

Abstract—An approach to develop the FPGA of a flexible key

RSA encryption engine that can be used as a standard device in the
secured communication system is presented. The VHDL modeling of
this RSA encryption engine has the unique characteristics of
supporting multiple key sizes, thus can easily be fit into the systems
that require different levels of security. A simple nested loop addition
and subtraction have been used in order to implement the RSA
operation. This has made the processing time faster and used
comparatively smaller amount of space in the FPGA. The hardware
design is targeted on Altera STRATIX II device and determined that
the flexible key RSA encryption engine can be best suited in the
device named EP2S30F484C3. The RSA encryption implementation
has made use of 13,779 units of logic elements and achieved a clock
frequency of 17.77MHz. It has been verified that this RSA
encryption engine can perform 32-bit, 256-bit and 1024-bit
encryption operation in less than 41.585us, 531.515us and 790.61us
respectively.

Keywords—RSA, FPGA, Communication, Security,
VHDL.

I. INTRODUCTION

HE recent explosion of electronic data communications
and computer networks have made it very much important

to develop new ways to guarantee their security. With this
increasing demand of security in the communication channel,
the development of a new and efficient hardware security
module has started to get the primary preference.

A vast numbers and wide varieties of works have been done
on this particular field of hardware implementation of RSA
encryption algorithm. A hardware implementation of RSA
encryption scheme has been proposed by Khalil, et al. in [1],
where they use Montgomery algorithm with modular
multiplication and systolic array architecture. A similar
approach has been taken by Kim, et al. in [2]. This design
scheme focuses on the implementation of a 1024-bit RSA
cryptographic processor. But both these designs have the
drawback of a slower processing time, though some of them
use a faster clock. Shand, et al. have proposed a software
implementation of RSA cryptography in [3]. A different
approach has been taken by Chris, et al. in [4] for
implementing RSA cryptographic scheme. But, it does not

M.I. Ibrahimy, M.B.I. Reaz and S. Hussain are with the International

Islamic University Malaysia, 53100 Gombak, Kuala Lumpur, Malaysia
(phone: 603-61964504; fax: 603-61964488; e-mail: ibrahimy@iiu.edu.my).

K. Asaduzzaman is with the Multimedia University, 75450 Bukit Beruang,
Melaka, Malaysia. Manuscript received April 14, 2007; Revised Oct.30, 2007

provide the flexibility of using many practical applications as
it can only be implemented with a fixed key size.

This work approaches hardware implementation of RSA
encryption scheme using the modular exponentiation
operation. Simple nested loop addition and subtraction has
been used to implement the modular exponentiation operation
[4], which helps to reduce the processing time. In this design,
it is possible to change the key size of RSA according to the
application requirement.

II. DESIGN OVERVIEW

An exceptional feature that can be found in the RSA
algorithm [5] is that it allows most of the components used in
encryption to be re-used in the decryption process, which can
minimize the resulting hardware area. In RSA, a plaintext
block M is encrypted to a cipher text block C by:

C = M e mod n (1)

The plaintext block is recovered by:

M = Cd mod n (2)

RSA encryption and decryption are mutual inverses and

commutative as shown in equation (1) and (2), due to
symmetry in modular arithmetic. One of the potential
application for which this design of RSA has been targeted is
the Secured Voice Communication. In this application, the
voice input is fed into an Analog to Digital Converter (ADC).
The ADC changes the continuous analog voice input to a
continuous stream of binary bits. The purpose of the
compression module in this process is to supply the
compressed data to the encryption module for a fast operation.
The encryption module takes care of the security. The process
at the receiving end is same as the process that has been
followed at the sending end except that the sequence of the
module is reverse. The encryption engine covers both the
operation of Encryption and Decryption.

A. Basic RSA Operations
The RSA algorithm requires computation of the modular

exponentiation, which is broken into a series of modular
multiplications by the application of exponentiation heuristics.
Recall that the RSA encryption process is only the
mathematical operation, c = me mod n [5]. This mathematical
operation has involved a few modular operations; modular
exponentiation, modular multiplication, modular addition,

FPGA Implementation of RSA Encryption
Engine with Flexible Key Size

Muhammad I. Ibrahimy, Mamun B.I. Reaz, Khandaker Asaduzzaman and Sazzad Hussain

T

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 107 Manuscript received Mat 1, 2007; Revised received Nov.1, 2007.

and subtraction operations on large integers [6]. Detail
algorithms of the above operations for hardware
implementation have been stated in the following sections.

B. Modulus Exponentiation Operation
The modular exponentiation operation is simply an

exponentiation operation where multiplication and squaring
operations are modular. The exponentiation heuristics
developed for computing Me are applicable for computing Me
(mod n). In the domain of hardware implementation, an
intelligent algorithm is needed in order to reach a higher
efficiency. Hence, exponentiation is achieved by performing a
number of squaring and multiplications.

Given the integers M, e, and n, the e has to be changed to
binary in order to start the algorithm to compute Me. There are
two variations which depend on the direction by which the
bits of e are scanned: Left-to-Right (LR) and Right-to- Left
(RL). The LR binary method is more widely known which has
been listed in pseudo codes shown in Fig. 1 [6].

Fig. 1: Algorithm for Modulus Exponentiation Operation

Let us assume e = 43 = 1010112. So the h = 6 (e contains 6

bits). Using Left-to-Right method, as e5 = 1, C = M algorithm
starts as the following table 1.

TABLE I

LR METHOD OF COMPUTING EXPONENTIATION
i ei Step 2a Step 2b

4 0 M2 M2

3 1 (M2)2 M4 x M

2 0 (M5)2 M10

1 1 (M10)2 M20 x M

0 1 (M21)2 M42 x M = M43

C. Modulus Multiplication Operation
The modular multiplication problem is defined as the

computation of P = A x B (mod n), given the integers A, B,
and n. It is usually assumed that A and B are positive integers
with 0 ≤ A, B < n.

The modulus multiplication operation is needed after the
separation of exponentiation into a number of squaring and
multiplication. There are basically four general approaches for
computing the product P [1, 2, 3, 6]: Multiply and then divide,
Interleaving multiplication and reduction, Brickell’s method

and Montgomery’s method.
All approaches above have a common disadvantage that it

doubles up the number of bits for each multiplication. For
example, when two 32-bit numbers are multiplied together
will cost a 64-bit result and hence a large register is needed to
store this result.

A modified algorithm is used in this design which will be
discussed in Section E. The modified algorithm overcomes the
problem by separating the multiplication operation into a
number of modular addition operations.

D. Modulus Addition Operation
The modular addition problem is defined as the

computation of S = A + B (mod n) given the integers A, B, and
n. It is usually assumed that A and B are positive integers with
0 ≤ A, B < n. The most common method of computing S is as
follows:

1. Compute S = A + B.
2. Then S = S - n.
3. If S ≥ 0, then repeat step 2, else S = S.

Note that modular addition involves subtraction operation

in step 2.

E. Complete Algorithm
The difficult part of RSA encryption/decryption lies on the

modulus calculation of c = me mod n, to get the encrypted
message “c”. To calculate the encrypted message “c”, it
involves exponentiation that requires large amount of
combinational logic, which increases exponentially with the
number of bits being multiplied.

The only realistic way to accomplish this is by using a
sequential circuit, which realizes the exponentiation as a series
of multiplications, and multiplication could also be realized as
a series of shifts and conditional additions [4] which has
already been illustrated in Section B where an exponentiation
is separated into a number of multiplications and squaring.
Each multiplication can be realized by a series of additions
which has been discussed in Section D. Note that to reduce the
hardware size, modulus (mod n) is performed as a number of
subtractions inside the multiplication loops. Based on the
algorithm described above, a Finite State Machine (FSM) has
been developed as shown in Fig. 2. Later, with the reference
of this FSM, the VHDL code for the design has been
developed.

In conclusion, RSA encryption requires a large loop to
perform exponentiation, with a smaller inner loop to perform
the multiplication. Within the multiplication loop, additions
are used to substitute the multiplication. For each loop in
addition, the divisor or modulus is subtracted from the
working result whenever the working result becomes larger
than the divisor, and leaving the modulus when encryption is
done.

Left-to-Right Method

Output C = Me
(e contains h-bits)
1. if eh-1 = 1, then C:=M else C:=1
2. for i = h-2 down to 0
2a. C:= C x C
2b. if ei = 1, then C:= C x M
3. return C

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 108

Fig. 2: Finite State Machine (FSM) of RSA Core Module

III. VHDL MODELING

The combined RSA module consists of 5 sub-modules as
shown in Fig. 3.

Fig. 3: Overview of RSA Hardware Design

All these modules including with the RSA combine module

has been described briefly in the following sections:

A. RSA PREPROCESS Module
RSA_PREPROCESS in Fig. 3 converts serial incoming bits

to parallel. Fig. 4 shows the hardware model layout.

Fig. 4: RSA PREPROCESS Hardware Module Layout

DataIn and DataOut are the serial input and parallel output

respectively. Start pulse starts the conversion process. The
Valid signal goes high when the conversion is completed.

B. RSA PREBUFFER Module
RSA_PREBUFFER temporarily stores the incoming

message block and with a valid signal from the RSA_CORE
module, it passes the message block to the CORE module for
further process.

C. RSA CORE Module
RSA_CORE module performs the encryption and

decryption process. This module has been implemented based
on the algorithm listed in the previous section. The VHDL
coding of this module is written based on the FSM diagram
described in the previous section as well.

An Arithmetic Logic Unit (ALU) has been used in the
RSA_CORE module to perform the necessary additions,
subtractions and others. Registers have been used to hold the
results of the ALU operation temporarily and a state machine
described earlier is used to control the operation of the ALU,
route the desired signals to the ALU inputs, and latch the ALU
output to the desired register. The ALU accepts
32/64/128/512/1024 bits data as input, and produces an output
with the same bit length. The input is stored temporarily in a
register (34/66/130/514/1026 bits) where arithmetic
operations are performed. The result is then moved to the
output port when the operation is done. The design uses four
registers (each 34/66/130/514/1026 bits) to hold the results,
and 2 registers (5/6/7/9/10 bits) to hold the loop variables. The
extra 2 bits are used in order to prevent overflowing during
add operations. The layout of the RSA_CORE module is
shown in Fig. 5.

Fig. 5: RSA CORE Module Hardware Layout

In Fig. 5:

• M is the plaintext for encryption, or the cipher text for
decryption.

• E and N_C are public key (e, n) used for encryption, or
private key (d, n) used for decryption.

Valid

DataOut

DataIn

RSA_PREPROCESS

CL

Star

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 109

• SIZE provides the key size that is needed for
encryption/decryption process.

• RST sets the state machine implemented in
RSA_CORE architecture to the initial idle state.

• GO switches the state machine from idle state to the
next state.

• C is the cipher text produced by encryption, or the
plaintext recovered by decryption.

• DONE is high when the encryption or decryption
operation is completed, otherwise it is always low.

D. RSA POSTBUFFER Module
RSA_POSTBUFFER module is used to store the incoming

message blocks temporarily to avoid data missing. Then the
message block transferred to the POSTPROCESS module.

E. RSA POSTPROCESS Module
RSA POSTPROCESS module performs the reverse process

of the RSA PREPROCESS module. The module is a parallel
to serial converter. The hardware model layout is shown in
Fig. 6.

Fig. 6: RSA POSTPROCESS Hardware Module Layout

Here, DataIn is a parallel input, and Serial is a serial output.

With a Done pulse, the conversion process starts and complete
the conversion with a high Valid signal.

F. RSA COMBINE Module
RSA_COMBINE is the combination of 5 different

modules: CORE, PREPROCESS, PREBUFFER,
POSTBUFFER and POSTPROCESS. These five modules are
linked together as illustrated in the Fig. 7.

Fig. 7: Design Model for the Combine RSA Module

The VHDL coding of each and every module is coded as a
separate entity and finally combined together with a top level
design.

IV. SIMULATION, SYNTHESIS AND DISCUSSION

A. Theoretical Result of the Simulation Process
To begin the testing of encryption /decryption process, a set

of RSA parameters has calculated. Then the calculated
parameters have been fed into the RSA_CORE module and
the results have been compared with the theoretical values.

Assumed that p = 7, q = 9. To generate the two keys, the
product is computed as, n = p x q = 63. The Euler’s Totient
function of n is computed as, φ = 48. Public key e is randomly
chosen such that e and φ is relatively prime. Here, e = 5 has
been chosen. Finally, the Extended Euclid’s algorithm is used
to compute the decryption key, d. The private key for
decryption obtained as d = 29. Thus, public key = (5, 63),
private key = (29).

The encryption process has been started by assuming the
message, M = 7. Lastly, by using equation 1, the Cipher text
C has been calculated as C = 49.

B. Simulation Results of the RSA CORE Module
The timing simulation is performed by using the RSA

parameters that have been developed earlier in this section. In
this part the timing simulation of the RSA_CORE module is
performed for 5 different key sizes. For each of the key size
following input set is used:

Encryption : Message, M = 716

Public key, E = 516

Modulus, N = 3F16

Decryption : Message, M = 3116

Public key, E = 1D16

Modulus, N = 3F16

The simulation result of the Encryption and Decryption

process with a key size of 512-bits is shown in Fig. 8.
Fig. 8(a) depicts the encryption process, while Fig. 8(b)

shows the corresponding decryption process. The timing
simulation is performed with 50ns simulation clock period (20
MHz).

Fig. 8: a) Encryption with 512-bits Key Size

Valid

Seria

Data

RSA_POSTPROCESS

CL

Don

Valid

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 110

Fig. 8: b) Decryption with 512-bits Key Size

The parameters in Fig. 8 follow the RSA_CORE modules
parameters. It can be noticed that all the inputs are in
hexadecimal, while the output “C” is in decimal format. The
input and output signals are divided into several 256-bits
blocks because MaxPlus II only supports 256 bits in one
single block. Thus to incorporate with MaxPlus II and to view
the simulation result properly, the 512-bits signals are divided
into groups. In the system, with the high “GO” signal, the
calculation starts. The output “C” is giving the final result
when the output “DONE” changed to ‘1’ (high state).
According to the mathematical calculations that is presented
early in this section, the encryption of a message valued ‘7’
with the encryption key ‘5’ and modulus value ‘63’ giving the
result C= ‘49’ . In Fig. 8(a), it can be seen that when the
DONE signal goes high, the output signal “C” shows ‘49’.
Thus it can be concluded that the encryption process works
successfully. Fig. 8(b) shows the decryption process to get
back the original message, ‘7’. Likewise part (a), this figure is
also having all the input and output signals. Here, the input
message block “M” is fed with the cipher text that is obtained
from Fig. 8(a). The input “ E” is changed to the private key, d
= ‘29’ (1DH) to carry out the decryption. Original message
that is obtained when the “DONE” = ‘1’ (high state) is ‘7’. By
comparing both the figures above, it can be seen that the
decryption process is performed successfully as well. The
same process is followed to verify the functionality of the
system with the key size 32, 64, 128 and 1024-bits. For each
key size, the output is verified with the theoretical output and
in all instances both the obtained and theoretical output is
successfully matched.

C. Simulation Result of the RSA COMBINE Module
The timing simulation of RSA_COMBINE module is

performed with the same set of keys and message, which is
used earlier. Fig. 9 shows the timing simulation of the
encryption process with a 512-bits key size.

Fig. 9: Encryption Timing Simulation of COMBINE Module

The output obtained here is ‘49’ which is same with

calculated value. In binary, 49 = 01100012, which is observed
at the output pin serial. The pin done_complete indicated the
encryption was completed. Note that any bits after
done_complete = ‘1’ is not a part of encrypted result. Thus the
functionality of the design tested successfully.

D. Synthesis
The VHDL code is synthesized onto Altera STRATIX II

device family. The synthesis tool has chosen the device
EP2S30F484C3 for an efficient implementation of the flexible
key RSA encryption engine. From the synthesis result, it is
found that the device has utilized 13,779 units of Logic
Elements (LEs) out of 33,880 units of total available which is
about 41% utilization of the chosen device. By comparing this
result with the synthesis result in the earlier ones, it is found
that the total number of LEs have been decreased quite
significantly. All different modules of RSA encryption engine
is successfully tested and verified with a frequency of 20
MHz. The RTL view for the combine module is shown in Fig.
10.

Fig. 10: RTL view of RSA Combine

V. HARDWARE IMPLEMENTATION

The project is successfully configured and downloaded to
the STRATIX II EP2S30F484C3, tested and validated. The
following steps are performed:

1. Prepare project for hardware design
2. Set-up
3. Apply power
4. Configure the STRATIX II device
5. Configure the Pattern Generator (PG) and Logic

Analyzer (LA) devices
6. Test and verify results

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 111

In the set-up, the Altera DSP Development Board is
connected to a laptop using an Altera byteblaster download
cable. On the other hand, both the PG and LA mainframes are
connected to the laptop through a USB cable. All the three
devices are then connected together using signal connectors,
ground lines, probes and jumper wires. Power is applied to the
board by connecting the 5.0-V DC power supply adapter
provided in the DSP kit. Once power is applied to the board,
the POWER ON LED turns on. The STRATIX II device is
directly configured using Quartus II software version 5.0
Programmer. Next, the Joint Test Action Group (JTAG), a
type of protocol, configures the STRATIX II device through
the download cable via the ByteBlasterMV cable. Among the
16 available channels in PG, 14 are utilized as inputs to the
Altera FPGA.

After downloading the project into FPGA, it is not
sufficient by only performing software simulations. Thus, PG
is used to generate FPGA input label signals and feed them
into the chip and capture signals by LA from these chip’s
output. This verification model reflects the real responses not
only from virtual simulation by software, but it is also a real
chip working result. Combining PG and LA provides an auto
testing system or auto verification system. The ground lines of
PG and LA are connected to the tested-circuit ground while
the LA and PG grippers are connected according to the order
of channel field number. The input wave patterns are then sent
from the PG to the tested-circuit and the LA captures the
outputs from the tested-circuit.

VI. RESULTS AND DISCUSSION

This section presents the simulation and synthesis results of
the combined encryption system. The results obtained from
the simulation are verified manually to make sure that the
components are functionally correct. Simulation is an
important process that must be carried out in order to obtain a
good design that meets the objective. It enables errors and
imperfections to be detected early in the design cycle. After
verification process is completed, synthesis is carried out on
all the components. The project is the configured and
downloaded to the Altera FPGA. The next section presents a
comparison between the results obtained in software and
hardware implementation. This provides a useful evaluation in
terms of the effectiveness and feasibility of the proposed
approach.

This RSA encryption engine has been tested and verified to
perform 32-bit, 256-bit, and 1024-bit encryption operation in
less than 41.585us, 531.515us and 790.61us respectively.
This result has given the sufficient ground to claim this
particular RSA encryption engine, a faster one than all other
previous works [1]. The combine module is complied in the
Timing Analyzer to obtain the critical frequency and timing
delays. It is observed that the combine module of this Flexible
key size RSA encryption engine has obtained a critical
frequency of 17.77 MHz. Most importantly, from the
synthesis result, it has clearly been observed that the RSA
combine module has used 41% of total available LEs of the
targeted ALTERA STRATIX II device family. This result
resembles that the designed encryption engines takes a smaller

space in the targeted FPGA and can be fitted in an FPGA with
a smaller capacity. Moreover, the hardware implementation of
the encryption has successfully tested and verified.

VII. COMPARISON BETWEEN SOFTWARE AND HARDWARE

IMPLEMENTATION

Table 2 presents the results comparison between the two
approaches software and hardware implementation. Based on
the results obtained, it is concluded that the results obtained
from the hardware exactly matched the results obtained from
software simulations. In both cases, the system worked as
expected and successfully for both encryption and decryption
process.

TABLE 2

RESULTS OF COMPARISON
Data type Software

Simulation
Hardware Output

Encryption Key 041H 041H
Encryption Input 2400C5FH 2400C5FH
Encryption Result 241FEBBH 241FEBBH
Decryption Input 241FEBBH 241FEBBH
Decryption Key 013A0C2H 013A0C2H
Decryption Result 2400C5FH 2400C5FH

For the case of hardware implementation, it is noticed that

for the both encryption and decryption, the process has taken
almost the same amount of time as the software simulation.
Table 3 below depicts the comparison of processing time take
by both software simulation and the hardware implementation.

TABLE 3

COMPARISON OF PROCESSING TIME
Process Software Simulation Hardware

Implementation
Encryption 19.385us 20.3us

Decryption 41.585us 41.6us

From the table above, it can be concluded that the hardware

implementation has taken a little longer processing time for
both encryption and decryption process. One possible reason
of this can be the latency of the real world hardware.

VIII. CONCLUSION

The primary goal of this research project was to develop a
flexible key RSA encryption engine which can be able to
provide a significant level of security where it requires as well
as can provide a faster processing time where necessary. The
maximum bit length for both the public and private key is
1024-bit, which has made this particular RSA encryption
engine possible to achieve a significant level of security.
Beside the security issue, another major concern of this
research project was to provide a faster processing time to the
applications where speed gets a better preference than the
security.

Overall, this project was successful. All design objectives
were met, and the hardware implementation worked as
anticipated based on software simulations. The VHDL
implementation has shown that the language provides a useful
tool of practicing the algorithms without drawings of large

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 112

amounts of logic gates. And, it is yet another example of how
FPGAs can be used with good results for real-world,
computationally intensive problems such as RSA encryption
algorithm. Although the current highest bit of this flexible key
RSA encryption engine can provide a sufficient amount of
security, a larger key size can always ensure a better security.
But the result of using a larger key causes slower processing
time. Thus, some improvements can be made to boost up the
speed by including multiplication and division operations in
the algorithm.

ACKNOWLEDGMENT

The authors would like to express sincere gratitude to the
Research Centre, International Islamic University Malaysia
for providing fund for the research under IIUM Long-Term
Research Grant (IIUM/504/RES/G/14/3/01/LT38).

REFERENCES
[1] M.K. Hani, T.S. Lin, N. Shaikh-Husin, “FPGA Implementation of RSA

Public-Key Cryptographic Coprocessor”, in Proceedings of TENCON,
vol. 3, pp. 6-11, Kuala Lumpur, Malaysia, 2000.

[2] Y.S. Kim, W.S. Kang, J.R. Choi, “Implementation of 1024-bit Modular
Processor for RSA Cryptosystem”, in Proceedings of Asia-Pasific
Conference on ASIC, pp. 187-190, Cheju Island, Korea, 2000.

[3] M. Shand and J. Vuillemin, “Fast Implementation of RSA
Cryptography”, in Proceedings of 11th IEEE Symposium on Computer
Arithmetic, pp. 252-259, Windsor, Ontario, 1993.

[4] C. Brueggen, J. Singh, D. Lord, B. Siever, D. Sullins, “A Hardware
Approach to RSA Encryption”, Department of Electrical and Computer
Engineering University of Missouri-Rolla, pp. 1-14, Citing Internet
Sources; URL: http://www.mentor.com/partners/hep/HDLcontest.htm,

[5] Rivest, R., Shamir, A., and Adleman, L, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems”, Communications of
the ACM, 1978, vol. 21, no. 2, pp. 120-126.

[6] C. K. Koc., “RSA Hardware Implementation. Technical Report TR
801”, RSA Laboratories, 1996, pp. 1-24.

INTERNATIONAL JOURNAL OF COMMUNICATIONS

Issue 3, Volume 1, 2007 113

