
 

 

  
Abstract— In this paper, the performance of chaotic code 

generators implemented in spread spectrum communication system is 
analyzed and compared to those using conventional pseudo random 
code generators as maximum length, gold code generators. Image is 
used as a data source and the histogram of the spreaded image is 
analyzed. Applicability of different types of generators are studied by 
examining their autocorrelation, cross-correlation performance and 
the bit error rate for the communication system is evaluated for 
various codes. Finally, a residue number arithmetic is added to the 
system; this system is evaluated and compared to that of non residue 
number system, measuring the histogram of the spreaded image and 
the probability of error for the system is measured. 
 

Keywords— Image encryption, Spread spectrum 
communication, chaotic sequence generator, and Residue number 
system.  

I. INTRODUCTION 
pread Spectrum (SS) [1] – [5] has been defined as a means 
of transmission in which the signal occupies bandwidth 
much in excess of the minimum necessary to send the 

information, the band spread is accomplished by utilizing a 
“code” which is independent of the data and a synchronized 
reception with the code at the receiver is used for de-spreading 
and subsequent data recovery. 

The SS Communications are widely used today for Military, 
Industrial, Avionics, Scientific, and Civil uses. The 
advantages of using SS include the following: [3] 

• Low power spectral density. 
o As the signal is spread over a large frequency-band, 

the Power Spectral Density is getting very small, so 
other communications systems do not suffer from 
this kind of communications. However the Gaussian 
Noise level is increasing. 

o The ability to utilize the Satellite payload channels, 
which is achievable as the transmitted signal is spread 
in such away that it become noise like and thus would 
not interfere with the payload traffic.  

• Interference limited operation. 
• Privacy due to unknown random codes. As the applied 

codes are - in principle - unknown to a hostile user. This 
means that it is hardly possible to detect the message of 
another user.  
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• Applying spread spectrum implies the reduction of multi-

path effects.  
• Random access possibilities. As users can start their 

transmission at any arbitrary time.  
• Good anti-jam performance. 

The cost paid is the need of a larger bandwidth which 
already present due to the usage of the existing 
communication channels and the need for good 
synchronization at the receiver to detect the reception of the 
signal. 

The “code” [6] used for spreading the signal is a pseudo-
random or pseudo-noise (PN) code that is mixed with the data 
to spread the signal in a statistically random matter. These 
codes are considered fast codes as they run the information 
bandwidth or data rate many times.  

The conventional PN sequence is generated by linear shift 
registers which generate a cost problem for making the period 
of the PN long because a large amount of storage capacity and 
a large number of circuits is required. It is also it is not 
considered secure for transmission systems as it can be easily 
described once a short sequential set of chips (2L+1) from the 
sequence is known. This is why non-conventional techniques 
as the use of chaos generators [8] – [11] to spread and de-
spread the signal is actively being considered for spread-
spectrum communications [8].  

The performance of image encryption [12] – [14] using 
different types of spreading sequences is analyzed and a 
comparison is performed between chaotic sequence as a 
spreading code and conventional Pseudo-noise code 
generators.  

Then a residue number system (RNS) is added to the 
chaotic communication system in order to add more features 
to the communication system. The usage of RNS adds more 
security to the system through encrypting the data signal and 
converting arithmetic of large numbers to arithmetic on small 
numbers, thus improving the signal-to-noise ratio of the 
received signal and decreasing the bit error probability 

Following the introduction, in part two of this paper, a 
brief description of spread spectrum systems is provided. In 
part three a description of the conventional Pseudo-noise 
generators are provided, part four provides a definition of 
chaotic sequence, part five defines the method for 
generating the chaotic sequence, In part six an introduction 
to residue number system is provided, part seven provides 
system model description, part eight shows the simulation 
results, and finally in part nine the conclusion and future 
work in this field are indicated.  
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II. DIRECT SEQUENCE SPREAD SPECTRUM TECHNIQUE 
There are many types of spread spectrum techniques [1], [2] 

as: Direct sequence (DS), frequency hopping, time hopping 
and hybrid system. Direct sequence (Fig 1) contrasts with the 
other spread spectrum process, in which a broad slice of the 
bandwidth spectrum is divided into many possible broadcast 
frequencies. In general, frequency-hopping devices use less 
power and are cheaper, but the performance of DS-CDMA 
systems is usually better and more reliable [8]. Thus, in this 
paper we will deal only with direct sequence method. 

In Direct Sequence-Spread Spectrum the base-band 
waveform is XOR by the PN sequence in order to spread the 
signal. After spreading, the signal is modulated and 
transmitted. The most widely modulation scheme is BPSK. 

 
Fig.1 DS - SS block diagram 

 
The bandwidth expansion factor - also called the 

Processing Gain (K) -, can be defined as the ratio between the 
transmitted spread spectrum signal bandwidth (B) and the 
bandwidth of the original data sequence (Bmessage) where the 
Processing Gain is approximately the ratio of the spread 
bandwidth to the information rate R (bits/s) and it is much 
greater than unity. 

R
B

B
BK

message

≈=  (1) 

Spread Spectrum transmitters use similar transmits power 
levels to narrow band transmitters. Because Spread Spectrum 
signals are so wide, they transmit at a much lower spectral 
power density, than narrowband transmitters. Spread and 
narrow band signals can occupy the same band, with little or 
no interference. Interference rejection capability arises from 
low mutual correlation between the desired signal and the 
interfering signal ensured by the codes. This capability is the 
main reason for all the interest in Spread Spectrum today. 

The equation that represents this DS-SS signal is shown in 
equation (2), and the block diagram is shown in Fig. 2. 

Sss = √ (2 Es/Ts) [m(t) ⊗ p(t)] cos (2 π fc t + θ ) (2) 
Where: 
m(t) is the data sequence,  
Ts is duration of data symbol. 
p(t) is the PN spreading sequence,  
fc is the carrier frequency,  
θ is the carrier phase angle at t=0. 

 
Fig. 2 DS- SS Transmitter block diagram 

 

The demodulator, de-modulates the modulated (PSK) signal 
first, low Pass Filter the signal, and then de-spreads the 
filtered signal to obtain the original message. The process is 
described by the following equation (3) and the block diagram 
is shown in Fig. 3. 

m(t) = [ Sss * cos (2 π fc t + θ ) ] ⊗ p(t) (3) 
 

 
Fig. 3 DS- SS Receiver block diagram 

 
It is clear that the spreading waveform is controlled by a 

Pseudo-Noise (PN) sequence which is a binary random 
sequence. This PN is then multiplied with the original base-
band signal, which has a lower frequency, which yields a 
spread waveform that has noise-like properties. In the 
receiver, the opposite happens, when the pass-band signal is 
first demodulated, and then de-spreaded using the same PN 
waveform. An important factor here is the synchronization 
between the two generated sequences. 

III. PSEUDO-NOISE CODE GENERATOR 
PN is the key factor in DS-SS systems (Fig 1). A Pseudo 

Noise or Pseudorandom sequence is a binary sequence with an 
autocorrelation that resembles, over a period, the 
autocorrelation of a random binary sequence. It is generated 
using a Shift Register, and a Combinational Logic circuit as its 
feedback. The Logic Circuit determines the PN words. 

Due to the usage of the PN code, the spread spectrum 
technique has the ability to discriminate interference signals 
and detect the received signal by matching received PN code 
with the local PN code and measuring the number of chips of 
the code delay between the signal being transmitted and 
received, and thus determine uniquely the range from the 
transmitter to the receiver without ambiguity [3].  
Consequently the spread spectrum technique has its advantage 
in that its phase is easily resolved. 
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There are three basic properties that can be applied to a 
periodic binary sequence (PN sequence) as a test of the 
appearance of randomness, they are: 

1. Balance Property: Good balance requires that in each 
period of the sequence, the number of binary Ones differs 
from the number of binary Zeros by at most one digit. 

2. Run Property: A run is defined as: sequence of a single 
type of binary digits. The appearance of the alternate digit in a 
sequence starts a new run. It is desirable that about one half 
the runs of each type is of length 1, about one fourth of length 
2, one eighth is of length 3, and so on. 

3. Correlation Property: If a period of the sequence is 
compared term by term with any cyclic shift of itself, it is best 
if the number of agreements differs from the number of 
disagreements by not more than one count. 

The PN (Pseudo Noise) codes used for DSSS require 
certain mathematical properties.  

1. Maximum Length Sequences: These are PN sequences 
that repeat every 2n -1, where n is an integer. These sequences 
can be implemented using shift registers. The PN sequences 
must exhibit good correlation properties. Two such sequences 
are Barker Codes, and Willard Codes.  

2. Maximum Auto-Correlation: When the received signal is 
mixed with locally generated PN sequence, it must result 
in maximum signal strength at the point of synchronization. 

3. Minimum Cross-Correlation: When the received signal 
with a different PN sequence than that of the receiver, is 
mixed with the locally generated PN sequence, it must result 
in minimum signal strength. This would enable a DSSS 
receiver to receive only the signal matching the PN code. This 
property is known as Orthogonality of PN Sequences. 

The M-Sequence and Gold sequences are the most popular 
conventional spreading sequences in spread spectrum systems. 
The M-sequences have very desirable autocorrelation 
properties. However, large spikes can be found in their cross-
correlation functions especially when partially correlated. 
Another limiting property of M-sequences is that they are 
relatively small in number. Therefore, the number of 
sequences is usually too small and not suitable for spread 
spectrum systems. On the other hand, the Gold sequences 
have better cross-correlation properties than M-sequences; 
they are constructed by taking a pair of specially selected M-
sequences. 
 

  
Fig. 4.a PN Generator block 
diagram m-sequence code 

Fig. 4.b PN Generator block 
diagram Gold code  

 

In this paper, the so called Maximum–Length PN sequence 
is used, generated by a linear feedback shift register, which 
has feedback logic of only modulo–2 adders (XOR Gates). 

IV. CHAOTIC SEQUENCE CODE GENERATOR 
Chaotic theory has been established since 1970s from many 

different research areas, such as physics, mathematics, biology 
and chemistry, ,..etc. The most well-known characteristics of 
chaos are the so-called “butterfly-effect” (the sensitivity to the 
initial condition), and the pseudo-randomness generated by 
deterministic equations. 

A chaotic dynamical system [8] – [10] is an unpredictable, 
deterministic and uncorrelated system that exhibits noise-like 
behavior through its sensitive dependence on its initial 
conditions which generates sequences similar to PN sequence. 
The chaotic dynamics have been successfully employed to 
various engineering applications such as automatic control, 
signals processing and watermarking. 

Since the signals generated from chaotic dynamic systems 
are noise-like, super sensitive to initial conditions and have 
spread and flat spectrum in the frequency domain, it is 
advantageous to carry messages with this kind of signal that is 
wide band and has high communication security. For this 
reason, numerous engineering applications of secure 
communication with chaos have been developed. 

A direct application of chaos theory to telecommunication 
systems appears in a conventional digital spread spectrum 
[10], [11], where the information, is spread over a wider band 
by using a chaotic signal instead of the usual periodic PN 
sequences. 

The chaotic sequences have Noise-like waveform, and 
Wide band spectrum properties [10] in comparison with the 
periodic pseudo number sequence. These properties have the 
following advantages: 

 Sensitive dependence on the initial conditions which is 
desirable for multi-user communication and also for 
secure communication. 

 Infinitely long period without increasing the generator 
which is desirable for multi-user communication and 
also secure communication. 

The disadvantage of such system is the complexity to 
synchronize the receiver chaos sequence with local generated 
at the receiver end. 

V. GENERATION OF CHAOTIC SEQUENCE 
Various non-linear dynamic systems are used in order to 

generate the chaotic sequence as: Tent map, logistic map, 
quadratic map and Bernoulli map [16], [17].  In this paper the 
generation of chaotic sequence using the logistic and tent 
maps is studied through the analysis of the bifurcation 
diagram for each of them. 

The state space description of the logistical map is: 
xn+1 = r xn (1 - xn) 0 ≤ xn ≤ 1, 0 ≤ r  ≤ 4 (4) 
Where; 
r is called the bifurcation parameter.  
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The state space description of the tent map is: 
F(xn) = xn+1 = k ( 1 – | 1 – 2 xn | ) (5) 
Where; 
F is the transformation mapping function, 
k is arbitrary constant that is selected by the designer to 

make a chaotic system.  
One major difference between chaotic sequences and PN 

sequences is that the generated chaotic sequences are not 
binary. Therefore chaotic sequences must be transformed into 
binary sequences. 

In order to transfer the real valued chaotic sequence (x) to 
binary sequence, a threshold function θt(x) is defined as, 

 
0 ,  x < t 

θt(w) = 1 ,  x ≥  t (6) 

Where 
t is the threshold value 
 
The threshold value is chosen as an arithmetic mean of a 

large number of conservative values of x. Thus a binary 
sequence is obtained and is referred to as a chaotic threshold 
sequence. 

VI. RESIDUE NUMBER SYSTEM (RNS) 
A residue number system (RNS) [18], [19] represents a 

large integer using a set of smaller integers, so that 
computation may be performed more efficiently. It relies on 
the Chinese remainder theorem of modular arithmetic for its 
operation, a mathematical idea from Sun Tsu Suan-Ching 
(Master Sun’s Arithmetic Manual) in the 4th century AD. 

The residue number system is defined by the choice of v 
positive integers mi (i = 1, 2, 3 … v) referred to as moduli. If 
all the moduli are pair-wise relative primes, any integer N, 
describing a non-binary message in this letter, can be uniquely 
and unambiguously represented by the so-called residue 
sequence (r1, r2 ..rv) in the range 0<N<MI ,where ri = N (mod 
mi) represents the residue digit of N upon division by mi, and 
MI  = ∏ mi is the information symbols’ dynamic range. 
Conversely, according to the Chinese Reminder Theorem, for 
any given v-tuple (r1, r2..rv) where 0 ≤ ri < mi  ; there exists one 
and only one integer N such that 0 ≤ N < Mi  and ri = N (mod 
mi) which allows us to recover the message N from the 
received residue digits. 

Residue number system has two inherent features that 
render the RNS attractive in comparison to conventional 
weighted number systems, such as for example the binary 
representation. These two features are [18]:   

• The carry-free arithmetic and,  
• Lack of ordered significance amongst the residue 

digits.  
The first property implies that the operations related to the 

individual residue digits of different moduli are mutually 
independent because of the absence of carry information. The 
second property of the RNS arithmetic implies that some of 
the residue digits can be discarded without affecting the result, 
provided that a sufficiently “high dynamic range” is retained 
in the “reduced” system in order to unambiguously contain the 
result. 

VII. SYSTEM MODEL  
In this paper, a Lena image as shown in Fig 5.a, is used as a 

data source and is encrypted using direct sequence spread 
spectrum technique and based through AWGN channel, as 
shown in Fig 5.b.  The encrypted image is analyzed when the 
system is designed with conventional PN sequence, and with 
chaotic sequence, finally RNS is added and the system 
performance is measured. 
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Fig. 5.a Lena image and its histogram before encryption 

 

 
Fig. 5.b Direct Sequence Spread Spectrum system with RNS 

 

The bit error probability (Pe) [2] for BPSK system is used 
as a reference for comparisons between various schemes. 
 

Q [1/√((K-1)/3N + No/2Eb)] , M, Gold Pe = Q [1/√((K-1)/√3N + No/2Eb)] , Chaotic (7) 

 

The reason for the presence of different bit error probability 
as shown in equation (7) is due to the decrease of the multiple 
access interference (MAI) when utilizing chaotic code 
generators.   

The equation that measures the autocorrelation and cross 
correlation functions is as shown in equation (8) and (9). 

rxx (l) = Σ  x(n). x(n-l) (8) 
rxy (l) = Σ  x(n). y(n-l) (9) 
Where; 
rxx , is the auto correlation for discrete functions. 
rxy , is the cross correlation for discrete functions. 
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VIII. SIMULATION RESULTS 
Various simulations were performed for using chaotic 

and/or conventional pseudorandom sequence. System using 
chaotic sequence is also compared to with/without RNS. 

The simulations are divided into nine sections. Section 1; 
show the bifurcation diagram and the histogram for two 
chaotic sequence generators. In section 2, the autocorrelation 
and cross correlation for conventional and chaotic code 
generators are provided. Section 3; study the randomness of 
the chaotic sequence through plotting the frequency, time 
distribution and its power spectral density. In section 4, the 
histogram for the spreaded using chaotic code and 
conventional PN code generators are analyzed. In section 5 
the sensitivity towards the initial value in chaotic sequence 
generator is shown, and in section 6 the effect of number of 
chaotic sequence on the system performance is provided. In 
section 7 the histogram of the spreaded image using RNS is 
evaluated. Section 8 measures the nit error probability when 
using various code generators and finally, section 9 measures 
the bit error probability for Logistic map generator 
implemented in a SS system with and without RNS.   

A. The bifurcation and chaotic maps: 
The bifurcation and histogram for each of the chaotic 

generators: The logistic map and the tent map are drawn to 
show its random performance. 
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Fig. 6.a bifurcation diagram for Logistic map, x0=-0.35 
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Fig. 6.b bifurcation diagram for Logistic map, x0=0.1 
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Fig. 6.c bifurcation diagram for Tent map, x0 = 0.5 
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Fig. 6.d bifurcation diagram for Tent map, x0 = 0.1 
From Fig. 6, it show the sensitivity of the chaotic maps 

towards its initial value x0 and also indicate that depending 
on the value of r, the dynamics of system can change 
attractively exhibiting periodicity or chaos. 

The logistic and tent maps are drawn by geometry in-
order to demonstrate their chaotic performance, as shown in 
Fig 7. 
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Fig. 7.a Graph of the Logistic Map  function for one dimension and 
phase space trajectories 
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Fig. 7.b Graph of the Tent Map  function for one dimension and phase 
space trajectories 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 2, Volume 2, 2008

147



 

 

The histogram for the chaotic sequences: Logistic map and 
the tent map are drawn as shown in Fig 8. 
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Fig. 8.a Histogram for Logistic map - x0 =0.1 
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Fig. 8.b Histogram for Tent map - x0 =0.1 

Fig. 8 shows that the chaotic sequences generators – 
especially that generated through the Tent map – have a well 
distributed probability function which is required for random 
umber generation. 
 

B. The autocorrelation and cross-correlation function: 
In the next simulations the autocorrelation and cross 

correlation performance for each of the chaotic and 
conventional random sequences are analyzed. 
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Fig. 9.a Autocorrelation function for Logistic map 
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Fig. 9.b Autocorrelation function for Tent map 

 
Fig. 9.c Autocorrelation function for  M- Sequence 

 
Fig. 9.d Autocorrelation function for Gold sequence 

Fig. 9 shows the autocorrelation function for the chaotic 
sequence is highly compared to that of the conventional PN 
code generators. 

In order to demonstrate the extreme sensitivity of the 
chaotic logistic map the next analysis will study the cross 
correlation between two codes generated by Logistic map with 
difference of 0.000000001 in the initial condition and for the 
conventional PN code generators, is as shown in Fig 10. 
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Fig. 10 Code 1 and Code 2 generated by the logistic map 
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Fig. 11.a The cross correlation between the two chaotic codes 

 
Fig. 11.b Cross-correlation function for the M- Sequence 

 
Fig. 11.c Cross-correlation function for the M- Sequence 

 

Fig. 11 shows that chaotic sequences have very low values 
of the cross correlation function. This is an important issue 
with regards to security, because the receiver cannot be 
figured out from a few points of the chaotic sequence. 
Consequently, the chaotic sequence also permits more users in 
the communication system and the system obtains a greater 
security. 

 

C. Frequency and time distribution 
In order to see the randomness of the chaotic sequence, the 

time and frequency distribution of the code are shown in 
Fig.12 for both the Logistic map and Tent map. The power 
spectral density for the Logistic map is drawn in comparison 
with a purely random sequence as foreseen in Fig. 13. 

Fig 12.a Logistic map in the time and frequency domain, , x0= 0.1 

Fig 12.b Tent map in the time and frequency domain, x0= 0.1 
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Fig. 13.a Power Spectral density for Chaotic sequence, 
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Fig. 13.b Power Spectral density for random sequence 

It is shown from Fig. 13 that the density of the chaotic code 
is close to that of a purely random code sequence. These 
results suggest that chaotic codes generated by Logistic map 
satisfy the basic requirements for secure spread spectrum 
communication. 
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D. Encryption using chaotic sequence and PN sequence 
The histogram of the encrypted image (Lena) using first 

chaotic sequence and again using conventional code generator 
for equal code length (N = 3) is as shown in Fig 14. 
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Fig. 14.a Image and its Histogram after encryption ,  

using N = 3, Chaotic code – Logistic Map 
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Fig. 14.b Image and its Histogram after encryption ,  

using N = 3, Conventional PN code  

From Fig 14, it is shown that chaotic sequence produce a 
more scrambled sequence compared to that of conventional 
code sequence. 

 

E. Effect of initial value of chaotic sequence 
Using chaotic numbers equal to three (N = 3) and changing 

the initial value x0 from -0.5 to 0.5 and seeing the change in 
the histogram of the spreaded image (Lena) as shown in Fig15 
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Fig. 15.a Histogram after encryption, x0 = -0.45 
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Fig. 15.b Histogram after encryption, x0 = -0.3 
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Fig. 15.c Histogram after encryption, x0 = 0.25 
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Fig. 15.d Histogram after encryption, x0 = 0.48 

 
From Fig 15, it is shown that changing the initial condition 

value for the chaotic sequence would affect the histogram of 
the spreaded image. 
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Measuring the cross correlation of the image before and 
after spreading for various initial values, as shown in Fig 16, 

 
 

Fig16.a For x0 = -0.45 Fig16.a For x0 = -0.3 

  
Fig16.a For x0 = -0.2 Fig16.a For x0 = -0.1 

 
Fig 16 show that the cross correlation is minimum at certain 

initial condition values as at x0 = -0.45 and x0 = -0.1. 
 

F. Effect of increasing number of chaotic sequence 
Increasing number of chaotic sequence (N) and see the 

effect on the spreaded image (Lena) and it’s histogram as 
shown in Fig 17. 
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Fig. 17.a Histogram after encryption, using N= 2 
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Fig. 17.b Histogram after encryption, using N= 3 
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Fig. 17.c Histogram after encryption, using N= 5 
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Fig. 17.d Histogram after encryption, using N= 7 

The probability of error measured for various chaotic 
lengths as shown in Fig. 18. 

Effect of number of chaotic sequence on Pe for DS - SS system , without 
RNS
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Fig. 18 Probability of error for various lengths of chaotic 

sequences 
 
From Fig. 17 and Fig. 18, it is shown that as the number of 

chaotic sequence increases leading to an increase in the 
spreaded sequence but this consequently leads to a decrease in 
the performance due to the need of a larger channel 
bandwidth. 
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G. Image Histogram with and without RNS 
The histogram for the spreaded signal is studied with RNS  

[9 7 5] and without RNS for both chaotic sequence and 
conventional PN code generators. Taking initial value x0= -
0.45 and number of chaotic sequence = 3. 

 
G.1 for Chaotic code generators 
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Fig. 19.a Histogram after encryption ,without RNS 
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Fig. 19.b Histogram after encryption ,with RNS 

 

From Fig 19.a and 19.b, it is shown that using RNS would 
produce a more spreaded sequence of the data and the image 
is more scrambled, thus it provides more secure transmission. 

 
G.2 for Conventional PN code generators 
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Fig. 20.a Histogram after encryption ,without RNS 
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Fig. 20.b Histogram after encryption ,with RNS 

 

From Fig 20.a and 20.b, it is shown that using RNS would 
produce a more spreaded sequence of the data and the image 
is more scrambled, thus it provides more secure transmission. 

H. The bit error probability for various code generators: 
In this section, the system performance is measured through 

the probability of error for both M-sequence and Logistic map 
code generators. 
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Fig. 21.a bit error probability for K- user DS-SS system using M-
Sequence 
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Fig.  21.b bit error probability for K- user DS-SS system using 

Logistic map 
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Pe for Various Code generators
Number of users = 6

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03
-10 -5 0 5 10 15 20 25

EbN0

Pe

Chaotic sequence
M-Sequence

 
Fig.21.c bit error probability for 6- user DS-SS system using: M- 

Sequence / Logistic map code 

The bit error probability for Chaos-based spreading 
sequence is improved by around 15% at EbNo = 15 db, 
thus at any fixed BER their > 15% more users can be 
allocated for free for chaotic-based codes. 

 

I. Bit error probability for Logistic map code generator 
implemented in SS system with and without RNS: 

Using Lena image as an input data source and transfer it 
through a direct sequence spread spectrum system using 
chaotic sequence generator. 

The system is implemented twice, the first using RNS 
transformation of the binary sequence of the image and the 
second without RNS conversion. 

The probability of error is measured for various bit energy 
to noise ratio with and without residue number system. 

 
Bit error probability for BPSK Spread spectrum system
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1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

EbNo

Pe

Without RNS
With RNS

 
Fig. 22 Bit error probability for DS-SS system using chaotic 

sequence generator: With and without RNS 

 

It is deduced from Fig. 22 that the performance of system 
with RNS is comparable with that without RNS, although it 
was seen previously that RNS system produce a more 
scrambled image and thus provide improved secure 
transmission. 

IX. CONCLUSION 
In comparison to conventional codes, chaotic codes, not 

only have better autocorrelation and cross-correlation 
performance and lower probability of error for multi-user 
communication, but also have some properties superior to the 
former. 

Firstly, conventional codes generated by linear shift register 
generators are easily decipherable once a short sequence set of 
bits from the sequence is known. In contrast, security of the 
chaotic sequence is considered extremely high. Secondly, for 
an m-stage linear shift register generator and Gold sequence, 
there is a limit on the number of maximum length sequences. 
In contrast, for the chaotic sequence any change of the initial 
conditions or parameters will generate a new sequence, thus 
theoretically there exist an infinite number of sequences that 
can be generated.  

Also, chaotic sequence provides a well distributed spreaded 
signal histogram which indicates a more signal randomness 
and thus more security compared to PN code sequence. 

Thus, due to the above advantages that the use of chaotic 
sequence provides, it is considered a best choice for secure 
data communication. 

In this paper an image is used instead of binary data for 
digital transmission, this open the way for encrypted image 
transmission over a channel through spreading the information 
using not only well known maps as logistic or tent maps but 
also through the usage of modified maps through addition of 
some constants to the state space equations of the maps to be 
used as a secret key. 

And, finally adding RNS to the model in order provide 
better security and encryption to the transmitted data as seen 
from the histogram of the encrypted information. 
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