
 

 

  
Abstract— This paper presents the analysis of three proposed 

Least Recursive Mean Square (LRMS) hybrid cascade configurations 
for beamforming based on the Least Mean Square (LMS) and the 
Recursive Least Square (RLS) algorithm. It involves the use of the 
former single algorithm as a pre-filter and the latter one as a post-
filter stage. Furthermore, the steering vector of the linear array is 
used as the interface between these two adaptive filters to form the 
hybrid cascade structure and generate the impinging signal to the 
post-filter block. The mathematical analysis of these new schemes is 
based on the orthogonality principle to prove the convergence to the 
optimal Wiener solution. Computer simulations have been performed 
to show the validity, reliability and limitations that these structures 
have in their capacity of recovering the desired signal corrupted by 
noise. In addition, the speed of these configurations is determined by 
the number of required iterations to reach the minimum square value 
of the learning curve. 
 

Keywords— Adaptive antenna array, beamforming, cascade 
algorithms, LMS algorithm, RLS algorithm.  

I. INTRODUCTION 
OWADAYS, there is an important further increase in the 
services provided by modern wireless communication 

systems. Common examples of these wireless equipment in 
use today include: telemetry control, infrared and ultrasonic 
remote control devices, specialized mobile radio (SMR) 
typically used by business, industrial and public safety 
entities, radio navigation equipment used by aviators and air 
traffic control, global positioning system (GPS), and of course 
cellular telephones and pagers with connectivity for portable 
and mobile applications, both personal and business. It is 
therefore not surprising that, the demand for a wider coverage, 
greater capacity and especially for a higher data rate is 
growing faster than ever due to the development of several 
applications for this type of systems. As a consequence of this 
growth, the possibility of having a larger number of 
interferences is inevitable.  

For this reason, adaptive arrays and adaptive algorithms are 
currently the subject of extensive investigation as a mean for 
reducing the vulnerability of the reception of desired signals to 
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presence of noise from the environment or interferences, 
undesired signals, from other sources in communication 
systems.  

The concept of smart antennas implies the fact of the 
weights can be made adaptive, therefore a set of adaptive array 
processors filter the signals coming from the array, and direct 
the beam to several different directions where a 
communication is required. In general, this is a direct way to 
enhance the capacity of coverage and any adaptive 
communication system must be able to form a beam for each 
user according to its position. The capacity of these antennas 
to track their target signals hastily and precisely depends 
mainly on the performance of the beamforming algorithm 
employed [1]-[4]. 

Recently, variants of LMS and RLS hybrid algorithms have 
been investigated to enhance the convergence and tracking 
ability in beamforming systems. In [5], the authors propose 
and analyze a configuration, called RLMS; this hybrid system 
presents a flexible method of achieving either fixed or self-
adaptive antenna beamforming. The convergence of RLMS is 
shown to be quite insensitive to variations in SNR of the input 
signal as well as the step sizes associated with the RLS and 
LMS sections. 

In [6], a new adaptive algorithm, called least mean square- 
least mean square (LLMS) algorithm employs an array image 
factor, sandwiched in between two least mean square (LMS) 
algorithm sections. Unlike earlier LMS algorithm based 
techniques, this algorithm derives its overall error signal by 
feeding back the error signal from the second LMS algorithm 
stage to combine with that of the first LMS algorithm section. 
The fidelity of the signal at the output of an LLMS algorithm 
beamformer is demonstrated by means of the resultant values 
of error vector magnitude (EVM) and scatter plots. 

Other adaptive cascade structures have been developed for 
different applications, for example in [7] the background noise 
recorded by microphones in a car environment is mainly 
caused by the engine, airflow and the tires. The engine noise 
can be suppressed by adaptive filtering where the filter 
consists of cascaded time-domain least mean squares (LMS) 
filters. Cascading the LMS filters improves the filter 
adaptation of the higher order harmonics.    

This paper examines three different ways of forming hybrid 
cascade structures based on the internal programming of their 
adaptive algorithms, whether or not exist dependence between 
their errors signals and the manner in which the single LMS 
and RLS algorithms process information.  
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For the first two configurations the same cascade structure 
has been used, but for the first system each adaptive algorithm 
works independently of each other in the sense of neither the 
pre-filer block nor the post-filter stage require the same 
number of iterations to reach the optimal weight values and 
the minimum square. However, the second block does not 
process any signal until the first block has performed all 
necessary iterations to reach its optimal conditions. The 
second hybrid model diverges from the first one in the fact of 
both algorithms work at the same time, thus both adaptive 
filters require the same number of iterations to reach the mean 
square error. Finally, the third configuration has a similar 
behavior to the second one, but the main difference lies in the 
fact that both algorithms depend on the same error generated 
by the RLS block, we recall that for the other two hybrid 
schemes, each sub-filter has their own error signal. 

The rest of the paper is organized as follows. In Section III, 
computer simulations have been performed to compare the 
convergence and speed of these configurations and their 
capacity of recovering the desired signal corrupted by noise. 
Finally, Section IV concludes the paper.  

II. CASCADE HYBRID STRUCTURES 

A. Cascade Hybrid Independent Structure  
Fig.1 shows the block diagram of a basic N-isotropic 

element linear array, assumed uniformly spaced, for 
beamforming, [8].  

 
Fig.1 Arrangement of a linear array of N- isotropic elements 

 
Let assume for the smart antenna system that the incoming 

signal has been corrupted by Additive White Gaussian Noise 
(AWGN), η of variance σ2. For this type of systems the 
incident signal is first converted to baseband; therefore the 
carrier component is removed. In this way, the signals plus 
noise received by the antennas can be assumed to be of the 
form [9]-[11]. 
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where F is known as the array factor or steering vector, ϕ  is 
the arriving angle of the impinging signal, d is de the antenna 
element spacing,  is the carrier signal,  is the noise vector, 
and  is the baseband signal or the envelope. 

Fig.2 shows the block diagram of an N-isotropic element 
adaptive linear array, which employs first a LMS block as a 
pre-filter followed by a transversal adaptive RLS filter as its 
beamformer. According to Fig.2, the input stage of the hybrid 
scheme is based on the LMS algorithm whose weight vector is 
updated according to [9], [10] 
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where the step-size μ is usually a small positive constant. On 
the other hand, the optimal weight vector that solves (4) for 
the second stage can be obtained recursively by the RLS 
algorithm as follows [9], [10]   
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with initial condition  for some small positive 
scalar  where the forgetting factor is . 

 The analysis of the adaptive filter is developed by 
considering the adaptive linear combiner used for both stages 
in Fig.2. Now, after all iterations have been performed by the 
LMS algorithm, its output can be written as 

 

LMS
H
LMSLMS

H
LMSLMSy WXXW ==        

 
The operator  represents Hermitian transpose [6], and 

bold letters denote matrices and vectors. 
To obtain a fixed beam pointing to the direction of the 

required angle of arrival at the output of the second block, it is 
enough to multiply the output of the first block by the steering 
vector F [11]. Therefore, the input signal vector for the RLS 
stage can be obtained by 

 
LMSRLS yFX =             

 
By substituting (8) in (9) yields 
 

LMS
H
LMSRLS WFXX =         
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Fig.2 Cascade Hybrid Independent Structure 

 
Finally, the output of the RLS block can be expressed as 
 

RLS
H
RLSRLS

H
RLSRLSy WXXW ==            

 

LMS
H
LMS

H
RLSRLSy XFWW=               

 

LMS
H
LRMSRLSy XW=             

 
To minimize the mean-square errors  and , 

the orthogonality principle [11]-[13] in MSE estimation is 
used, according to which the optimum weight vector is 
obtained from the condition that the input vector is orthogonal 
to the error signal. Thus, the optimization of the weights of the 
first block can be calculated by 

 
{ } 0=LMSLMSeE X               

 
{ } 0)( =− LMSLMSydE X                

 
{ } { } 0=− LMSLMSLMS yEdE XX              

 
By substituting (8) into the second term of the RHS of (16) 

yields 
 

{ } { } 0* =− LMS
H
LMSLMSLMS EdE WXXX         

 
{ } { } 0* =− LMS

H
LMSLMSLMS EdE WXXX          

 
The operator  represents the optimal value of the 

weights for the transversal filter [9]. 
The first term of the RHS is the cross correlation column 

vector P between the desired signal d and the input vector X, 
and the second term is the input correlation matrix R [9]. 
Finally, from (18) the optimal LMS weights can be obtained 
by 

0* =− LMSLMS RWP           
 

( ) LMSLMSLMS PRW 1−∗ =          
   
Now, the optimization of the weights for the second block 

follows a similar procedure, thus 
 

{ } 0=RLSRLSeE X              
 

{ } 0)( =− RLSRLSydE X       
 

{ } { } 0=− RLSRLSRLS yEdE XX      
 
By substituting (8) and (9) in the first RHS term of (23) 

yields 
 

{ } { }FX LMSRLS dyEdE =                
 

{ } { } FWXX *
LMS

H
LMSRLS dEdE =          

 
{ } FWPX *

LMS
H
LMSRLSdE =                    

 
Now, by substituting (13) in the second RHS term of (23) 

yields 
 

{ } { }*
RLS

H
RLSRLSRLSRLS EyE WXXX =            

 
{ } ***

RLS
H

LMS
H
LMSLMS

H
LMS E WFWXXFW=          

 
***
RLS

H
LMSLMS

H
LMS WFWRFW=              

 
Finally, the optimal weights for the RLS stage can be 

obtained by substituting (26) and (29) in (23), therefore 
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( ) FWPFWRFWW *1***
LMS

H
LMS

H
LMSLMS

H
LMSRLS

−
=        

 
In order to rewrite (30) in a more compact form, a new 

correlation matrix and cross correlation vector are defined for 
the second stage as follow  

 
H

LMSLMS
H

LMSRLS FWRFWR **=
∆

          
 

    FWPP *
LMS

H
LMSRLS =

∆
                    

 
Finally, (30) can be written as 
 

∆
−

∆
= RLSRLSRLS PRW 1* )(           

 
According to (33) the optimal weights of the second 

beamforming block depend on the optimal values of the first 
block after this one performed all necessarily iterations to 
reach convergence to its optimal weights. In addition, both 
(20) and (33) converge to the Wiener weight vector solution 
[14].  

Fig.3 shows the flow diagram of the programming structure 
of these blocks which indicates that each stage is independent 
of the other one in the sense of they do not belong to the same 
closed loop, as a consequence of this each algorithm does not 
necessarily require the same number of iterations to reach the 
optimal weight values.  
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Fig.3 The flow diagram of the LRMS algorithm for independent 
blocks 

B. Cascade Hybrid not Independent Structure 
The scheme used for this hybrid structure is the same 

structure shown in Fig.2, but the essential difference lies on 
the fact that both algorithms work under the same closed loop 

as shown in Fig.4.  
For this second hybrid scheme, (20) and (33) rule its 

behavior, but both equations are updated at the same time by 
(5), (6) and (7) until to converge to the optimal weight instead 
of waiting the LMS algorithm first executes all iterations. 
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Fig.4. The flow diagram of the LRMS algorithm for not 

independent blocks  

C. Cascade Hybrid not Independent Structure with a 
Common Signal Error 

Fig.5 shows the configuration of this third scheme. In this 
particular structure both algorithms work under the same error 
signal which has been taken from the RLS block due to this is 
the main beam former in this hybrid scheme. 

Even though, the LMS block does not have an error signal 
by itself, the optimal values of its weights can be obtained by 
using the RLS block error, therefore 

 
{ } 0=LMSRLSeE X                

 
{ } 0)( =− LMSRLSydE X             

 
{ } { } 0=− RLSLMSLMS yEdE XX              (  

 
The first term of the RHS is only the cross correlation 

column vector  and the output of the RLS block is
, therefore (36) can be written as 

 
{ } 0* =− RLS

H
RLSLMSLMS E WXXP         

 
By substituting (8) and (9) in (37), and after some straight 

forward manipulation, we have 
 

{ } 0** =⋅⋅− RLS
H

LMS
H
LMSLMSLMS E WFWXXP     
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Fig.5. The LRMS configuration for not independent blocks with a common error 
 
 

( ) 1*1* −−= RLS
H

LMSLMSLMS WFPRW        
 
A new cross correlation vector is defined for the second 

stage as follow 

( ) 1* −Λ
= RLS

H
LMSLMS WFPP             

 
Finally, (40) can be written as 
 

 
Λ

−= LMSLMSLMS PRW 1*                
 
Equation (41) converges to the Wiener solution [10] and 

depends on the optimal value of the RLS weights. However, at 
the first iteration the value of  is calculated by its 
algorithm before the LMS weight, and once the corresponding 
error has been calculated this can be used to calculate the 
consequent   as shown in Fig.6. Therefore, (5) must be 
written as 

 
   ,2   ,)1()1()( ≥+= −− iexww iRLS

H
iiLMSiLMS µ    

 
In addition, for this hybrid scheme (33) is still ruling the 

behavior of the second stage, even though the internal 
programming has been changed due to the common error 
signal generated in the RLS block for both algorithms. 

III. COMPUTER SIMULATIONS 
The ability of the three cascade hybrid schemes to recover 

the transmitted signal corrupted by AWG noise is investigated 
by mean of MATLAB® simulations. For comparison 
purposes, results have also been obtained for single LMS and 
RLS algorithms. For the simulation, the following parameters 
have been used: 

 
• Two linear arrays of 4 and 20 isotropic antenna 

elements spaced quarter wavelength apart. 
• The desired signal arrives at 60o degrees.  

• The variance of the noise has been increased from 
0.1 to 0.9. 

• All weight vectors are initially set to zero for the 
adaptive algorithms. 

• Each simulation run involves 300 samples. 
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Fig.6 The flow diagram of proposed LRMS algorithm for not 
independent block with previous stage 

 
Fig.7 shows the baseband signal corrupted by Additive 

Gaussian Noise (AWGN) at first four antennas for both linear 
arrays. In this case the noise signal at each antenna is white 
with real and imaginary components with variance of 0.1. In 
addition, the noise signals across the antennas are uncorrelated 
to each other. 
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Fig.7 (a) Baseband signal, (b) AWGN with , (c) - (j) the real 
and complex components at first four antennas for the linear array of 4 
and 20 isotropic antenna elements, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig.8 (a) Baseband signal, (b) AWGN with , (c) – (j) the real 
and complex components at first four antennas for the linear array of 4 
and 20 isotropic antenna elements, respectively. 

 
Fig.8 shows the same baseband signal coming to the linear 

array as in Fig.7, except that the noise variance has been 
increased to 0.9 to simulate a worst interference. It is 
important to recall that the transmitted signal does not have 
any imaginary component; however, it has been separated into 
two components due to the array factor.  Fig.9 shows the 
recovered signals after applying the optimal weights obtained 
by the first hybrid scheme. For this simulation the noise 
variance is 0.1 and the number of isotropic elements is four. 
According to the plots, the real component of the recovered 
signal is almost exactly in each sample of the transmitted 
signal. On the other hand, the imaginary components present 
some dispersion around the transmitted imaginary component 
which actually is zero. Nevertheless, its magnitude is around 
±0.05, thus it could almost be considered as zero.  

 
Fig.9 Transmitted signal (solid line) and recovered signal (spot line) for 
the real and complex components at the output of the beamforming for 
the four linear array. AWGN with 1. Cascade Hybrid 
Independent Structure 
 

Similar solutions were obtained by the cascade hybrid not 
independent structure (CHNIS) and the cascade hybrid not 
independent structure with a common error (CHNISCE) at the 
output of the beamforming. Fig. 10 and Fig.11 show these 
results, respectively. However, according to Fig.11 the 
complex component of the recovered signal is similar to a sine 
wave with a small amplitude.   

 
Fig.10 Transmitted signal (blue line) and recovered signal (red spots) for 
the real and complex components at the output of the beamforming for 
the four linear array. AWGN with 1. Cascade Hybrid not 
Independent Structure  
 

Fig.12, Fig. 13 and Fig. 14 show the recovered signals after 
applying the optimal weights obtained by the three hybrid 
algorithms, respectively. For this experiment, 16 isotropic 
elements were added to the primer antenna array. For this 
system the noise variance is still 0.1. As a result of having a 
larger number of elements in the arrangement, twenty 
elements, more samples of the impinging signal for the 
adaptive filter can be obtained for estimation; as a 
consequence the real component of the estimated signal is 
almost exact to the desired information signal, whereas the 
complex red spots are scattered in the range of ±0.02 instead 
of ±0.05. 
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Fig.11 Transmitted signal (blue line) and recovered signal (red spots) for 
the real and complex components at the output of the beamforming for 
the four linear array. AWGN with 1. Cascade Hybrid not 
Independent Structure 

 
Fig.12 Transmitted signal (solid line) and recovered signal (spot line) for 
the real and complex components at the output of the beamforming for 
the twenty linear array. AWGN with  Cascade Hybrid 
Independent Structure 

 
 

Fig.13 Transmitted signal (solid line) and recovered signal (spot line) for 
the real and complex components at the output of the beamforming for 
the twenty linear array. AWGN with . Cascade Hybrid not 
Independent Structure 

 
Fig.14 Transmitted signal (solid line) and recovered signal (spot line) for 
the real and complex components at the output of the beamforming for 
the twenty linear array. AWGN with . Cascade Hybrid not 
Independent Structure with a Common Signal Error. 

 
Fig.15 shows the recovered signals for the first scheme after 

the noise variance has been increased to 0.9 for the four linear 
antenna array. Due to the worst condition, the capability of 
recovering the real component is significantly reduced; 
however, it is still possible to identify the estimated 
information signal. The worst result is in regard to the 
imaginary component, where the dispersion of the retrieved 
points is greater and their variation is around ±0.1.  

On the contrary, Fig. 16 shows the recovered signal at the 
output of the adaptive beamformer for a twenty linear antenna 
array for the same noise variance of 0.9. In principle it is 
verified that the recovery of the information signal is still 
better for a linear array with a larger number of isotropic 
elements; however, the negative effects of increasing the noise 
condition are still visible in the signal recovery. For this case, 
the dispersion of the retrieved points is lesser and whose 
variation is around ±0.05. A similar behavior is displayed for 
the other two schemes for both conditions. 
  

 
Fig.15 Transmitted signal (blue line) and recovered signal (red spots) for 
the real and complex components at the output of the beamforming for 
the four linear array, first scheme. Additive AWGN with
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Fig.16 Transmitted signal (solid line) and recovered signal (spot line) for 
the real and complex components at the output of the beamforming for 
the 20 linear array, first scheme. AWGN with  
 

Table I shows the mean square error between the real 
component of the desired signal and the signal recovered by 
the three hybrid architectures and two basic LMS and RLS 
algorithms, and Table II the complex components.  One 
hundred individual simulations were performed and an 
ensemble average square error was calculated by (43). 

 

Nssmse ii /ˆ
2−=           

  
The operator  represents the Euclidean norm [6] between 

the estimated signal and the information or desired signal, and 
N is the number of samples. 

 
Table I. Mean Square Error vs. Noise Variance (0.1-0.9) – 4 Linear Array 
(Real Component) – Average. 

 
LMS RLS Arch.1 Arch.2 Arch.3 

0.1 0.0127 0.0124 0.0128 0.0126 0.0316 
0.2 0.0249 0.0246 0.0246 0.0263 0.0418 
0.3 0.0367 0.0366 0.0371 0.0399 0.0513 
0.4 0.0481 0.0474 0.0486 0.0539 0.0614 
0.5 0.0599 0.0597 0.0577 0.0699 0.0889 
0.6 0.0707 0.0696 0.0700 0.0844 0.0798 
0.7 0.0807 0.0790 0.0786 0.0989 0.0943 
0.8 0.0939 0.0908 0.0881 0.1166 0.0975 
0.9 0.1035 0.1016 0.0988 0.1347 0.1056 

 
 
Table II. Mean Square Error vs. Noise Variance (0.1-0.9) – 4 Linear 
Array (Imaginary Component) – Average. 

 
LMS RLS Arch.1 Arch.2 Arch.3 

0.1 0.0122 0.0112 0.0127 0.0126 0.0174 
0.2 0.0234 0.0206 0.0251 0.0261 0.0196 
0.3 0.0341 0.0286 0.0355 0.0397 0.0376 
0.4 0.0409 0.0349 0.0466 0.0531 0.0374 
0.5 0.0521 0.0399 0.0553 0.0686 0.0757 
0.6 0.0610 0.0447 0.0655 0.0835 0.0677 
0.7 0.0679 0.0483 0.0734 0.0989 0.0506 
0.8 0.0751 0.0518 0.0799 0.1157 0.0615 
0.9 0.0811 0.0544 0.0886 0.1288 0.0856 

 

 
 
 

Fig.17 Average learning curves corresponding to the cases of an optimal 
constant step-size for the LMR, RLS and LMRS algorithms for the 4 
linear array. Additive AWGN with  
 
 
 
 
 
 

 
 
 
 
 
Fig.18 Average learning curves corresponding to the cases of an optimal 
constant step-size for the LMR, RLS and LMRS algorithms for the 4 
linear array. Additive AWGN with  
 
 

Fig.17 shows learning curves for the single LMS, RLS and 
LMRS algorithms for the first 100 iterations and a noise 
variance of 0.1. On the other hand, Fig.18 shows learning 
curves for the same algorithms, except that the noise variance 
has been increased to 0.9. According to Fig.17 when the 
characteristics of the noise are not severe, that is to say the 
variance is low. The cascade hybrid independent structure 
learns faster than the other four algorithms. It approximately 
requires 10 iterations on average in order to reach its 
minimum square error. On the other hand, the cascade hybrid 
not independent structure requires approximately 25 iterations, 
which make it the slowest algorithm for learning. We must 
recall that 100 individual simulations were performed in order 
to obtain these curves. Nevertheless, when the noise variance 
has been increased to 0.9, the learning curves of the two first 
hybrid configurations are similar to a single LMS algorithm, 
whereas the last hybrid configuration is similar to a single 
RLS algorithm as shown in Fig.18.  

Owing to the four linear array is more susceptible to the 
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effects of noise, most of information in this paper is related to 
arrays whose number of antennas are enough to obtain a good 
estimation of the information signal, mean square error less 
than 0.01, but not enough to be considered as satisfactory. For 
example, the four linear array studied in this analysis. Table 
III shows the mean square error reached by the learning curves 
for the three hybrid architectures and two basic LMS and RLS 
algorithms.  
 
Table III. Learning curve (Mean Square Error) vs. Noise Variance (0.1-
0.9) – 4 Linear Array 

 
LMS RLS Arch.1 Arch.2 Arch.3 

0.1 0.0248 0.0244 0.0228 0.0207 0.0355 
0.2 0.0473 0.0458 0.0443 0.0351 0.0710 
0.3 0.0677 0.0660 0.0616 0.0499 0.0905 
0.4 0.0850 0.0830 0.0802 0.0587 0.1119 
0.5 0.1022 0.1019 0.0920 0.0677 0.1252 
0.6 0.1152 0.1152 0.1045 0.0714 0.1427 
0.7 0.1322 0.1266 0.1149 0.0780 0.1603 
0.8 0.1454 0.1433 0.1278 0.0836 0.1599 
0.9 0.1627 0.1509 0.1393 0.0840 0.1790 

 
For the hybrid algorithms, an adequate setting of the step-

size and forgetting factor is considerably important. Fig.19, 
Fig.20 and Fig.21 show the mean square error obtained by five 
runs of each algorithm versus the increment of the noise 
variance, respectively. For the two first hybrid schemes the 
step-size μ was fixed on a value of 0.05±0.001. For these 
algorithms, there is not a significant difference among the 
mean square errors calculated for each run in each noise 
variance value. We only show the first five runs out of 100 
that were performed because a similar behavior was visualized 
for the rest performances. In these Figs, it is possible to 
visualize almost a linear increment of this error according to 
the increment of the noise variance. 

 

 
 
 
 

 

 
 
 
 
Fig.19. Mean square error curves corresponding to five runs of the 
Cascade Hybrid Independent Structure algorithm for an AWGN 
from  to , and . 

 
In Fig.21, we observe that some of the mean square errors 

are not closed in magnitude for the same noise variance, even 
though the step-size and forgetting factor has been fixed for 

that condition.  
Among the three proposed hybrid algorithms, the two first 

schemes are more robust than the third one with respect to the 
noise changes. Therefore, it was not required to make high 
modifications to the LMS step-size μ and the RLS forgetting 
factor λ. We could use almost the same parameters (μ and λ) 
for these two algorithms, even though the noise variance was 
increased. 

 

 
 
 

Fig.20. Mean square error curves corresponding to five runs of the 
Cascade Hybrid not Independent Structure algorithm for an AWGN 
from  to , and . 

 
On the contrary, for the third hybrid algorithm was 

necessary to establish different value parameters for each 
increment of the noise variance. In fact, the use of a wrong 
step-size implies to have a recovered signal which is equal to 
the desired signal in phase and frequency, but with different 
amplitudes as shown in Fig.22. As a consequence, the 
estimated signal can be attenuated or amplified.      

 
Fig.21. Mean square error curves corresponding to five runs of the 
Cascade Hybrid not Independent Structure with the same error algorithm 
for an AWGN from  to  
 

The side lobe canceling effects are shown in Fig.23 and 
Fig.24, for the four and twenty linear array, respectively. Even 
though the effects of the noise are present, the three hybrid 
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schemas are able to generate a main lobe pointing to the desire 
angle of 60 degrees. In addition, the form of the beam pattern 
depends on the number of sensors, antennas or isotropic 
elements that compose the linear array. 

 
Fig.22. (a) Transmitted signal (blue line) and attenuated recovered signal 
(red spots) for the real component at the output of the beamforming for 
the four linear array, third scheme and wrong step-size μ. (b) Transmitted 
signal (blue line) and amplified recovered signal (red spots) for the real 
component at the output of the beamforming for the twenty linear array, 
third scheme and wrong step-size μ. Additive AWGN with . 

 
 

 
 
 
 
 
 
 

                        
 

    (a)                                                        (b) 
 
 
 
 
 
 
 
 
 

 
                                                   (c) 
 
Fig.23 The Beam patterns for the hybrid schemes for the linear array of 4 
isotropic antenna elements with additive AWGN with . (a) 
Cascade Hybrid Independent Structure (b) Cascade Hybrid not 
Independent Structure (c) Cascade Hybrid not Independent Structure with 
a common signal error.   
 

Fig.25 shows the effects of noise on the output power 
generated by the beamformer. Although a main lobe was 
generated to the desired angle by the hybrid schemes, the 
output power decreases as the variance increases. Table IV 
shows in detail the power obtained by proposed schemes and 
the LMS and RLS algorithms for different noise conditions. 
 

 
 
 
 
 
 
 
 
 
 

        (a)                                             
(b) 

 
 
 
 
 
 
 
 
 
 

       (c) 
 
Fig.24 The Beam patterns for the hybrid schemes for the linear array of 
20 isotropic antenna elements with additive AWGN with . (a) 
Cascade Hybrid Independent Structure (b) Cascade Hybrid not 
Independent Structure (c) Cascade Hybrid not Independent Structure with 
a common signal error.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.25 Output power (dB) versus noise variance from  to 

 for the 4 linear array. 
 

According to Table IV the hybrid schemes were able to 
obtain a higher output power in seven out of nine cases. 
However, it is not possible to specify which one of the hybrid 
schemes is the best due to a permanent output power curve is 
not observed for each scheme. The cascade hybrid 
independent structure was able to generate the highest output 
power for  and 0.8, the second algorithm for  

 and 0.9, finally the third schemes for  and 
0.3. The rest highest results were obtained by the RLS 
algorithms and the worst results were calculated by the LMS 
algorithm. 
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Table IV. Output Power (dB) vs. Noise Variance (0.1-0.9) – 4 Linear 
Array. 

 
LMS RLS Arch.1 Arch.2 Arch.3 

0.1 21.034 21.191 21.691 21.574 21.636 
0.2 18.145 17.901 18.666 18.714 18.945 
0.3 16.851 17.108 16.625 16.996 17.282 
0.4 15.484 15.561 15.684 16.481 15.501 
0.5 14.399 14.648 14.215 14.317 14.431 
0.6 13.466 13.570 14.011 13.729 13.908 
0.7 13.200 13.494 13.397 13.030 13.245 
0.8 11.836 12.178 13.294 12.546 13.129 
0.9 10.927 12.140 11.970 12.563 11.951 

 
Fig.26 shows the convergence to the optimal solution of the 

real component of the first weight of the beamforming linear 
array of four isotropic elements with variance of 0.1. All 
algorithms have been considered for analysis. Comparing their 
curves, we note that the weight belonging to the cascade 
hybrid independent structure, LRMS(1), seems to converge 
more rapidly to the desired Wiener solution. On the contrary, 
the third hybrid scheme apparently is the slowest one. 
 

 
Fig.26 Convergence of the first weight to the Wiener solution for the 
single LMS, RLS and Hybrid algorithms. Real components for the four 
linear array.  
 

Fig. 27 shows the convergence to the optimal solution of 
the imaginary component of the first weight. Even though, the 
first hybrid algorithm reached the optimal solution for the real 
component faster than the others, for the imaginary component 
the second scheme was more rapidly than the first hybrid 
algorithm. However, the number of iterations required for the 
second algorithm to reach the Wiener solution is almost 
imperceptible. A similar behavior was found for the other real 
and complex components of the weights for the four linear 
array system. 

Other experiments were performed for this linear array, 
nevertheless similar convergence behavior were found for its 
weights when the noise variance was increased to =0.9.     

 
Fig.27 Convergence of the first weights to the Wiener solution for the 
single LMS, RLS and Hybrid algorithms. Imaginary components for the 
four linear array.  

IV. CONCLUSIONS 
Three proposed hybrid cascade LRMS algorithms have 

been investigated. The results show that all hybrid algorithms 
were able to obtain beam patterns pointing to the desired 
angle. It has also been proved by analytical analysis that all 
hybrid algorithms converge to the optimal Wiener solution. 

In general, in most of the cases the learning curves of the 
hybrid configurations have a better convergence performance 
than the transversal single LMS and RLS filters. Moreover, 
the mean-square error does not increase its magnitudes, even 
though the number of stages is larger. 
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APPENDIX 
The Matlab® programs for the single LMS and RLS 

algorithms used to generate the hybrid schemes are exposed in 
this Appendix. 

 
Program.1: LMS algorithm. 
 
% LMS Algorithm. 
% N: Number of iterations. 
% e: error 
%wlms: LMS weights. 
% u: step size 
% d: desired signal 
% H: incoming signal 

 
1: for n=1:N 
2:     e(n)=d(n)-H(n,:)*wlms;  
3:     wlms=wlms+u*H(n,:)'*e(n);   
4: end 
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Program.2: RLS algorithm. 
 

% RLS Algorithm. 
%N: Number of iterations. 
% e: error  
%wrls: RLS weights. 
% lambda: forgetting factor. 
% d: desired signal 
% H: incoming signal 
% P: Inverse regularization factor matrix. 

 
1: for n=1:N 
2:   e(n)=d(n)-H(n,:)*wrls;  
3: P=inv(lambda)*(P-((inv(lambda)*P*H(n;:)'*H(n,:)*P)                

/(1+inv(lambda)*H(n,:)*P*H(n,:) '))); 
4:   wrls=wrls+P*H(n,:)'*e(n);   
5: end 
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