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Abstract— WOFDM (Wavelet-based Orthogonal Frequency 

Division Multiplexing) reshapes the multi-carrier transmission 
concept, by using wavelet carriers instead of OFDM’s complex 
exponentials. The modulator and the demodulator rely on the 
Discrete Wavelet Transform (DWT) computation. One crucial 
parameter of this transform is the number of iterations, tightly related 
to the time-scale nature of the wavelet transform. Practically, the 
number of DWT iterations coincides with the number of transmission 
scales used. The influence of this parameter on the WOFDM 
transmission performance is studied in this paper. The considered 
scenario refers to a flat, time variant Rayleigh fading channel. Our 
simulations show that, by increasing the number of transmission 
scales, the BER performance degrades. This result is explained by 
the fact that a small number of iterations keeps the duration of the 
transmitted symbols significantly shorter than the coherence time of 
the channel. 

Keywords—WOFDM, DWT, scales, time-variance.  

I. INTRODUCTION 
avelets represent a successful story of the last decade in 
signal processing applications. Thus, these signals, with 

some remarkable properties, are widely used in various 
domains as compression, denoising, segmentation or 
classification. Despite their popularity in signal processing, 
few wavelets applications were found for data transmission. 
By the other hand, in data communications, the same 
successful story can be assigned to multi-carrier modulation 
techniques. Practically, most of the data transmission systems 
nowadays use Orthogonal Frequency Division Multiplexing 
(OFDM) or some versions of it. We can mention here WiFi 
(IEEE 802.11), WiMAX (IEEE 802.16) or ADSL. Due to its 
capabilities, OFDM is the preferred technique even for most 
of the power-line transmission systems [1]. It is especially the 
excellent OFDM resilience to the inter-symbol interference 
(ISI) that makes from this technique a reliable candidate for 
transmission in any dispersive channel.  

The WOFDM technique, sometimes referred to as wavelet 
modulation, is the point where the above concepts meet with 
each-other. Although they are widely used in signal 

processing, few wavelets applications are known in data 
transmission. The idea that gathers the two concepts is to use 
wavelet signals as carriers in a multi-carrier data transmission.  
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Despite its undoubted advantages, OFDM presents some 
drawbacks too [2]. Recent research has shown that, by 
associating the multi-carrier concept and the wavelet signals, 
some of the OFDM’s classical drawbacks can be 
counteracted. Thus, the sidelobes of the OFDM spectrum 
contain an important amount of energy, causing interference 
in the adjacent bands. The interference is a consequence of the 
sinc spectrum of every modulated carrier in OFDM. This 
shape of the spectrum is a result of gating the sine carrier 
(having, by its nature, infinite duration) with a rectangular 
waveform, which localizes the symbol on the time axis. In the 
WOFDM transmission, due to the waveform of the carriers, 
significant out-of-band rejection is provided by comparison to 
OFDM [3]-[5]. Thus, wavelets, by their nature, have finite 
duration. From this point of view, we may say that wavelets, 
unlike the sine carriers, are localized on the time axis “by 
themselves”. This property leads to a spectrum which has 
significant supplementary out-of-band rejection compared to 
the sinc spectrum from OFDM.  

Furthermore, since wavelets meet Nyquist’s criterion for 
zero ISI, they can be used as pulse-shaping waveforms [6],[7]. 
Due to the fact that the WOFDM symbol is a linear 
combination of modulated wavelets, this technique can be 
seen as a combination of multicarrier transmission and pulse-
shaping. 

 Another well known drawback of OFDM is the high value 
of the Peak-to-Average-Power Ratio (PAPR) [8]. There are 
even applications which combine the wavelet-pulse shaping 
and OFDM, commonly referred to as filtered multi-tone 
modulations [9]. In these systems, superior out of band 
rejection is provided, but the Peak-to-Average Ratio remains a 
challenge. 

It is well known that the orthogonality of the OFDM 
carriers relies on their precise positioning on the frequency 
axis [10]. It is the Doppler shift effect that occurs in the time 
variable channels, which particularly attacks this 
orthogonality. Unlike in OFDM, the orthogonality of the 
wavelet carriers relies on both their time position and their 
frequency localization (scale). This makes the WOFDM 
transmission less sensitive to Doppler, leading to noticeable 
BER improvements, under certain circumstances [11]. All the 
above considerations prove that an extensive investigation of 
WOFDM is worthwhile.  

W 
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An important detail related to the two techniques (OFDM 
and its wavelet based version) is that their practical 
implementation relies on digital signal processing algorithms. 
This reduces the implementation complexity, and leads to 
simple and cost-effective solutions for the multicarrier based 
techniques. At the time, the idea of using the Fast Fourier 
Transform (FFT) algorithm for a software-based 
implementation of the OFDM’s modulator and demodulator, 
transformed this technique from an attractive, but difficult to 
implement idea, into a incredibly successful story of the data 
transmission. Happily, the same kind of helpful principle can 
be used for WOFDM. Thus, an inverse transform implements 
the modulator and the direct transform will be the key point of 
the demodulator.  

In the case of WOFDM, the implementation is based on the 
famous Mallat’s filter bank algorithm, which computes the 
DWT [12]. This transform has two important parameters: the 
wavelets mother and the number of iterations used in 
computation. Previous research [13] has shown that the BER 
performance of WOFDM systems is significantly influenced 
by the wavelets mother choice. Now, we will focus on the 
other parameter of the WOFDM transmission, the number of 
DWT iterations. In the next section, we will review the 
principles of WOFDM, focusing on its practical 
implementation. The transmission chain it’s described in 
section 3. In section 4, simulation results are presented and 
commented. Last section is dedicated to some conclusions and 
possible advances on the subject.  

II. WOFDM PRINCIPLES 
 
In any multi-carrier modulation, the orthogonality of the 

multiple carriers is the key point that allows their separation at 
receiver. The multicarrier approach has the advantage of the 
long symbol duration, provided by the simultaneous 
transmission of several low-rate parallel streams. OFDM 
relies on this idea, and employs complex exponential carriers 
having frequencies which are multiples of f0 (1): 

 
tf2jk 0eksubc π=)(                            (1) 

 
where subc(k) denotes the k-th subcarrier used. The idea 
which links OFDM and wavelets is that, in the same manner 
that the complex exponentials are orthogonal to each-other, 
the members of a “wavelet family” will satisfy the same 
property: 
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Such a family can be obtained by translating and scaling a 

unique function called wavelets mother and denoted  
)(tΨ

 by
 (3): 
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Equation 3 corresponds to a sampled version of a wavelet 

family, the discrete variables being s0 (the scale) and k (the 
position within the scale). In the following we will consider 
s0=2 and τ0=1. It is of particular interest for our research to 
see what is the effect of changing the scale factor j. Therefore, 
in figure 1, some members of such a family are shown, at 
different scales and locations.  
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Fig.1: Some Symmlet wavelets at different scales  
and locations.  

If )(, tkjψ forms an orthonormal, family, we can state that 

any signal s(t) can be written as a weighted sum of wavelet 
functions (4), the weights being given by the wavelet 
coefficients (wj,k): 

 
∑ ∑

Ζ∈ Ζ∈
Ψ=

j k
kjkj twts )()( ,,                   (4) 

 
In the context of our research, the signal s(t) can be 

interpreted as being a “WOFDM symbol”. In practice, in 
order to restrict the number of scales j to a finite value, some 
“scaling functions” must be employed. Thus, any wavelet 
from a certain scale j can be composed as a weighted sum of 
scaling functions from the previous scale j-1. This, a different 
form of signal synthesis equation will be obtained: 

 
∑ ∑∑
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In the equation above, j=L is the coarsest level used for signal 
composition, and aL are called approximation coefficients. 
This relation is close to the computation of an inverse 
transform, the signal being synthesized from some 
“decomposition” coefficients. However, in practice, the 
WOFDM signal s(t) is not directly computed using equation 
(5). One reason is that, for most of the wavelet families, the 
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analytical expression of is not known. Mallat gave an 
ingenious solution to this problem, by its famous filter bank  

)(tΨ

decomposition algorithm [12]. Using this algorithm, the 
discrete version of the signal, s[n], is calculated by 
performing the Inverse DWT (IDWT). At each iteration, an 
up-sampling operation is performed (with the factor 2), 
followed by a filtering operation (fig. 2). 
Figure 2 describes the IDWT transform for three iterations 
(decomposition levels). g1 and h1 are the impulse responses of 
the synthesis low-pass and high-pass filter respectively. Their 
concrete form depends on the wavelets mother which is used.  
Each iteration of the algorithm illustrated in figure 2, can be 
described by the equation: 
 

∑ −+−=
k

11 k2ngkak2nhkwnx ])[][][][(][          (6) 

 
We can consider that the data we have to transmit is a set of 
approximation and wavelet (detail) coefficients, as follows:  
 

]}[],...,[],[],{[ 11LLL wwwadata −=           (7) 
 

This kind of view (input data interpreted as wavelet 
coefficients) it is only a model for a better understanding. In 
practice, we simply transmit bipolar values (+1 or -1), which 
represent the data bits. 
The data sequence is brought to the input of the IDWT 
processor, whose output will be the discrete version of the 
WOFDM symbol. This process is illustrated in fig. 3.  
We will now take a closer look to fig.2, in order to understand 
the exact meaning of these “coefficients” which compose the 
input data vector. Consider the “complementary” scheme (the 
signal processing from right to left): after each iteration the 

number of wavelet coefficients halves (because each iteration 
will rely on a down-sampling and filtering couple). Thus, 
considering that our data vector from (6) has N samples, than 
half of them will be stored in [w1], and they will be 
transmitted in the channel using the upper half of the 
dedicated bandwidth. Next, [w2] contains one quarter of the 
symbols to be transmitted. Finally, considering the last 
iteration performed (the Lth, according to fig. 3), we will have 
2J-L symbols grouped in the approximations vector and an 
equal number stored in the details vector (also referred to as 
wavelet coefficients). From practical implementation reasons, 
the number of signal samples composing a WOFDM is limited 
(N samples). Consequently, the maximum number of Mallat’s 
algorithm iterations is limited too, to J iterations (eq. 8): 
 

NJ 2log=                                   (8)  
 

The remarks above justify the attribute of “multi-scale 
transmission” for WOFDM. Indeed, unlike the classical 
OFDM technique, where each carrier occupies the same 
bandwidth, in WOFDM we have subcarrier sets, every set 
covering a different bandwidth (one half of the dedicated 
bandwidth after the first iteration, one quarter after the second 
one etc). 

The relation between fig. 2 and equation 5 is not 
straightforward. Note however that the best time (and the 
poorest frequency) resolution is achieved after the first 
iteration. At this point, we can figure out that the wavelet 
coefficients at this scale will modulate the wavelet carriers 
which have the best time localization within the wavelet 
family. Note that, higher the number of iterations, less 
compacted will be the corresponding wavelet carriers in time 
and more concentrated in frequency. Now, taking into account 
the time-scale nature of the wavelet transform, we can state 
that at those scales where the number of symbols to be 
transmitted is smaller, the duration of each symbol is higher. 
The same tendency can be highlighted for the wavelet carriers 
at different scales. These remarks are of particular interest for 
our study. Since WOFDM relies on an IDWT modulator, it 
follows that the transmission performance can be influenced 
by the parameters of this modulator. As stated earlier, we will 
focus on the number of iterations used in the IDWT 

ID
W

T 

{aL} 
{wL} 

{wL-1} 

{w1} 

s[n], n=0,…,N-1 

Input data 

Fig. 3: WOFDM symbol computation by IDWT. 

Fig. 2: IDWT implementation using filter banks. 
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computation. 

III.    THE TRANSMISSION CHAIN 
 
An area of particular interest for the multi-carrier 

modulation techniques is the transmission in the radio 
channels. Therefore, our simulation scenario is focused on this 
type of scenario. In the following, we will consider a 
transmission in a flat Rayleigh fading channel, the signal 
being corrupted by additive noise.  

The transmission chain used for simulations is shown in 
figure 4. 

The blocks which compose this simulation chain will be 
described in the following subsections. 

 

A. The transmitter 
The data source is a sequence of equally likely bipolar 

symbols (+1 and -1). This data is grouped in blocks of 
N=1024 samples, before being transferred to the IDWT 
modulator. The IDWT modulator is the key point of the 
transmitter. Data is processed as shown in the previous 
section, and next transmitted in the channel. Because our main 
goal was to asses the influence of the number of IDWT 
iterations, we considered two cases with respect to this 
parameter: nit=1 and nit=4. In the first case, we can view the 
data vector at IDWT entry as being a sequence of 512 
approximation coefficients and 512 detail coefficients. In the 
second case, the structure of the data vector will be interpreted 
by the IDWT modulator as:  

 
       (9)   )}(),(),(),(),({ 512d256d128d64d64adata 12344=

 
The subscript values from equation 9 represent the iteration 

number, whereas in the parenthesis we retrieve the number of 
symbols transmitted at that scale. The modulator output will 
be a signal s[n] of 1024 samples. If we consider that this 
signal is a sampled version of an analog signal, the sampling 
step being TS, then the duration of the symbols transmitted 
after j iterations will be:  

 
                                                         (10) S

j
j T2T =

 

This formula will become meaningful when we will try to 
explain some simulation results, during the next section. It is 
also important to mention that the variable duration of the 
transmitted symbol is a direct consequence of the time-scale 
nature of the wavelet transform. In DWT, each new iteration 
will halve the number of coefficients, but the total time 
interval occupied by the samples at each scale remains the 
same. 

 

B. The channel 
The radio channel exhibits small scale fading, which 

confers to this transmission environment two independent 
characteristics: time variance and frequency selectivity [14]. 
The variance in time of the radio channel's behavior can be 
expressed by the mean of the Doppler shift parameter, which 
depends on the relative motion between transmitter and 
receiver (assuming mobile communications) and on the carrier 
frequency used for transmission. The maximum value of this 
parameter is expressed by: 

 

Cd f
c
VVf ⋅=

λ
=                     (11) 

 
In eq. 9, V is the relative velocity of the receiver versus the 
transmitter c is the speed of light, fc represents the carrier 
frequency, determined by the wavelength used (denoted by λ). 
In the baseband simulation, a normalized version of this 
parameter is used: 
 

Sdm Tff ⋅=                                      (12) 
 
The normalization factor is the sampling step used for 

simulations (TS). For simplicity reasons, we may consider that 
this step equals the symbol time from equation 10, and we use 
the same notation. In our simulations, we considered two 
values for fm: 0.005 and 0.05. Higher the value of this 
parameter, more rapidly the channel changes in time. A more 
straightforward parameter which quantifies the variability of 
the channel is the coherence time, expressed as:  

 

d
C f

4230T .
=                                 (13) 

 
By extracting fd from (12) and replacing it in (13), the 

coherence time can be expressed as: 
 

m

S
C f

T4230T .
=                        (14) 

 
It is of outmost importance for our goals to compare this 

coherence time with the durations of the symbols transmitted 
at each scale (after each iteration). This comparison is shown 
in table 1. 

[dataest] 

IDWT 

DWT Decision 

s[n] 

ray[n] 
p[n] 

[data] 

r[n]

Fig. 4 : Baseband implementation of a  
WOFDM system. 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 1, Volume 2, 2008

99



These values will gain a particular interest for the explanation 
of the simulation results illustrated in the next section.  The 
small scale fading can be modeled using a Rayleigh 
distribution.  

Table 1: Coherence times versus symbol times. 
 
 
 
 
 
 
Its impact is given by the multiplicative ray[n]. This random 
sequence is described by its spectral characteristics and by its 
statistical properties. Thus, the power spectral density (PSD) 
of the Rayleigh sequence takes into account the Doppler shift. 
The theoretical formula for this PSD is commonly referred to 
as Jakes spectrum [14] and is plotted in figure 5, for 
fd=138Hz.  

 
The probability density function the fading sequence is 
modeled as a Rayleigh distribution: 
 

2

2
x

2
2

exxpdf
σ

⋅
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σ
−

)(                        (15) 

 
 
A white noise p[n] is added to the fading perturbed signal, 
generating the sequence r[n] to be processed by the 
demodulator: 
 

][][][][ npnraynsnr +⋅=                     (16) 
 
All the above conditions for channel simulation outline a 

flat and time-variant channel scenario.  
The white noise variance is gradually changed in order to 

be able to plot BER versus SNR curves. 
 

C. The receiver 
The key point of the receiver is the DWT “demodulator”. 

The decision on the transmission symbol is made based on a 
simple zero threshold comparison. The BER is computed for 1 
and 4 DWT iterations, corresponding to the value of this 
parameter used at the transmitter side. 

 

IV.    SIMULATION RESULTS 
 
The WOFDM transmission was simulated using Matlab 7. 

The wavelet related issues of our simulations are implemented 
in Wavelab, a free Matlab toolbox [14]. The main parameters 
used in simulations are synthesized in table 2. 

 
           Table 2: Simulation parameters global view. 

Parameter Value 
Number of blocks 10000 
Number of  
samples per block 

1024 

Wavelets used as 
carriers 

Haar, 
Daubechies-4, 8 
12 and 16 
Coifflet-1, 2, 3, 
4 and 5 
Symlet-4, 6, 8 
and 10 

SNR range 0 to 30 dB 
Channel AWGN and 

Flat fading 
Normalized 
Doppler shift, fm 

0.005 and 0.05 

DWT iterations (nit) 1 or 4 
 
Like the multitude of the parameters from table 1 proves it, 

an extensive set of simulations was conducted. In our study, 
we will mainly focus on the influence of the last parameter 
from table 2: the number of DWT iterations used in the 
modulator and demodulator. The two values of this parameter 
were chosen such as to provide a relevant view of how this 
choice can modify the BER performance of our system. In the 
case of the wavelets used, the numerical index associated with 
each wavelet represents the number of vanishing moments. 
Although there is no straightforward analytical equation 
which links this number and the time support of the wavelets, 
note that, higher the number of vanishing moments, more 
dilated will be the wavelets in time. This remark is relevant 
for some of our simulation results. 

Besides the classical BER measure, we will introduce 
another related parameter, for comparison purposes. This 
parameter is called Error Increase Ratio (EIR). At a fixed 
SNR, this measure can be computed as follows: 

 

1BER
4BEREIR

_
_

=                           (17) 

fm 0.005 0.05 
TC 84.6TS 8.46TS 

nit=1 2TS Tj nit=4 16TS 

Fig. nce.5: The theoretical PSD of the fading seque
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The usage of this parameter is driven by some experimental 
observations which were made after our simulations. EIR 
provides a framework which allows to simultaneously take 
into account both values used for nit . It was noticed [16] that 
in the considered scenario, increasing the number of DWT 
iterations leads to a BER degradation, especially when the 
channel varies rapidly (see table 2). This results lead to an EIR 
which is generally higher than 1, no meters what is the SNR 
value. Furthermore, our measurements showed that this 
parameter is monotonically increasing with SNR. This fact is 
illustrated in fig. 6, for one wavelet selected from each family, 
and fm=0.05.  

 

 
The explanation of this result is that, at high SNRs most of 

the errors will be caused by the Doppler shift, and not by the 
noise. As shown in some previous studies ([11], [13]), the 
amount of errors caused by the variability in time of the 
channel is related to the time localization of the wavelet 
carrier. Thus, higher number of iterations means longer 
duration wavelet carriers and longer symbol time, as 
illustrated by equation 10. Consequently, after each iteration 
(at each scale), the coherence time of the channel exhibits a 
different degree of influence on the WOFDM transmission 
performance. The most spectacular difference can be observed 
for the Haar wavelet, where the BER at 30 dB is three times 
lower when a single iteration is used than in the case with four 
iterations. The other extreme is Daubechies-12 wavelet, with 
barely one half BER degradation at four iterations, compared 
to the Haar case. The other wavelets are somehow at the 
middle of the two cases. The reason behind this result is that 
amongst all wavelets, Haar is the more compact in time. 
Consequently, this wavelet is the most affected by the choice 
of the number of iterations. As shown in previous studies, the 
Haar wavelet provides, by far, the best results in the flat 
fading scenario, especially when a single iteration is used 
[13]. This explains the spectacular growth of the curve in 
figure 6, at high SNR. In general, the wavelets with weak time 

localization will be less sensitive to the number of iterations. 
Otherwise stated, they provide poorer results even for a single 
iteration. 

The previous conclusion is supported by the plots in figures 
7 and 8. In the first case, we choose, from each wavelet 
family, the two “extreme” wavelets, having the shortest and 
the longest time support respectively. Wavelets are, in this 
case, differentiated by the number of vanishing moments. We 
can clearly identify, in figure 7, two different patterns. Thus, 
the most influenced by the number of transmission scales are 
the wavelets with compact support (Coiflet-1, Symmlet-4 and 
Haar, sometimes referred to as Daubechies-2). Significantly 
less impacted are the wavelets with longer time support within 
each family. The conclusion can be highlighted even for 
wavelets belonging to the same family. In figure 8, we plot the 
EIR versus SNR curves for all the wavelets from the 
Daubechies family. By analyzing fig. 8, we may notice that, 
whereas for Daubechies-20, BER at 30dB is approximately 
1.5 times higher when 4 transmission scales are used, for the 

Fig. 6: Error increase ratio for different wavelets, 

3

fm=0.05. 

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

SNR

E
IR

 

 
: Coif-3
: Haar
: Symm-6
: Daub12
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Daubechies-4 case the same degree of degradation is already 
observed at 15dB of SNR.  

Note that in all the previous figures, we considered a fast 
fading scenario, since the coherence time of the channel (see 
table 1) is barely one half of the symbol duration at the fourth 
scale. When we simulate the slow fading scenario, the results 
change spectacularly: there will be no significant BER 
degradation when increasing the number of transmission 
scales. The results are shown in figures 9 and 10. In figure 9, 
we plot the EIR versus SNR for the same wavelets like in 
figure 6, but for a ten times lower Doppler shift. In this case, 
there is no noticeable pattern of BER degradation for neither 
of the considered cases. Furthermore, when if we plot the EIR 
curves only for those wavelets which, supposedly, are the 
more impacted by the transmission on four scales, the 
previous remark is strengthened. Even with a zoomed y axis, 
there isn’t any monotonic EIR versus SNR evolution. The 
local extremes in the EIR are practically not relevant (between 
0.96 and 1.08). A compendium of the results is shown in table 
3.  

Table 3: A compendium of the simulation results 
Wavelet 

type 
Min 
gain 

EIR  
(30 dB) 

Min 
 gain 

EIR 
(30dB) 

 fm=0.05 fm=0.005 
Coif1 12 2.35 3 1.02 
Coif2 12 2.40 2 1.02 
Coif3 12 2.14 4 1.05 
Coif4 12 1.98 2 1.03 
Coif5 12 1.87 2 1.03 
Daub4 11 2.48 0 1.00 
Daub8 12 2.12 4 1.02 
Daub12 13 1.87 3 1.02 
Daub16 13 1.69 6 1.08 
Daub20 13 1.57 5 1.09 
Symm4 12 2.35 2 1.00 
Syym6 12 2.09 2 1.05 
Symm8 12 1.93 1 1.02 
Symm10 12 1.86 2 1.04 
Haar 10 2.96 0 0.98 

 
This table contains, besides the EIR, the gain brought by the 
use of a single scale, for all the tested wavelets. Because our 
SNR resolution was of 1dB, it was not possible to compute an 
exact value of this parameter. Instead, a minimal gain is 
defined. For this purpose, the BER at SNR=30 dB when 4 
iterations are used is considered as a starting point (denoted 
BERi). Next, we identify the lowest SNR (SNRf) for the one 
iteration case which leads to better BER results, and we 
denote this BER value by BERf. This means that the search is 
stopped when BERf becomes higher than BERi.  The minimal 
gain will be the difference between the two SNRs: 
 

fSNR30dBgainSNR −=][min__             (18) 

 
Note however that this measure represents a minimal gain 
only for the highest simulated SNR. 

Table 3 confirms that there is a totally different behavior 
pattern for fm=0.05 and fm=0.005. Remember that, under 
certain assumptions, the two scenarios can be considered as 
fast fading and slow fading respectively.  

Thus, the number of iterations impact is much higher in the 
fast fading scenario. In this case, the time variability of the 
channel has a predominant role in the errors occurrence. This 
happens because the duration of the transmitted symbol after 
the third iteration (8TS) is already comparable with the 
coherence time (8.46TS), becoming much higher at the fourth 
scale (16TS). The consequence is that, whereas at fm=0.05 
spectacular gains are obtained (from 10 to 13 dB), the results 
for the slow fading case are rather irrelevant. In the later case, 
the coherence time of the channel is five times longer than the 
symbol duration, even after the fourth iteration (see table 1). 

As already mentioned, the BER performance in time variant 
channels does not depend only on the duration of the symbols  
transmitted at each scale: the shape of the carriers must be 

Fig. 9: Error increase ratio for different wavelets, 
fm=0.005. 
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Fig. 10: Error increase ratio for the most time 
compacted wavelets, at fm=0.005 
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Fig. 12: BER versus SNR, Daubechies-20 case, 
fm=0.05. 
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considered too. More precisely, some of the wavelet carriers 
are more concentrated in time than others. The impact can be 
highlighted by table 3. For example, within the Daubechies 
wavelets family, the most spectacular results (EIR evolution) 
are obtained for wavelets having a smaller number of 
vanishing moments, and thus a more compact time support. 

Effective BER results are shown in figures 11 and 12, for 
some of the extreme cases (bolded in table 3). We treated 
separately the fast and the slow fading case respectively, 
considering their different behavior. The highest BER 
improvement at one iteration versus 4 iterations are obtained 
by the wavelets Haar and Daubechies-4. The later case was 
chosen for the plot in figure 11. Both these wavelets lead to an 
EIR of almost three. Previous research has shown [13] that 
these wavelets provide the best overall BER performance 
among all the tested wavelets, because they are the most 
compacted in time. This determines their sensitivity to the 
choice of nit parameter and explains their relatively poor SNR 
gain compared to the other wavelets (10dB). Note however 
that the SNR gain may be a misleading result, as it will be 
explained later.  These remarks support our previous 
conclusions about the better results of the short duration 
wavelets. By the other hand, even with an important gain of 
13dB, the Daubechies-20 wavelet leads to closed curves in the 
two cases. Thus, the practical significance of the 13dB gain 
provided by Daubechies-20 wavelet is rather limited. The 
meaning of the previous remarks leads to a negative 
interpretation of the results rather than to a positive one (e.g. 
independence on the number of iterations). The later result can 
be explained by the fact that Daubechies-20 is the more 
dilated in time amongst all the tested wavelets. In our 
simulations, we noticed that, from the BER point of view, this 
wavelet provides the worst performance. Thus, with a poor 
score even for one iteration, the WOFDM transmission based 
on this wavelet is not significantly impacted by increasing the 
number of transmission scales. 
 

Further support of our conclusions is given in figure 13.  This 
time we display the BER performance for some time-
compacted wavelets belonging to Symmlet and Coiflet 
families. It is clearly highlighted, once more, the BER 
degradation which appears when the number of WOFDM 
transmission scales increases. As an additional remark, there 
is no noticeable performance difference between the wavelets 

WGN noise 
w

oose from table 3 some wavelets that provide the best 
NR  

plotted in this figure.  
Another idea is confirmed too, by the plots in figures 11-13: 
the difference in the BER performance (between one and four 
transmission scales) occurs starting with high SNR values 
(above 10 dB). For lower SNR values, it is the A

hich impacts the WOFDM transmission more.  
In slow fading conditions, the BER degradation when 

increasing the number of transmission scales is rather not 
relevant. This was proved by the previous EIR versus SNR 
plots. The conclusion is strengthened by figures 14 and 15. 
We ch
S
 

 

Fig. 11: BER versus SNR, Daubechies-4 case, 
f
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Fig. 13: BER versus SNR for Coiflet-1 and 
Symmlet-4 wavelets, fm=0.05 

0 5 10 15 20 25 30
10-3

10-2

10
-1

SNR

B
E

R

 

 
: Coif-1,4 iterations
: Coif-1,1 iteration
: Symm-4,4 iterations
: Symm-4,1 iteration

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 1, Volume 2, 2008

103



 
minimal gain within their families: Daubechies-16 (6dB of  
gain) and Coiflet-3 (4dB of gain). The SNR gain brought by 
the transmission on a single scale is practically unnoticeable  
on the plot (see fig. 14). The four curves are 
undistinguishable. This clearly demonstrates how limited is 
th

ance is independent on the WOFDM 
arameters (wavelets mother, number of DWT iterations / 

transmission scales).  

ed with the number of transmission scales. We 

ons, when the time variability predominates 
ov

ale. Consequently, increasing the number of 

 the fourth scale. In this case, the 

ER degradation 

e influence of the number of transmission scales in slow 
fading conditions.   

Repeating the same experience for the wavelets which 
should be, supposedly, the most affected by the channel 
variability, the previous conclusion is strengthened. Even for 
the wavelets with the shortest time support, there is no 
influence of the number of scales on the WOFDM 
transmission BER. This happens because the coherence time 
of the channel is not “attacked” by the duration of the 
transmitted symbols at neither of the transmission scales. 
Basically, at the Doppler shift of 0.005 the fading channel 
tends to an AWGN one, where, as shown by previous studies 
[3] the BER perform
p
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Fig. 14: BER versus SNR for Daubechies-16 and  

IV. CONCLUSIONS AND FURTHER WORK 
 
The influence of the number of DWT iterations on the 
WOFDM transmission BER is studied in this paper. Due to 
the nature of the DWT algorithm, this parameter can be 
assimilat
consider a time variant channel, which exhibits flat Rayleigh 
fading.  
 We can clearly differentiate two behavior patterns. In the 
fast fading scenario (symbols times comparable or lower than 
the coherence time of the channel), the BER performance is 
strongly influenced by the number of transmission scales. The 
best performance is obtained when a single transmission scale 
is used: SNR gain of at least 10 dB and EIR of at least 1.69. 
The above values are collected for the maximum SNR used in 
simulations (30dB). In fact, the BER performance for one 
iteration exceeds the performance with 4 iterations only in 
good SNR conditi

er the noise, and is the main source of errors in the 
computed BER.  

A deeper look on the results highlight that the most 
impacted by the number of transmission scales in the fast 
fading case are those wavelets which have a compact time 
support (e.g. Haar, Daubechies-4, etc). This happens because, 
due to their good time localization, these wavelets provide 
improved BER performance compared to the other ones, 
especially when a single DWT iteration is used. Practically, 
we may say that the BER performance depends not only on 
the ratio between the coherence time and the symbol time at 
each scale, but on the carriers duration too. Being the most 
compact in time, these carriers have durations, at the first 
transmission scale, which, even if longer than the symbol 
time, remains significantly shorter than the coherence time of 
the channel. When increasing the number of iterations, the 
duration of those wavelet carriers increases and becomes 
comparable or higher than the coherence time of the channel. 
By the other hand, the other wavelets, having a large time 
support (e.g., Daubechies-20) have comparable duration with 
the coherence time of the channel starting even from the first 
transmission sc
scales does not affect the WOFDM transmission so 
dramatically.   
 The conclusions are totally different for the slow fading 
case. For the chosen value of fm , the coherence time of the 
channel remains five times longer than the longest symbol 
duration, obtained at
WOFDM performance does not depend on the number of 
iterations used. 
 For the continuation of this study, the author intends to 
support the conclusions above by carrying out an analysis of 
the way that the errors are distributed across the transmission 
scales. This allows to better highlight the B
when increasing the number of transmission scales, and to 
have a more coherent measure of this effect. 
  `Another interesting direction is to take into account the 
other major effect introduced by the radio channel, besides the 

Coiflet -3 wavelets, at fm=0.005. 

0 5 10 15 20 25 30
10-3

10-2

10
-1

10
0

SNR

E
IR

 

 
: Coif-1, 4 iterations
: Coif-1, 1 iteration
: Symm-4, 4 iterations
: Symm-4, 1 iteration
: Haar, 4 iterations
Haar, 1 iteration

Fig. 15: BER versus SNR for the most compact 
wavelets, at fm=0.005. 
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time variability: its frequency selectivity. Indeed, as 
concluded, in the flat fading channel, the only effect which 
influences the BER performance is the time variability of the 
channel. This effect was linked by the author to the time 
localization of the wavelets used as carriers. It was proved 
that, in general, the best performance is provided by the 
carriers having the most compact time support. The pattern 
might be totally different when the channel is frequency 
selective too. In this scenario, the wavelet having good 
frequency localization could be favored. But, given the time-
frequency duality, these wavelets are the ones with have a 
poor time localization, and which provided the worst BER 
performance for the flat fading channel. What we expect is 
that, in a channel which is both time variant and frequency 
selective, the best performance to be given by those wavelets 
which provide the best compromise between their frequency 
and their time localization.   
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