
 

 

  

Abstract—The optimization problem of planning Wireless Mesh 

Networks (WMNs) is a challenging problem that has been regarded 

as a cost-minimization problem, while other pertinent Quality of 

Service (QoS) criteria are modeled as constraints to be satisfied. We 

propose a novel approach that models, to some realistic extent, the 

problem of planning WMNs as a simultaneous optimization of 

deployment cost and network throughput under obvious network 

constraints. We propose two multi-objective models differing mainly 

in how the throughput objective is optimized. We tailor a nature-

inspired meta-heuristic algorithm to solve the two models. The cost 

and the effectiveness of the planning solutions are two conflicting 

objectives which undermine each other. In such situations, the 

network planner would prefer a set of trade-off planning solutions at 

his disposal to choose from  A comparative experimental study with 

different key-parameter settings on the two instance models is 

conducted to help network planner decide which planning 

optimization model to choose given their specific requirements 

and/or scenarios. 

 

Keywords— Wireless Mesh Network, Planning problem, Multi-

objective optimization, Meta-heuristic search algorithm. 

I. INTRODUCTION 

he wireless Mesh Network (WMN) technology is being 

increasingly deployed and considered as a first step 

towards providing high bandwidth network coverage to its 

clients. Its basic building block is the infrastructure which is 

composed of fixed nodes interconnected via wireless links to 

form a multi-hop ad-hoc network. Nodes in a WMN are 

essentially routers and gateways. They act as classical access 

point to mesh clients. They also interconnect with each other 

through point-to-point wireless links. Gateways, on the other 

hand, have extra functionalities which make them more 

expensive than routers. Simultaneous communication is 

allowed thanks to the use of multi radios (interfaces) over 

orthogonal channels. However, since the number of available 

orthogonal channels is limited, interferences happen thus 
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degrading the network performance. 

Nevertheless, end-users experience a number of problems 

such as intermittent connectivity, poor performance and lack 

of coverage. Major research efforts have focused on 

developing planning network solutions for cellular networks 

and WLANs. However, these solutions strongly differ from 

those of planning WMN. 

Planning a WMN basically involves choosing the installation 

locations and the type of network nodes and deciding on a 

judicious channel/node interface assignment, while 

guaranteeing users coverage, wireless connectivity and traffic 

flows at a minimum cost. 

One may always argue that it is always good to overestimate 

the number of mesh nodes to avoid lack of coverage and to 

increase throughput. This choice has a strong impact on the 

complexity of the channel assignment problem and induces 

high interference levels, worsening network performance. On 

the other hand, a well-planned and optimized network can 

often provide extra capacity with the same infrastructure cost. 

The study presented in this paper concerns the design of 

optimization models that minimize the network deployment 

cost, maximize the network throughput, and guarantee a full 

coverage to mesh clients. The problem being NP-hard, a meta-

heuristic multi-objective algorithm is then needed to search for 

the optimal set of non-dominated planning solutions, where 

each expresses a different trade-off between the planning 

objectives. The interesting characteristic of these trade-off 

solutions, also called Pareto solutions, is that they are naturally 

tailored to a decision making process. Indeed, a network 

planner is provided with a set of alternative planning solutions 

from which he/she would have to decide which one to choose 

based on his/her requirements (budget, customer needs, …etc). 

Most of related work focus on the problem of performance 

improvement, and assume, in a way or another, a priori fixed 

topologies [2], [3], [4], [5], where some of the main drawbacks 

can be found in [6]. Other studies (e.g., [7-8]) consider 

topologies where gateways are fixed a priori, while the studies 

in [9], [10] attempt to optimize the number of gateways given 

a fixed layout of mesh routers. 

On the other hand, very recent works in [1], [11], [12] 

propose WMN planning schemes where the locations of 

routers and gateways are not fixed. With the exception of the 

work in [12], exact optimization techniques are used to solve 
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the problem models and therefore, are restricted to solve (at 

best) medium size instance problems. In addition, they all use 

variants of single-objective optimization model where the total 

deployment cost is the sole objective to optimize. 

Our work differ from the above mentioned contributions in 

that we plan the WMN from scratch to meet the QoS 

requirements, taking into consideration interference aware 

model while meeting the planner’s objectives and satisfying 

his/her constraints. 

The quality of the planned network can be constrained by 

multiple requirements: the signal level received by the mesh 

clients, the performance quality (in terms of network 

throughput) or the installation costs. 

Up to date, there has been no attempt to model WMN 

planning problems using multi-objective meta-heuristic 

optimization approaches where several non-dominated 

solutions are produced. The concept of non-dominance means 

that none of the solutions is better than the rest with respect to 

all objectives. Moreover, this set of trade-off solutions is very 

much appreciated by engineers who usually prefer multiple 

non-dominated solutions where each can be used in a different 

decision making scenario. 

We propose a new approach based on multi-objective 

optimization to model the WMN planning problem and use an 

evolutionary population based meta-heuristic to solve it. 

The rest of the paper is organized as follows. Section II 

describes the mathematical formulation of two problem 

solutions. We also propose a new network performance metric 

which evaluates the balance of channel repartition. Section III 

presents the meta-heuristic multi-objective optimization 

technique to solve the mathematical models presented in the 

preceding section. Numerical results of the experiments 

conducted on the two mathematical models and a comparative 

analysis are detailed in Section IV. Finally, we conclude the 

paper in Section V. 

II. PROBLEM FORMULATION  

In this section, we describe our modeling approach in 

planning WMNs and propose two theoretical bi-objectives 

optimization models. Let I ={1,..,n} be the set of positions of 

traffic concentrations in the service area (Traffic Spots: TSs) 

and L ={1,..,m} the set of positions where mesh nodes can be 

installed (Candidate Locations, CLs). 

The planning problem aims at: 

• Selecting a subset S ⊆ L of CLs where a mesh node should 

be installed so that the signal level is high enough to cover 

the considered TSs. 

• Defining the gateway set by selecting a subset G ⊆ L of 

CLs where the wireless connectivity is assured so that all 

traffic generated by TSs can find its way to reach nodes in 

G. 

• Maintaining the cardinalities of G and S small enough to 

satisfy the financial and performance requirements of the 

network planner. 

In order to describe the problem formally we introduce the 

following notation. 

Given n TSs and m CLs, in the following, unless otherwise 

stated, i and j belong to I and L respectively. The cost 

associated to installing a mesh node j is denoted by cj, while pj 

is the additional cost required to install a gateway at location j. 

di  is the traffic generated by TSi. ujl is the traffic capacity of 

the wireless link between CLj and CLl. vj is the capacity of the 

radio access interface of CLj. The coverage and connectivity 

parameters are given respectively by the binary variables aij 

and bjl. aij takes the value 1 whenever TSi is covered by a mesh 

node in CLj. The parameter bjl indicates whether CLj and CLl 

can be connected via a wireless link. We define other decision 

variables (see Fig.1) in our formulation including: xij takes the 

value 1 if TSi is assigned to CLj while tj (gj) is set to 1 if a 

router (a gateway) is installed in CLj. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1. WMN Structure (nodes/Problem variables) 

We suppose initially that the mesh nodes operate using the 

same number of radios R, each with k channels, (k>R) and k ∈ 

C, where C ={1,..,c} and c can be at most 12 orthogonal 

channels if IEE802.11a is used. Extra installation variables are 

added: z
q
j=1 if a mesh node is installed in CLj and is assigned 

channel q, q≤ k, y
q
jl =1 if a wireless link from CLj to CLl using 

channel q, q ≤ k exists. Let Njl be the set of links that cannot be 

simultaneously active with the link y
q
jl. Finally, we define the 

flow variables f
q
jl and Fj. the first variable denotes the traffic 

flow routed from CLj to CLl using channel q, the second is the 

traffic flow on the wired link between a gateway j and Internet. 

For better readability, the following table summarizes the 

notation used in the problem formulation. 

 TABLE I: LIST OF SYMBOLS USED IN THE WMN MODELS FORMULATION. 

 Description 

AP Access Point  

MR Mesh Router 

MG Mesh Gateway 

N Number of Traffic Spots (TSs) 

M Number of Candidate Locations (CLs) 

di Traffic generated by TSi 

ujl Traffic capacity of wireless link (CLj,CLl) 

Vj Capacity limit for AP radio access interface 

Internet 

Ts Coverage 

 xij 
 yqjl 

 tj 

Gateway Access Point Router 

Traffic spot Wired link Wireless link 
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ej A device cost installation  

pj A gateway additional cost installation 

R  Number of radio  interfaces 

K Number of channels 

aij Coverage of TSi by CLj 

bjl Wireless connectivity between CLj and CLl 

tj Installation of a device at CLj 

gj Installation of a gateway at CLj 

xij Assignment of TSi to CLj 

z
q
j Installation of a device at CLj , assignment of channel 

q, q<k 

y
q
jl Establishing a wireless communication on channel q 

between (CLj,CLl) 

q
jlf  Flow on channel q between (CLj,CLl) 

Fj Flow on the wired link from CLj to Internet 

Njl Set of links interfering with the link yqjl   

In the following, we describe the two optimization models. 

Both models attempts to simultaneously minimize the 

deployment cost and maximize the throughput, but they differ 

in modeling the throughput objective. While the first model 

maximizes a sort of “flow-capacity rate usage”, the second one 

attempts to minimize radio interferences. 

A. Flow-Capacity Maximization Model  

Our first interference-aware optimization model is formulated 

as follows: 
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In this model, the objective function (1) minimizes the total 

cost of the network including installation cost cj and additional 

gateway installation cost pj. The aim of the objective function 

(2) is to maximize the total throughput by computing the 

overall flow-capacity ratio of the network. Constraint (3) is 

used to make sure that a given TSi is assigned to only one CLj. 

Inequality (4) implies that a TSi is assigned to an installed and 

covering mesh node j. Constraint (5) defines the flow balance 

for each mesh node j. Constraint (6) limits link interferences. 

Inequalities (7) and (8) are respectively flow-link capacity and 

demand-radio access capacity constraints.  Constraint (9) 

implies that the flow routed to the wired backbone is different 

from zero only when the mesh node installed is a gateway. M 

is a very large number to limit the capacity of the installed 

gateway. Using the same channel q, constraint (10) forces a 

link between CLj and CLl to exist only when the two devices 

are installed, wirelessly connected and tuned to the same 

channel q. Constraint (11) ensures that a device can be a 

gateway only if it is installed. Constraint (12) prevents a mesh 

node from selecting the same channel more than once to assign 

it to its interfaces. Constraint (13) states that the number of 

links emanating from a node is limited by the number of its 

radio interfaces. It also states that if a channel is assigned only 

once to a mesh node, it is a sufficient condition for its 

existence. Constraint (5) is called a soft constraint while others 

are defined as hard constraints. 

B. Interference Minimization Model   

In the second model, the overall network interference is 

sufficiently important for the network performance, and thus is 

elevated to the status of an objective that needs to be 

minimized. Indeed, instead of just limiting interferences, as 

defined in constraint (6), it would be more effective to have it 

as an objective to be optimized altogether with the deployment 

cost. For this purpose, we propose a novel performance metric 

defined below. 

Interference Level Metric: We define the Balanced Channel 

Repartition (BCR) metric as follows: 
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ϕq1=max|Oq1-O q2| ∀q1,q2∈C. where, Oq =  

In other words, the number of occurrences of channel q, 

denoted by Oq, is used to compute the gap between the 

balanced allocation of channel q and the current allocation. 

Our aim is to minimize this gap. The second objective function 

is then defined as follows: 

∑
∈Cq

qMin ϕ

 
The second model is therefore defined as minimizing both the 

following two objectives: 

  (1) 

∑
∈Cq

qMin ϕ   (2) 

subject to the same set of constraints as that defined in section 

II.A but without constraint 6. In Section IV, a comparative 

experimental study is conducted on these two instance models.  

III. PLANNING PROBLEM SOLUTION 

Our WMN planning optimization is essentially the 

maximization of the network throughput (depending on which 

perspective is used) while at the same time ensuring the 

minimization of the total deployment cost. This is achieved by 

selecting a minimum number of routers/gateways and 

adequately choosing their positions so that the network 

connectivity is ensured while providing full coverage to all 

mesh clients. It is proven that a WMN planning optimization 

problem is NP hard [12]. Its difficulty lies on the fact that it 

tries to optimize the conflicting objectives (cost and 

throughput) simultaneously while addressing all the 

constraints.  

As stated earlier, solving a Multi-Objective Problem (MOP) 

returns a set of Pareto-optimal solutions. Each Pareto solution 

represents a different trade-off between the objectives that is 

said to be “non-dominated”, since it is not possible to improve 

one criterion without worsening another. 

The two most popular classes of MOP solvers are based on 

genetic algorithms (NSGA-II, SPEA2, PAES, PPREA, etc…) 

and on swarm intelligence (Particle Swarm Optimization and 

Ant Colony Optimization based algorithms). We opted for an 

optimizer based on PSO technique [13] to solve our WMN 

planning problem.   

A. Solving a Multi Objective Problem Using PSO 

1)  Particle Swarm Optimization  

Particle Swarm Optimization (PSO) is an optimization 

technique based on an evolutionary approach introduced by 

Kennedy and Eberhart [13]. It models the dynamic movement 

or behavior of the particles in a search space. By sharing 

information across the environment over generations, the 

search process is accelerated and is more likely to visit 

potential optimal or near-optimal solutions. Moreover, it is 

easy to implement with simple concepts and requires few 

parameters to adjust.  

PSO has been extended to cope with an MOP which mainly 

consists of determining a local best and global best Potential 

Solutions (PSs) of a particle in order to obtain a front of 

optimal solutions. There are some efficient and well-known 

multi-objective techniques based on PSO algorithms, of which 

MOPSO [14] seems to be the most effective. We use a variant 

of MOPSO (which we call VMOPSO) to design our WMN 

optimization algorithm.  

We use a crowding distance mechanism in order to maintain 

diversity of Pareto front solutions and we incorporate a 

mutation factor (fmut) to boost the exploration capability of 

the standard MOPSO. The crowding distance value of a 

solution, as thoroughly studied in [15], is the average distance 

of its two neighboring solutions. The boundary solutions with 

the lowest or the highest objective function value are given an 

infinite crowding distance values so that they are always 

selected. This process is done for each objective. The final 

crowding distance value of a solution is computed by adding 

the entire individual crowding distance values in each 

objective value.  

Despite the crowding distance incorporated as the deletion 

method applied on the Archive and to maintain solutions 

diversity, we add a constraint handling mechanism for solving 

constraints optimization problem, such as WMN design 

problem. In the following, we provide more details on how the 

multi-objective generic model is solved using VMOPSO. 

Algorithm 1: VMOPSO Main Algorithm  

Input fmut: Mutation factor, MaxGeneration   

Output  Archive: External repository  

 

Step 1: Initialize the swarm (Build feasible 

solutions that satisfy all the 

constraints defining the optimization 

problem) 

    For each particle i in the swarm  

1. Initialize feasible position,  

2. Specify lowerBoundi and upperBoundi   
/*boundary 

                                                                

limits  
3. Initialize velocity 

4. Set the global best guide gBest to 

pBest 

5. Set the personal best guide pBest 
to that position 

    End For 

Step 2: Initialize the iteration counter t=0 
Step 3: Evaluate all particles in the swarm  

  /*compute  

objective functions 

f1 and f2 
Step 4: Store non dominated solutions found 

in step 1 into Archive. 

Step 5: Repeat 

1. Sort Archive in descending crowding 
distance values 

2. Compute the crowding distance values 

for each j∈Archive 
3. For each particle i in the swarm  

a. Set gBest[i] to the randomly 
selected particle from the top 

10% of the sorted Archive. 

b. Compute new velocity, position 
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of particle i 

c. Check particle boundaries, if 
violated change particle 

search direction 

(i.e.,velocity(i)*-1)  

d. If (t< MaxGeneration*fmut) 

then mutate  

e. Evalute particle i  

End For 

4. Check for constraints satisfaction 

5. Check for non dominance of all 

particles in the swarm, insert non-

dominated and feasible solutions 

into Archive and delete dominated 

solution from Archive 

6. If Archive is full then  

a. Compute the crowding distance 

values for each j∈Archive 
b. Randomly selected particle 

from the bottom 10% of the 

sorted Archive (most crowded 

portion). 

c. Replace it with the new 
solution. 

End If 

7. Update pBest 

8. Increment t 

Until (t= MaxGeneration) 

The very first step is to initialize the positions, the boundary 

limits, the velocities of each solution i (particle) in S. At this 

step, only feasible solutions are considered.  

Each of these particles would then go through an evaluation 

process, i.e., an assessment of the quality of the solution, 

which is nothing but the evaluation of the two objective 

functions.  

During the exploration of the search space, each particle 

has access to two pieces of information: the best Potential 

Solution (PS) that it had encountered (pBest) and the best PS 

encountered by its neighbors (gBest). This information is used 

to direct the search by computing velocities: velocity[i] = iw * 

velocity[i] +r1 * (pBest[i] – position[i]) +r2* (Archive[gBest] – 

position[i]), where r1, r2 are random numbers in the range of 

[0,1] and iw is the inertia weight . A large inertia value will 

cause the particles to explore more of the search space, while a 

small one directs the particles to a more refined region. 

The Archive is then updated by inserting into it all the 

currently non-dominated (fittest) solutions. This insertion 

process ends up in removing dominated solutions. In the case 

where the archive is full and there are still non-dominated 

solutions to be inserted, priority is then given to those particles 

that would ultimately enhance the diversity of the archive set, 

which is achieved by using the crowding distance technique. 

When the decision variable exceeds its boundaries, it takes the 

value of its corresponding boundary and the velocity is 

changed to the opposite direction. 

B. Solving the WMN Planning Problem: Logical and 

Physical Modeling. 

This section describes how our initial WMN planning 

solutions are constructed and fed to the VMOPSO optimizer. 

Given a set of TSs scattered in a geographical region, the idea 

is to construct a network of mesh nodes (APs, MRs, MGs) that 

will best service the users TSs with minimum cost and under 

many constraints. 

1) A Grid Topology for a Network Deployment Scheme  

The first issue to address is what topology to adopt when 

constructing a network of mesh node to properly handle users 

TSs demands.  

Robinson and Knightly [16] conducted a performance study 

of deployments factors and concluded the benefits of adopting 

grid topologies over other topologies. In the same context Li et 

al. [17] studied the gateway placement for throughput 

optimization in WMNs using a grid-based deployment scheme. 

Their method of placing exactly k gateways has achieved 

better throughput in the grid scheme than in random schemes.  

Based on these findings, we adopt a square grid layout as the 

physical representation of our WMN planning. Each grid cell 

corner is a CL where a mesh node can be installed. If a mesh 

node is installed at a given CL, it establishes a wireless 

communication with its eight direct-neighbors. This 

assumption will increase the chances of selecting a candidate 

neighbor among the eight with which a wireless link will be set 

up in the channel assignment procedure. 

2) A Particle in the Swarm: Modeling a WMN planning 

Solution. 

In PSO, a particle (a position in the search space) represents 

a set of assignments that is a solution to the problem. In our 

case, a particle is a complex data structure that provides 

information about user connectivity (xij), device installation (tj) 

and
 
(z

q
j), devices connectivity (y

q
jl), gateway existence (gj), 

link flows
 
(f

q
jl), and gateway/backbone link flows (Fj). Fig 5.a 

depicts different components of a particle data structure. The 

building blocks of a particle structure are Positions, Links, 

Flows and Demands. The block Positions is the most 

important one, as it provides information about user 

connectivity and the type of devices, as well as their locations 

and installation. The mesh nodes component contains the 

locations of APs (represented by IZ vector), the locations of 

MGs (represented by GW vector) and the list of channels 

assigned to radio interfaces of every mesh node installed (MR 

included). Fig.5.b illustrates an example of the mesh nodes 

component of a particle. 

A feasible solution must satisfy all hard and soft constraints. 

However, those solutions that violate only the soft constraint 

(5) can be included in the population if space allows. This 

increases the likelihood of a non-feasible solution to mutate 

and provide a feasible one in later generations. 

 

 

 

 

 

 

 

 

1      2      3            k 
Position

Links 

Flows 

Deman

Xij :  Mesh 

clients  

Boolean matrix  

Mesh nodes 

Device 

installation 

AP location 

MG location 

b  

b b b bchannel .

b b b . b

b b b . b

0   1    2             m-1 

2D Matrix of 

records

 b Channel 

2D Matrix of 

floats for fjl 

1D Matrix of 

floats for Fj 

IZ 

GW 

… b _

0                    m-1 

0   1    2             m-1 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 4, Volume 2, 2008

217



 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 5: Particle encoding (b: stands for Boolean value) 

(a) Particle data structure, (b) A Particle position example with m=3, R=3, 

K=5(right side figure), Mesh nodes component of the particle position (left 

side figure).  

3) Building the initial set of feasible solutions 

In continuous optimization problems, getting the initial 

position and velocity is more straightforward because a simple 

random initialization is used. However, since the problem of 

planning a WMN is a constrained optimization problem, the 

initial positions must represent feasible solutions, and thus, 

need to be designed carefully.  

Constructing an initial set of feasible solutions that satisfy 

the constraints (3) to (15) represents the most challenging part 

in our optimization process. Building such an initial set 

requires three main design stages, namely coverage insurance, 

connectivity augmentation and gateway assignment.  

Coverage insurance: Recall that a TSi can be covered by 

one or many CLs. This stage handles the assignment of each 

TSi to one and only one CLj

 

. We start by selecting randomly a 

CLj from the set of CLs that cover that TSi (Fig 6.a). An AP 

(Access Point) is then installed at this location CLj only if it 

has not yet been selected (see Fig 6.b). By applying the same 

procedure to all TSs, we obtain a set S1 of APs location that 

provides full coverage to all TSs. More formally, S1={ j∈L, 

CLj

 

covers TSi, i∈I }. At this stage, constraints (3) and (4) are 

satisfied and the initial set contains vertices of a disconnected 

graph as shown in Fig.6.b.  

Connectivity augmentation: Once the coverage is done, 

there is no guarantee that the graph is connected. Therefore 

there is a need to augment the set S1 by adding new MRs 

(Mesh Routers) to connect the APs together. We apply a 

neighborhood based selection algorithm to find the next node 

to be inserted. The augmentation algorithm (which is not 

detailed in this paper) is recursive and stops when the final 

graph is connected (see Fig.6.c).  

Gateway assignment: is based on a random selection 

from the set of nodes that are eligible to be gateways. 

However, this last design stage (gateway assignment) could be 

a subject of further investigation to improve network 

performance without changing the generic model.  

For computational purposes, we use a symmetric adjacency 

matrix to represent the connectivity graph. We apply the fixed 

channel assignment algorithm described by Das et al. [18] and 

we implement Edmonds-Karp’s max flow algorithm [19] to 

assign a value on each link yjl using channel q to route a flow. 

All remaining constraints (i.e., 5-15) are then satisfied. 

 

 

 

 

 
 

 

 

 

 

 

 

(a) (b) 

Fig. 6: A feasible Particle position example:  

(a)TSs locations, TSs assigned to CLs. (b) S1 augmented, MGs selected. 

4) Breeding Potential Planning Solutions: The WMN 

Planning Algorithm  

For each particle in the swarm, the iterative algorithm 

(Algorithm 2) consists of constructing a subset S1, mutating it, 

placing gateways and then assigning flows and channels. The 

most important phase is the repetitive task of constructing the 

set S1 of APs locations to cover all TSs and then mutating it 

over and over until it satisfies at least all hard constraints. 

Then S1 is augmented to ensure the connectivity constraints.  

After this solution-construction process, the velocities, the 

positions and the fitness (values of the two objective functions) 

of the particles are computed. Then some of these particles are 

inserted into the archive provided that they dominate or at least 

are non-dominated by the previously “archived” non-

dominated solutions. 

Algorithm2: Planning Solution  

Input  MaxGeneration, pMut,      

Output Archive: External repository  

t=0 ;  

S1 :=Construct_Initial_Solutions ()  // see III.B.3 

while (t<MaxGeneration) 

for each particle in the swarm 

     S1 := Mutate(S1,pMut) ;  

     S  := Augment(S1);  /*Connectivity augmentation 

     Y1:=Construct_connectivity_matrix(S) ;  

      Y:= Assign_channels(Y1) ; 

     G := PlaceGateways(Y);   /*Gateway assignment           
     Compute_flows(G) ;  

     Construct_New_Particle();  

 endfor 

Compute_Velocities();     /* As described in section III.A.1 

Update_Positions();   

/* New position= current position + computed velocity 

Evaluate_Particles();     /*compute functions f1 
and f2 

2 
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Archive � Insert_feasibleNonDominated_Solutions();  

Update_ParticuleBest(); 

     t++     

endwhile 

A position in the search space is a solution to our planning 

problem; however, the values, returned by Update_Positions() 

procedure, are not guaranteed to be integers (0 or 1). For this 

purpose, we add a final process that we call particle filtering 

to allow only particles with a considerable progress to change 

to 0 (respectively 1). If the difference between the two 

positions (initial and updated one), that a particle gets in the 

search space, goes beyond a given threshold α (based on 

experiments, we set α to 0.3), then, the final position will be 

the reverse of the initial one (i.e., 0 if it was 1 and vice-versa); 

otherwise, the new position is discarded (the particle remains 

in its original position for further improvement). Thus, all 

retained positions are 0-1 integers. 

IV. NUMERICAL EXPERIMENTS AND ANALYSIS 

In this section, we present and discuss the preliminary results 

obtained by experimenting both models. We consider WMN 

key parameters the following: n, m, R, the gateway factor cost 

pj, and di the client demands.  

We also define the Standard Setting (SS) of the WMN key 

parameters as the following: SS= [(n:150),(m:49), (di:2Mb/s), 

(ujl:54Mb/s),  (vj:54Mb/s), (M:128Mb/s), (cj:200),(pj:8*cj,), 

(R:3),(k:11)]. Our numerical experiments given below are 

based on this SS setting. 

We study the performance of our algorithm over grid graphs 

and under many deployment scenarios. For practical reasons, 

the throughput objective of the flow-capacity model is 

rewritten as a minimization of the inverse of the overall 

network flow-capacity aggregate. 

A. Parameter Settings 

The positions of the n TSs are randomly generated. A run of 

our algorithm involves 100 generations each with a population 

size and an archive size of 50 and 20 particles respectively. It 

must be noted that in our very recent experiments [20],[21], 

we came to a conclusion that mutating at a rate of 50% 

(pMut=0.5) of the population leads to the best Pareto front of 

optimal solutions. Our results are extracted from 10 runs for 

variation (scenario) of each of the key parameter. 

B. Plotting and graphs interpretation 

For each model and each key parameter variation, the 

planning objectives (deployment cost against performance) 

that constitute a (Pareto) front of non-dominated solutions are 

plotted in a (objective space) graph. Important characteristics 

of the fronts such as the number of the solutions, the width of 

the spectrum of the solutions, the uniform-distribution of the 

solutions, can all prove very important in decision making. In 

addition, for each scenario we plot the device utilization 

graphs. 

C. Results and Analysis of Key parameters variation 

1) Effect of number of candidate locations m  

Results from Fig. 7 and Fig.8 show that there is consent in 

both models that a 7x7-grid is the best in satisfying the 

Standard Setting SS. From a decision making perspective, the 

cardinality, the width of the spectrum and the spacing between 

the planning solutions are better in Interference Model. These 

observations, drawn from Fig.7, suggest that a network planner 

with ‘flexible’ requirements would necessarily opt for 

Interference Model as it offers better diverse planning 

solutions.  

It is clear that Interference Model  is rather more careful in 

using the gateways (NG). It tends to add more routers (NR) if 

necessary. Notice that in both models, a higher number of 

candidate locations leads to an increase in the number of 

routers and gateways even for the same number of users (see 

Fig. 8). The reason is the fact that increasing the number of 

CLs increases the probability of a MC not being connected to 

an AP through a multi hop wireless path, which leads to 

installing more nodes. 
2) Effect of changing the number of radio interfaces R.  

We conducted four experiments by varying R (with 11 

channels) from 2 to 5. Interference Model seems to be more 

careful than Flow Model when increasing the number of radio 

interfaces. Indeed when shifting to higher number of radio 

interfaces, the planning solutions are at least as good as those 

with less number of radio interfaces. Regarding the Pareto 

front, notice that increasing the number of radios increases the 

number of non-dominated solutions offered to the network 

planner and provide the best Pareto front (when R=5) as 

shown in Fig. 9. On the other hand, Flow Model shows a 

disruption when the number of radios goes from 4 to 5 (see 

Fig. 10.a). The non-dominated planning solutions are not well 

stretched nor evenly spaced as those in Interference Model. 

As can be seen in Fig. 10, the number of gateways decreases 

the more we add radio interfaces. However, for Flow Model, 

this number increases when we pass from 4 radio interfaces to 

5. This can be caused by the high level of interferences which 

leads to look for alternative paths to route the traffic forcing 

more gateways to be installed. 

 

  

(a) (b) 

Fig.7.Pareto Fronts of Planning Solutions For different Grids. (a) Flow-

Model, (b) Interference Model. 
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(a) (b) 

Fig.8. Network Devices Utilization For Different Grids. (a) Flow-Model, (b) 

Interference Model. 

 

 

(a) (b) 

Fig.9. Pareto Fronts of Planning Solutions For different radio interfaces. (a) 

Flow-Model, (b) Interference Model. 

 

  

(a) (b) 

Fig.10. Network Devices Utilization For Different Radio Interfaces. (a) Flow-

Model, (b) Interference Model. 

3) Effect of changing the demand di 

Both models return no solution when di is more than 3Mb/s. 

That is simply because a 7x7 grid (along with how the SS is 

set) is too small to handle all the 150xdi overall network 

demands. On another side, Interference Model returns more 

planning solutions; however Flow Model seems to better 

handle the increase of demands. This can be seen from 

Fig.11.a where the fronts for di=1,2 and 3 do not dominate 

each other. As can be seen From Fig. 12.), when demand 

increases the number of gateways increases accordingly to 

satisfy connectivity constraints by creating new routing paths. 

More relays than APs are added in order to connect these APs 

to newly added gateways. 

  

(a) (b) 

Fig.11. Pareto Fronts of Planning Solutions For different demands. (a) Flow-

Model, (b) Interference Model. 

 

 

(b) (b) 

Fig.12. Network Devices Utilization For Different Demands. (a) Flow-Model, 

(b) Interference Model. 

 

4) Effect of changing the number of Traffic Spots n 

As in the previous experiments, Fig. 13 shows that more and 

diverse planning solutions are produced by Interference 

Model.  

Compared to Flow Model, Interference Model requires fewer 

gateways, routers, and links to be added when more users are 

added in (see Fig. 14). This implies that Interference Model  

may be better in handling the scalability issue.  

.    

(a) (b) 

Fig.13. Pareto Fronts of Planning Solutions For different Traffic Spots. (a) 

Flow-Model, (b) Interference Model. 

 

 

(a) (b) 

Fig.11. Network Devices Utilization For Different Traffic Spots. (a) Flow-

Model, (b) Interference Model. 

V. CONCLUSION 

The bulk of the contributions in planning WMNs assume a 

fixed topology and use exact methods to perform the 

optimization process. Therefore, they are all bound to medium 

size instance problems and optimize a single objective, namely 

the network deployment cost. In this context, we proposed a 

generic WMN planning model where the two objectives of 

deployment cost and network throughput are optimized 

simultaneously. While the deployment cost is trivial, 

maximizing the throughput can be achieved in two ways, 

namely flow maximization or interference minimization. Based 

on this, we instantiated two specific WMN planning models:a 
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flow-capacity based model (Flow Model) and an interference-

based model (Interference Model). We proposed a new metric 

to measure the network interference level and used it as the 

cornerstone for the throughput objective function of the second 

model. We conducted some numerical experiments on both 

models to study the impacts of some key parameter variations 

on network performance. In the light of the results shown in 

Section IV, the Interference Model gives a broader set of non-

dominated solutions, favors cost-effective solutions, and 

guarantees a diverse and well dispersed set of solutions. As 

future work, we plan to investigate the issue of selecting 

gateways to guarantee a minimum APs-MGs communication 

delays. 
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