit. Once power is applied to the board, 
the POWER ON LED turns on. The STRATIX II device is 
directly configured using Quartus II software version 5.0 
Programmer. Next, the Joint Test Action Group (JTAG), a 
type of protocol, configures the STRATIX II device through 
the download cable via the ByteBlasterMV cable. Among the 
16 available channels in PG, 14 are utilized as inputs to the 
Altera FPGA. 

After downloading the project into FPGA, it is not 
sufficient by only performing software simulations. Thus, PG 
is used to generate FPGA input label signals and feed them 
into the chip and capture signals by LA from these chip’s 
output. This verification model reflects the real responses not 
only from virtual simulation by software, but it is also a real 
chip working result. Combining PG and LA provides an auto 
testing system or auto verification system. The ground lines of 
PG and LA are connected to the tested-circuit ground while 
the LA and PG grippers are connected according to the order 
of channel field number. The input wave patterns are then sent 
from the PG to the tested-circuit and the LA captures the 
outputs from the tested-circuit. 

VI. RESULTS AND DISCUSSION 

This section presents the simulation and synthesis results of 
the combined encryption system. The results obtained from 
the simulation are verified manually to make sure that the 
components are functionally correct. Simulation is an 
important process that must be carried out in order to obtain a 
good design that meets the objective. It enables errors and 
imperfections to be detected early in the design cycle. After 
verification process is completed, synthesis is carried out on 
all the components. The project is the configured and 
downloaded to the Altera FPGA. The next section presents a 
comparison between the results obtained in software and 
hardware implementation. This provides a useful evaluation in 
terms of the effectiveness and feasibility of the proposed 
approach. 

This RSA encryption engine has been tested and verified to 
perform 32-bit, 256-bit, and 1024-bit encryption operation in 
less than 41.585us, 531.515us and 790.61us respectively.  
This result has given the sufficient ground to claim this 
particular RSA encryption engine, a faster one than all other 
previous works [1]. The combine module is complied in the 
Timing Analyzer to obtain the critical frequency and timing 
delays. It is observed that the combine module of this Flexible 
key size RSA encryption engine has obtained a critical 
frequency of 17.77 MHz. Most importantly, from the 
synthesis result, it has clearly been observed that the RSA 
combine module has used 41% of total available LEs of the 
targeted ALTERA STRATIX II device family. This result 
resembles that the designed encryption engines takes a smaller 

space in the targeted FPGA and can be fitted in an FPGA with 
a smaller capacity. Moreover, the hardware implementation of 
the encryption has successfully tested and verified.   

VII. COMPARISON BETWEEN SOFTWARE AND HARDWARE 

IMPLEMENTATION 

Table 2 presents the results comparison between the two 
approaches software and hardware implementation. Based on 
the results obtained, it is concluded that the results obtained 
from the hardware exactly matched the results obtained from 
software simulations. In both cases, the system worked as 
expected and successfully for both encryption and decryption 
process. 

 
TABLE 2 

RESULTS OF COMPARISON 
Data type Software 

Simulation 
Hardware Output 

Encryption Key 041H 041H 
Encryption Input 2400C5FH 2400C5FH 
Encryption Result 241FEBBH 241FEBBH 
Decryption Input 241FEBBH 241FEBBH 
Decryption Key 013A0C2H 013A0C2H 
Decryption Result 2400C5FH 2400C5FH 

 
For the case of hardware implementation, it is noticed that 

for the both encryption and decryption, the process has taken 
almost the same amount of time as the software simulation. 
Table 3 below depicts the comparison of processing time take 
by both software simulation and the hardware implementation. 

 
TABLE 3 

COMPARISON OF PROCESSING TIME 
Process Software Simulation Hardware 

Implementation 
Encryption 19.385us 20.3us 

Decryption 41.585us 41.6us 

 
From the table above, it can be concluded that the hardware 

implementation has taken a little longer processing time for 
both encryption and decryption process. One possible reason 
of this can be the latency of the real world hardware. 

VIII. CONCLUSION 

The primary goal of this research project was to develop a 
flexible key RSA encryption engine which can be able to 
provide a significant level of security where it requires as well 
as can provide a faster processing time where necessary. The 
maximum bit length for both the public and private key is 
1024-bit, which has made this particular RSA encryption 
engine possible to achieve a significant level of security. 
Beside the security issue, another major concern of this 
research project was to provide a faster processing time to the 
applications where speed gets a better preference than the 
security. 

Overall, this project was successful. All design objectives 
were met, and the hardware implementation worked as 
anticipated based on software simulations. The VHDL 
implementation has shown that the language provides a useful 
tool of practicing the algorithms without drawings of large 
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amounts of logic gates. And, it is yet another example of how 
FPGAs can be used with good results for real-world, 
computationally intensive problems such as RSA encryption 
algorithm. Although the current highest bit of this flexible key 
RSA encryption engine can provide a sufficient amount of 
security, a larger key size can always ensure a better security. 
But the result of using a larger key causes slower processing 
time. Thus, some improvements can be made to boost up the 
speed by including multiplication and division operations in 
the algorithm. 
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