
 

 

  
Abstract—It is notable that level crossing rate, outage probability 

and average time of fade duration of the combiner output signal are 
very important system performances. In this paper the level crossing 
rate, outage probability and fade duration of the SSC combiner 
output signal in the presence of the Nakagami-m fading are 
determined. The results are shown graphically for different variance 
values, decision threshold values and fading parameters values. 
 

Keywords— Diversity reception, Fade Duration, Level Crossing 
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I. INTRODUCTION 

ANY of the wireless communication systems use some 
form of diversity combining to reduce multupath fading 

appeared in the channel [1]. Among the simpler diversity 
combining schemes, the two most popular are selection 
combining (SC) and switch and stay combining (SSC). SSC is 
an attempt at simplifying the complexity of the system but 
with loss in performance. In this case the receiver selects a 
particular antenna until its quality drops below a 
predetermined threshold. When this happens, the receiver 
switches to another antenna and stays with it for the next time 
slot, regardless of whether or not the channel quality of that 
antenna is above or below the predetermined threshold. 

In the paper [2] Alouini and Simon develop, analyze and 
optimize a simple form of dual-branch switch and stay 
combining (SSC). The consideration of SSC systems in the 
literature has been restricted to low-complexity mobile units 
where the number of diversity antennas is typically limited to 
two ([3], [4] and [5]). Furthermore, in all these publications, 
only predetection SSC has thus far been considered wherein 
the switching of the receiver between the two receiving 
antennas is based on a comparison of the instantaneous SNR 
of the connected antenna with a predetermined threshold. This 
results in a reduction in complexity relative to SC in that the 
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simultaneous and continuous monitoring of both branches 
SNRs is no longer necessary. 

In [6] the moment generating function (MGF) of the signal 
power at the output of dual-branch switch-and-stay selection 
diversity (SSC) combiners is derived. Blanco consider 
diversity receiver performance in Nakagami fading in [7]. 

The joint probability density function of the SSS combiner 
output signal at two time instants in the presence of Rayleigh 
fading is determined in [10]. The level crossing rate, outage 
probability and average time of fade duration of the SSC 
combiner output signal in the presence of log-normal fading 
are calculated in [11]. In this paper level crossing rate, outage 
probability and average time of fade duration of the SSC 
combiner output signal in the presence of Nakagami-m fading 
will be determine. The results will be shown graphically for 
different variance values, decision threshold values and fading 
parameters values.  

II. SYSTEM MODEL 

The model of the SSC combiner with two inputs, 
considered in this paper, is shown in Fig. 1. 

The signals at the combiner input are r1 and r2, and r is the 
combiner output signal. The predetection combining is 
observed. 

 

 

Fig. 1. Model of the SSC combiner with two inputs (input 
signals are r1 and r2, and output signal r) 

 
The probability of the event that the combiner first 

examines the signal at the first input is P1, and for the second 
input is P2. If the combiner examines first the signal at the first 
input and if the value of the signal at the first input is above 
the treshold, rT, SSC combiner forwards this signal to the 
circuit for the decision. If the value of the signal at the first 
input is below the treshold rT, SSC combiner forwards the 
signal from the other input to the circuit for the decision, 
regardless it is above or below the predetermined threshold. 

If the SSC combiner first examines the signal from the 
second combiner input it works in the similar way. The 
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probability for the first input to be examined first is P1 and for 
the second input to be examined first is P2. 

The determination of the probability density of the 
combiner output signal is very important for the system 
performances determination.  

III. SYSTEM PERFORMANCES 

Derivation of system performances we are starting with the 
probability density functions (PDFs)  of the combiner input 
signals, r1 and r2, in the presence of Nakagami-m fading. The 
probability densities  (PDFs) of the combiner input signals, r1 
and r2 , are: 
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The cumulative probability densities (CDFs) in the 
presence of Nakagami-m fading are given by: 
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rT is the treshold of the decision. 
In the presence of Nakagami-m fading CDFs are: 
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where ),( axγ  is incomplete gamma function defined by [7]: 
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The joint probability densities of the combiner input 
signals, r1 and r2, and their derivatives 1r  and 2r , in the 

presence of Nakagami-m fading, are: 
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The probabilities P1 and P2  are:                                                 
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The expression for the joint probability density  function of 
the SSC combiner output signal and its derivative will be 
determined first for the case Trr < : 
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2211 rrprFPrrp rrTrrr  
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and then for Trr ≥ : 
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After substitution we have, for Trr < : 

⋅

Ω
+

Ω

Ω
=

),(),(

),(

)(

2
2

2

2
1

2

1

1

2
2

2

2

mrmmrm

mrm

rrp
tt

t

rr
γγ

γ
  

( )
⋅

ΓΩ
⋅

Ω
⋅ Ω

−−
2

2
2

2

22

22

12
2

1
2

1

1 2
),(

rm

m

mm

t e
m

rm
mr

m
γ  

+⋅
−

2
2

2

2

22

1 β

βπ

r

e  

    ⋅

Ω
+

Ω

Ω
+

),(),(

),(

2
2

2

2
1

2

1

1

1
2

1

1

mr
m

mr
m

mr
m

tt

t

γγ

γ
 

  
( )

⋅
ΓΩ

⋅
Ω

⋅ Ω
−−

1

2
1

1

11

11

12
1

2
2

2

2 2
),(

rm

m

mm

t e
m

rm
mr

m
γ  

 
2

1

2

2

12

1 β

βπ

r

e
−

⋅                  (13) 

and for Trr ≥ : 
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For the channels with identical parameters it is, for Trr < : 
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and for Trr ≥ : 
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The level crossing rate is: 
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and for Tth rr ≥ : 
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For the channels with identical parameters it is valid for 
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The outage probabilty )( thout rP is defined as: 
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In the presence of Nakagami-m fading and for Trr <  

probability density function is: 
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The outage probabilties )( thout rP  are defined as, for 
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and for Tth rr ≥ : 
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For the channels with identical parameters we have, for 
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Finnaly, fade duration is obtain from the expression: 
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IV. NUMERICAL RESULTS 

The joint probability density functions (PDFs) of the SSC 
combiner output signal are shown in Figs. 2. and 3. for 
diferent values of parameters rT , m, Ω  and β. 

 
Fig.2. The joint probability density function (PDF),  p rr ( rr ) 

for rT  =1, m=0.7, Ω =1, β =0.1   
 

 
Fig.3. The joint probability density function (PDF),  p rr ( rr ) 

for rT  =1, m=0.7, Ω =4, β =0.2 

 

Fig. 4. Level crossing rate N(rth) for  
rT  =1, m =0.7, Ω = 1,  β =0.1 

 

 
Fig. 5. Level crossing rate N(rth) for  

rT =1, m=0.7, Ω=4,  β =0.2 
 

 
Fig. 6. Level crossing rate N(rth) for  

rT =1, m=1, Ω=1,  β =0.1 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 1, Volume 2, 2008

42



 

 

The level crossing rate curves N(rth) are given in Figs. 4. to 
7.  for diferent threshold values, Nakagami fading parameter 
m values, and other  parameters.  

We can see that in all cases curves have similar shape. 
Also, we can observe discontinuities on the level crossing rate 
curves versu threshold. Numerical values of threshold 
determine the discontinuity moment appearance. 

 

 
Fig. 7. Level crossing rate N(rth) for rT =0.5, m=0.7,  

Ω=1,  β =0.1 
 

 

Fig.8. Fade duration T(rth)  for  rT = 1, m =0.7,  
Ω =1,  β=0.1 

 
Fade duration curves T(rth)  are shown  in Figs. 8. to 11. for 

different parameter values. We can compare these figures 
now. 

It can be observed that all curves, T(rth) versu threshold, 
have similar shape, but threshold numerical value influence to 
the discontinuity moment appearance. Larger rise of  fade 
duration corresponds to smaller threshold value. 

 
 

 
Fig.9. Fade duration T(rth) for rT  = 1, m = 0.7,  

Ω = 4,  β =0.2 

 
Fig. 10. Fade duration T(rth) for rT = 1, m = 1,  

Ω = 1,  β = 0.1 

 
Fig. 11. Fade duration T(rth) for rT = 0.5, m =1,  

Ω = 1,  β = 0.1 
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V. CONCLUSION 

Diversity combining is good technique to reduce fading in 
wireless communication systems. The level crossing rate, 
outage probability and average time of fade duration of the 
SSC combiner output signal are important system 
performances.  

We determine level crossing rate in order to obtain fade 
duration of SSC Combiner in the presence of log-normal 
fading in [14]. Level crossing rate, outage probability and fade 
duration of the SSC combiner output signal are determined in 
the presence of Nakagami-m fading in this paper. The results 
are shown graphically for different parameters values and 
some conclusions are given.  

In our future work these system performances can be 
derived for correlated fading and for some other fading 
distributions. 
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