

Abstract— Every day more businesses migrate towards the web.

They offer on-line support for their clients. This support translated in

web pages must be linked with the companies’data servers. The

solution for this are web services. With the advent of various web

services also appear the problem of cross-library and cross-language

compatibility. The solution to this could be a wrapper which hide the

implementation details of various distributions. We call this wraper

WSWrapper. The scope of WSWrapper is to provide an unique

interface by wrapping some existing and widely used libraries for all

XML-RPC, SOAP and REST web service. WSWrapper offers

solutions in four languages most used at the moment : java, php, c#,

and python. In this paper, we will refer to WSWrapper from Java

view. We will see the unique interface of WSWrapper for all three

models and examples of a web service and a web service client.

Keywords—Java, paradigms, web service, wrapper.

I. INTRODUCTION

urrently the web tends to take up increasingly more

important and higher place in daily life of all people. Its

extensive development has made its contents to be

extremely varied finding a place for all web application

developers. This existing amalgam tends to remodel. Viewed

as a whole the web wants to be formed from a variety of

service providers and a lot of customers for services. This

virtual life created quite chaotic lately tends to resemble more

with real life where on the one hand we have the

manufacturers and on the other hand we have the consumers

which are all very different. As Semantic Web presented in [6]

is designed to be meaningful to computers as well as to

humans we need something like this for web services to the

programmers too.

Over time in this "virtual life" appeared different models of

web services and clients for them. The most commonly used

models these days are XML-RPC, SOAP, respectively REST.

For each of these models various developers have

implemented software for the most popular languages. The

result was a lot of software approaches more or less different

that ultimately give the same result in a shorter or longer time,

with a higher or lower consumption of resources. Thus a

programmer who wants to implement a web service in one of

the above models will need a lot of time to study

implementations offered by different developers for the three

 A. P. Author is with Faculty of Natural Sciences, Engineering and

Computer Science, “Vasile Goldis” Western University, Arad 310025, Bd.

Revolutiei nr. 94-96, ROMANIA (corresponding author to provide phone:

+40745299972; e-mail: adina_ploscar@yahoo.com)

different models. And after a lot of study finally he would be

able to choose the best solution for the problem he has to do.

Our open source project WSWrapper originally appeared

from the idea of bringing together under one format (a single

interface) all three models of Web services. Thus a

programmer is no longer forced to learn one tutorial for each

type of service. However he has now the posibility through this

unique interface to select the type of service desired, and

desired implementation language and the open source package

used to accomplish the service. As mentioned in [3]

WSWrapper will be available in C #, Java, PHP and Python

for all types of web services: XML-RPC, SOAP, REST [9].

In the following sections is presented the model of this

wrapper resulted from the extrapolation of the three types of

services. Each of the three models has its own features which

must be respected. WSWrapper being a common interface to

all three types of services will meet the requirements of each

model.

II. XML-RPC MODEL

The operation mode of an XML-RPC web service is as

follows: any XML-RPC call is composed of two parts namely

client (the caller part) and server (the called part). The server

is available at a certain URL, the client will use that URL to

locate the server and call a particular method, as follows:

1. The client calls a procedure using XML-RPC client,

specifying a method, its parameters and a server

where is that method.

2. The XML-RPC client packs the method name and

parameters in an XML document and then sends it as

a HTTP POST request to the server.

3. An HTTP server on the server machine receives the

POST request and passes the XML content to a

XML-RPC listener.

4. The XML-RPC listener reads the XML document to

get the method name and parameters and then call the

method with appropriate parameters.

5. The method returns a response to the XML-RPC

listener which converts the response into an XML

document and passes it to the web server.

6. The Web server returns the XML document as the

response to the initial HTTP POST request.

7. The XML-RPC client analyzes the XML document

and get the value returned by the method and passes it

to the client

The client continues its execution with the return value

obtained.

XML-RPC vs. SOAP vs. REST web services in

Java – uniform using WSWrapper

Adina Ploscar

C

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

215

Like transport protocol XML-RPC requires the use of

HTTP. Imposing HTTP as the transport protocol involve fairly

significant drawbacks in terms of security and also means that

XML-RPC requests are stateless and synchronous.

From the Fig.1 it is seen that the call is synchronous, the

client remains on hold until the reply. If the response time is

quite small, this synchronization does not disturb the

processing. But if the response time is relatively large, then the

programmers can build their own system of asynchronism

using the tools provided by the platform on which they work.

Also being used HTTP as transport protocol, calls will be

stateless. Two successive calls from the same client to the

server are viewed as totally independent requests. Again if it is

to keep the state, the programmers are required to develop

their own tools for this. They can do this by storing a series of

information in a file on the server or by using session objects

or cookies to maintain session state if the server platform

allows.

III. SOAP MODEL

The SOAP-based web services are more complex and

extensive than XML-RPC based services. In terms of

distributed computing paradigm, SOAP is comparable to that

offered by paradigms like RMI, CORBA, EJB and DCOM.

SOAP originally came from Simple Object Access Protocol,

but now can also mean Service Oriented Architecture (SOA)

protocol. However, SOAP is no longer an acronym, is an XML

dialect is which the messages are written. So SOAP fits in

SOA paradigm like RMI, CORBA, EJB and DCOM.

The SOA concept is not new. The difference between SOA

and other architectures is the missed connection meaning that

the customer service is independent of the service. Some of the

top reasons for using SOA concept are: reusage,

interoperability, scalability, flexibility and cost effectiveness

[7,8,11].

In SOA paradigm we have three actors, namely service

name (which will link clients and server), server (one that

provides services) and client (one that wants services). Once a

server implements a service, it registers to the service name

with a certain name and possibly a brief description of the

service. When a client wants a service it calls that service

using its name at the service name that gives him the reference

to the server that offers that service.

In the case of SOAP-based web services which also respect

the SOA paradigm, three XML-based standards are needed to

achieve the registration, the description and the transport

operations offered thus:

 UDDI (Universal Description, Discovery, and

Integration), an independent platform register based

on XML used as a tool for recording and locating

web services based on SOAP model, designed to be

interrogated by SOAP messages to provide access to

WSDL documents.

 WSDL (Web Service Description Language), a

language based on XML; it is used as a tool for

formal description of the operations provided by a

SOAP web service.

 SOAP (Simple Object Access Protocol), a protocol

for exchanging structured information based on XML

for the messages format and on protocols such as

RPC and HTTP for messaging negotiations and

transfer; it is used as communication protocol for

making web service (SOAP model) requests and to

obtain answers.

The operation of a SOAP application consists of three time

points grouped in Fig. 2 in three steps:

Step 1. A particular service provider implements a

method that wants to make it available on the web.

The service provider registers the functionality of

method M at a name register (Action 1 from Fig.

2). This is the first action of the SOA architecture

that runs only once or if any functionality of

method changes, is executed again.

Step 2. Another point of time is when a consumer wishes

to access a particular method. The client will ask

the name register (Step 2a) about a service that

provides the wished method (Action 2 from Fig.

2). That register tells the client the service that

offers the sought operation (Action 3 from Fig. 2).

The client addresses to the service notified by the

register (Step 2b) with the desire to receive details

on how it may call the method M and how are the

results provided (Action 4 from Fig. 2). The

service returns to the client a document written in

WSDL with the information required (Action 5

from Fig. 2). Step 2 (2a and 2b) runs only at the

first call of the method or when the location or

context was changed.

Step 3. The client asks the service every time it wants to

execute the method M using for this a SOAP

document (Action 6 from Fig. 2), and this one

responds every time also through a SOAP

Fig. 1 The operation mode of XML-RPC

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

216

document (Action 7 from Fig. 2).

Just as in CORBA or RMI on the consumer machine and

also on the service provider machine there is one stub

component with the role to convert the data passing through

them making serialization operations (getting data from local

application and convert them into SOAP format - actions of

type A in Fig . 2) and deserialization operations (getting data

in SOAP format and convert them in local representation –

actions of type B in Fig. 2).

Thus a communication between client and service consists

of six steps, namely:

 The client sends to the client stub the necessary data to

invoke the service by a local procedure call

 The client stub is required to convert the data in SOAP

format and sends them to the service stub through the

network

 The service stub converts the data from SOAP format

in local format and sends them through a local

procedure call to the service implementation

 The service tries to resolve the request and sends the

response to the service stub also through a local call

 The service stub serializes the answer to the request and

sends the SOAP document to the client stub

 The client stub deserializes the response data and sends

the response by a local call to the client as the response

to service request issued

Although a SOAP application may seem very complicated,

everything related to SOAP and WSDL standards are hidden

to the programmer under the stub of the client and of the

service which in turn are generated automatically by

specialized processors. All the platforms that implement such

applications generate from the WSDL the stubs on the two

machines: consumer and provider. The service stub is

generated when the service is implemented (Action 1 in Fig.

2), and the client stub is generated before the first operation

invocation (Action 2 in Fig. 2).

IV. REST MODEL

 REST (Representational State Transfer) is a style of

software architecture alternative to mechanisms like RPC

(Remote Procedure Call) and SOAP-based web services. What

Fielding summarized in his dissertation [9] was very

successful, and REST became leader of the market for web

services. REST is easier than SOAP and it also has a short

content so it consumes less bandwidth. A REST web service

has all the advantages of web service based on SOAP: is

platform independent, language independent, can be used with

firewalls and is based on standards (running over HTTP).

REST uses HTTP for all four CRUD

(Create/Read/Update/Delete) operations. It uses POST for

Create, GET for Read, PUT for Update and DELETE for

Delete. REST requests can use POST instead of GET even for

Read so there is no limit in length. REST borrowed CRUD

requirements from databases. The most important example of a

implementation of a system conforming to REST is the World

Wide Web.

A RESTful web-service can be seen as a web-service

implemented using HTTP and respecting the principles of

REST. So, REST can be seen as a set of principles (rules for

telling how standards like HTTP and URI can be used):

 Use URI for each resource which deserves to be

specified

 Use links to refer the resources

 Use in a correct way the HTTP standard methods:

GET, PUT, POST, DELETE so that the clients to be

able to interact with resources by offered operations

 Use multiple representations of the resources for

different needs

Fig. 2 The operation mode of SOAP web services and their clients

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

217

 Keep the state of the resource in the client side or

make the resource a stateful resource if you want to

keep the state

From this set of principles we can see that a REST-style

based service is made of three parts: resources, representations

of resources and self-descriptive messages. In fact REST Web-

services are collections of resources, which have

representations and can be accessed through HTTP methods.

This kind of services are collections of resources with the

following three aspects:

 URIs which identify the resources (which also have the

name REST objects or subjects)

 Representations of the resources which can have one or

more representations commonly

 HTML, JSON, XML or YAML but they can be any

other kind of valid media

 The set of operations supported by the web services

using HTTP methods (POST, GET, PUT, DELETE),

the operations performed by these methods are also

called actions or predicates that are carried on objects

(resource issues)

An action may be considered "safe" if it does not alter state

performance context, so a data reading can be considered such

an action. The only method considered safe by the REST is

GET. An action may be considered idempotent if repeated its

performance does not change the resource status. The methods

considered idempotent by REST are: GET, PUT and

DELETE.

The focus of the REST principle is the resource that is

referenced by a global identifier, an URI in HTTP and is

accessed by the network components (clients, servers, caches,

etc.) through a standardized interface such as HTTP which

allows the exchange of the resource representation between

network components.

According to the REST principle as shown in Fig. 3 any

application (network component) can interact with a resource

by knowing three things: resource identifier, the desired action

(given in the URI) and the HTTP method that obtains the

operation without needing to know anything about the link

between resource and server resource store. To also

understand the response from the resource, the application

must also know a fourth thing: the format of the response from

the resource which usually is HTML, XML, JSON, but can be

any valid media type as an image, plain text or other content.

V. WSWRAPPER MODEL

WSWrapper is a wrapper who wants to follow the patterns

of all three types of web services, namely XML-RPC, SOAP

and REST each with its peculiarities. For this reason it was

necessary to extract what is common to the three models, but

also to respect the essence of each type of service separately.

In the previous chapters were presented by some suggestive

figure the operating principles for the three types of web

services. We will extract from these the model and the

operating principle of WSWrapper.

WSWrapper can be seen as a function, namely:

WS : C -> S

where C is the set of customers which can use the existing web

services, and S is the set of existing web services, principle

met in the case of algorithms, namely:

A : D->R

where D is the set of input data, and R is the set of output data

(of results).

Going on the principle of algorithms we can see that

customers from the WS domain actually have the input data

that are converted into output data (results) by the services

from codomain.

The function WS must respect all the principles of an

algorithm, namely:

 Generality, meaning that the service can be accessed for

any input data, for correct data to obtain desired results,

and for wrong data to react with error messages.

 Finiteness, meaning that regardless of the input data for

this web service is called to return the correct output

data or error messages in a limited time.

 Uniqueness, meaning that for the same set of input data

sends to the service several times the results received

will be the same each time.

Following the principle of perceiving a web service as an

algorithm and extracting the common of the three types of web

services XML-RPC, SOAP and REST, a web service can be

modeled as in Fig. 4.

The operation of a service implies the existence for a web

service provider and at least one web service client that uses

what the service offers.

The service provider is:

 For XML-RPC model – the server where is the function

offered by the service and the XML-RPC listener;

Fig. 3 REST Principle

Fig. 4 The operating principle of web services

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

218

 For SOAP model - the server where is the function

offered by the service, the service WSDL and the

service stub;

 For REST model – the resource that provides the

service identified by a URI and a representation of it.

The client of a service must know the location where it can

access the service to be able to contact the provider.

The interface used for WSWrapper is quite simple as can be

seen in Fig. 5 for the server and in Fig. 6 for the client. The

wrapper has two interfaces (server-side and client-side) that

work together to achieve abstraction in all of the 12 cases

resulting from the combination language - service.

Server Web service is implemented in class WebService

class that allows the programmer to define a web service.

The service can be obtained by calling the constructor of the

class WebService which will be called with the name of the

service (serviceName) and the URL (URL) where people can

access the service and the kind of service (serviceType) which

is one of the three models given by the three constant:

SOAP_SERVICE=1

XMLRPC_SERVICE=2

REST_SERVICE=3

The class contains two more methods for exposing web

methods. addOperation will take two or three parameters as

appropriate depending on the type of service. The first two

parameters are needed for all three types of services referring

to the mapping of a class method or mapping of a global

function (where language permits it) and the complete path to

the method implementation. The third parameter is optional

and is used only if the service is of REST type and is the

HTTP method with which the service can be call (GET,

POST, PUT, DELETE, etc.). addOperations is a shortcut for

avoiding more addOperation, to map all public methods from

the class mentioned in the className parameter with

HTTPmethod for the REST service.

The server will be started with the method start() of

WebService that will react differently depending on the type of

service.

The web service client will just have a WebServiceClient

class. A WebServiceClient object is obtained in the same way

as the web service wrapper calling the constructor of the class

which knows the host of the web-service server (in

serverURL) and the name of the service (serviceName). On the

client side, the serviceType parameter can take the same

values as for the WebService server.

The interface has also a call method, used to call an exposed

web-method which returns a WSAnyType object, a unification

of types object and have two arguments, first for the name of

the method exposed (operationName) and second for the

parameters of the method (parameters). The parameters are

passing into an associative array: Map Java, Hashtable C#,

array PHP, Dictionary Python. All inherit a generic

WSAnyType.

The WSAnyType belongs to the other interface of classes

we have been talking about in [3].

VI. UNIFORM INTERFACE IN WSWRAPPER

WSWrapper framework exposes two public application

interfaces: the first two interfaces define the unified

WebService and WebServiceClient classes. There is another

interface defining the types hierarchy (WSAnyType) used by

the WebService and WebServiceClient.

A. Java web service interface for WSWrapper

Fig. 6 The Client interface of the WS Wrapper

Source 1 The WebService class

Fig. 5 The Service interface of the WS Wrapper

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

219

For exposing universal WebService operations, as defined

in [3], we use for the main part of the Java services like in the

Source 1.

For each web services: XML-RPC, SOAP and REST, an

adequate open source implementation will be chosen. Using

these distributions, three subclasses of WebService will be

implemented, respectively: WebServiceXj, WebServiceSj and

WebServiceRj. Each created class will implement based on the

particular distribution, a constructor. Also, the methods

addOperation, addOperations and start will be rewritten.

Our choice among all open source distributions was:

Apache XML-RPC [21], Apache Cxf library [20], and

RESTeasy [22] from JBoss distribution.

B. Java web service client interface for WSWrapper

For exposing WebServiceClient objects, as defined in [3],

we use the implementation of the Java client like in the Source

2:

For each of the three types of web service clients:

XMLRPC, SOAP and REST, an adequate open source

distribution for implementation is used. It is not necessary to

choose the same distributions as to the service part. For

XMLRPC we choose the same distribution as on the service

part: Apache XML-RPC [21]. For REST we use even our own

distribution presented in [16] or RESTeasy [22] from JBoss

distribution. For SOAP, we used two distributions: Apache

Cxf library[20] and Apache AXIS 1.1 [23]. Using these

distributions, analogously – but not mandatory the same

distributions from the service part, three subclasses of

WebServiceClient will be implemented, respectively:

WebServiceClientXj, WebServiceClientSj and

WebServiceClientRj. Each of these classes will implement,

depending on the particular distribution, a constructor and will

rewrite the method call.

C. Data type for Java interface in WSWrapper

To use the data types, the subclasses of the following code

(Source 3) will be used.

The getSoapName() function returns the actual name for

SOAP case, for example "xsd:int" for an integer value.

Analogously, getXmlRpc() returns "int" or "i4" in the XML-

RPC case. No method is necessary in the case REST.

After the service(s) and client(s) are implemented, a jar

archive named WSWrapper.jar will be created. It will contain

all the jars archives from the above defined distributions and

the following classes: WebService, WebServiceXj,

WebServiceSj, WebServiceRj, WebServiceClient,

WebServiceClientXj, WebServiceClientSj,

WebServiceClientRj.

VII. IMPLEMENTATIONS SOLUTIONS

We will present an implementation of a XML-RPC web

service in Java and a REST web service client in Java.

A. XML-RPC web service implementation example

 WebService class

As mentioned above, the interface for a web-service is

WebService which is a general class for all three types of

service, where are calls for each class in part responsible for

desired service (Source 1). In the case of XML-RPC

implemented in Java this will be WebServiceXj which extends

the WebService class.

The programmer will create a web service in the same

manner regardless of the model used creating a WebService

object as the return of the getWebService method, which is

further responsible for using one of the three models REST,

SOAP or XML-RPC.

In the method getWebService it is created a WebServiceXj

object if we have a XML-RPC web service which needs two

parameters: the url and the serviceName.

 WebServiceXj class

The class WebServiceXJ extends the class WebService

(presented in Source 1), being the responsible class for XML-

RPC web services in WSWrapper.

In the constructor of WebServiceXj class we obtain from

the parameter which contains the URL namely uRL the port

number on which the webServer object of type WebServer will

listen. From this object is achieved with getXmlRpcServer

method the service. It is set the configuration and the mapping

for the service and finally the serviceName.

The WebServiceXj class is the class that connects the

interface WebService unique for all three types of services and

Apache XML-RPC package. Apache XML-RPC package is an

open source package for XML-RPC web services development

Source 2 WebServiceClient class

Source 3 WSAnyType class

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

220

in Java.

The service is started with the start method. In the method

we call the start method for the webServer object as shown in

Source 5.

 The webservice class

An particular application service, for an XMLRPC service,

must contain the code like in the Source 6:

For creating and using the service, we need to compile the

classes. In Windows, we use the following command:

javac –cp .;WSWrapper.jar ApplicationClassService.java

B. REST web service client implementation example

The solution of implementing a webservice client in Java

using the wrapper WS-Wrapper will be a quick and easy one

because all that the programmer needs to know is the client

WS-Wrapper interface that is to be the same regardless of

language or web service model used. This involves creating a

single class and in its constructor it creates an

WebServiceClient object on which will call the method call

using the current parameters depending on the web service that

wants to use.

In the following sections we want to go inside of WS-

Wrapper and see how it hides the details of RestClient

distribution presented in [16] to the programmer.

 WebServiceClient class

As mentioned above, the interface for a web-service client is

WebServiceClient which is a general class for all three types

of service, where are calls for each class in part responsible for

desired service (Source 2). In the case of REST this will be

WebServiceClientRj which extends the WebServiceClient

class.

At this point it can be seen the power, the importance and

the necessity of this wrapper which consists mainly of the fact

that the programmer will create a web service client in the

same manner regardless of the model used creating a

WebServiceClient object calling the getWebServiceClient

method, which is further responsible for using one of the three

models REST, SOAP or XML-RPC.

In the method getWebServiceClient it is created a

WebServiceClientRj object which needs two parameters: the

url and the serviceName.

 WebServiceClientRj class

In the constructor of the WebServiceClientRj class the

serviceName and the url are set and then it is started the

service implemented in RestClient package presented in [16]

as shown in Source 7.

The constructor of the WebServiceClientRj class is the

function that connects to and also hides details of a distribution

for a type of webservice. Thus the webservice client

programmer does not need to know the specifics of the

distribution he uses. All that the programmer sees is a unified

interface for all webservices and for all four languages used in

the wrapper. This constructor is the one who actually uses the

chosen distribution to be used to create a webservice client or

a webservice server. For the Java language we used a new

distribution created with the thought of this wrapper because

the distributions on the market are too large.

The RestClient class requires a constructor with one

parameter of URL type that is composed from the webservice

url concatenated with the service name which contains within

it both the class name and the function name that implements

the service.

The call of the available methods at the web-service server

is made of the call function from the WebServiceClientRj class

Source 6: A snippet from the Application class service

Source 7 Starting the service

Source 5 Method start of class WebServiceXJ

Source 4 Constructor of WebServiceXJ class

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

221

by calling the call method from RestClient as shown in Source

8.

Because in REST model of webservice the name of the

called operation is included in the url passed in the call and

because in REST model (different from the other two models

of webservices) is required the type of the method (GET,

POST, DELETE, etc.) with which the operation is called, the

operationName argument of the call function will be used to

transmit that type and not the actual name of the function

called as in the other two models of webservices.

 The webservice client class

The programmer who wants to implement a webservice

client using the wrapper WS-Wrapper has now a pretty easy

task, namely to implement a class where to create the object

serv of type WebServiceClient by calling the method

getWebServiceClient of the class WebServiceClient. Next for

this serv object created before it calls the call method with two

parameters: the first one which mentions the method type

namely GET, POST, etc. and the second one which mentions

the method parameters as shown in Source 9.

The method type (GET, POST, etc.) is required only in the

REST model, in other models it is not necessary so that the

first parameter is used to transmit the actual name of the

method which implements the web service.

 In the REST model the effective method name is passed

in the parameter serviceName which is made for this model

from a concatenation of the filename where the method is

located and the method name. This little trick is necessary to

maintain uniformity for all three models of webservices for all

four languages. In REST model the WSAnyType object

returned by the call method will not be used but also appears

for the uniformity.

VIII. CONCLUSION

The WebService interface and WebServiceClient interface

are the same for all three types of services so that the

programmer of a server or client web-service will only need to

know the specifications for these interfaces regardless of the

type of services: SOAP, XML-RPC or REST, interfaces that

hide the specifics of each type.

For a REST web service in Java, the interface WebService

will call a REST specific class namely WebServiceRj and the

interface WebServiceClient will call WebServiceClientRj.

For a XML-RPC web service in Java, the interface

WebService will call a XML-RPC specific class namely

WebServiceXj and the interface WebServiceClient will call

WebServiceClientXj.

Also for a SOAP web service in Java we have the class

WebServiceSj which is called from the interface WebService

and class WebServiceClientSj which is called from the

interface WebServiceClient.

These six classes that are instantiated in WebService

respectively WebServiceClient interfaces are responsible for

hiding the details of each open source distributions used in

WSWrapper.

We also want to offer in WS-Wrapper the posibility to

choose from several free distributions to be used in

implementing the web service or web service client.

We also want to add a new facility to WSWrapper namely

WSGenerator. WSGenerator was introduced because of the

lack of a uniform, platform independent and automated proxy

generation library. The intention of WSGenerator is to

simplify the development phase of a distributed application.

WSGenerator provides a simple and easy to use solution for

Web Service proxy generation. The main advantage of this

component is the uniform and platform independent interface.

WSGenerator provides to the end user a simple and easy to

use tool for generating client Web Service proxies. The proxy

generation library offers a unified set of solution for all the

three major Web Service types: RPC, SOAP and REST. By

using this component, generating a proxy for a given service

become easy. The Web Service specific details and operations,

including specific transformations remain hidden to the end-

user.

REFERENCES

[1] S. Allamaraju, RESTful Web Services Cookbook, O'Reilly, 2010

[2] J. Bean, SOA and Web Services Interface Design, Principles,

Techniques and Standards, Elsevier, 2010

[3] F. Boian, D. Chinces, D. Ciupeiu, D. Homorodean, B. Jancso, A.

Ploscar, WSWrapper – A Universal Web Service Generator, Studia

Univ. Babes-Bolyai, Informatica, An LV, 2010, no. 4, pp 59-69.

[4] F.M. Boian, Servicii web; modele, platforme aplicatii, Ed. Albastra,

Cluj, 2011.

[5] F.M.Boian, Unification of the Web Services, Proceedings "Zilele

Academice Clujene 2010 (ZAC2010)", Ed. Presa Universitară Clujeană,

Cluj 2010, ISSN 2066-5768, pp.92-97.

[6] N. David, C.G. Carstea,.I.Gh. Ratiu, L. Patrascu, D. Damian, Web

Services – Opportunities and Challenges, Proceedings of the 10th

WSEAS International Conference on Applied Computer Science (ACS

'10), Japan, 2010, ISSN: 1792-4863, ISBN: 978-960-474-231-8,pp.436-

439

[7] H. M. El-Bakry, A. M. Riad, Q. F. Hassan, A. E. Hassan, N.

Mastorakis, Technology and Recent Development of XML Web

Services, Proceedings of the 4th WSEAS International Conference on

Source 8 Calling a method

Source 9 RestClie contructor

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

222

Business Administration (ICBA '10), Greece, 2010, ISSN: 1790-5109,
ISBN: 978-960-474-161-8,pp.110-136

[8] H. M. El-Bakry, N. Mastorakis, Studying the Efficiency of XML Web

Services for Real-Time Applications, Proceedings of the 2nd WSEAS

International Conference on Sensors and Signals (SENSIG '09)

Proceedings of the 2nd WSEAS International Conference on

Visualization, Imaging and Simulation (VIS '09) Proceedings of the 2nd

WSEAS International Conference on Materials Science (MATERIALS

'09), USA, 2009, ISSN: 1790-5117, ISBN: 978-960-474-135-9, pp.209-

219

[9] R.Fielding, Architectural Styles and the Design of Network-based

Software Architectures - Dissertation, 2000,

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[10] D. Homorodean, F.M. Boian, SOAP Web-Services in Python: Problems

and Solutions. Proceedings "Zilele Academice Clujene 2010

(ZAC2010)", Ed. Presa Universitară Clujeană, Cluj 2010, ISSN 2066-

5768, pp. 105-111.

[11] F. Ismaili, B. Sisediev, Web Services – Current Solutions and Open

Problems, Proceedings of the 8th WSEAS International Conference on

Applied Informatics And Communications (AIC'08), Greece, 2008,

ISSN: 1790-5109, ISBN: 978-960-6766-94-7, pp.115-119

[12] B. Jancso, RESTful Web Services. Proceedings "Zilele Academice

Clujene 2010 (ZAC2010)", Ed. Presa Universitară Clujeană, Cluj 2010,

ISSN 2066-5768, pp. 158-163.

[13] M. Kalin, Java Web Services; Up and Running, O'Reilly, 2009

[14] S. St. Laurent, J. Johnson, E. Dumbill, Programming Web Services with

XML-RPC, O’Reilly, 2001.

[15] E. Newcomer, Understanding Web Services; XML, WSDL, SOAP, and

UDDI, Addison Wesley, 2004

[16] A. Ploscar, A Java implementation for REST-style client web service,

Proceedings "Zilele Academice Clujene 2010 (ZAC2010)", Ed. Presa

Universitară Clujeană, Cluj 2010, ISSN 2066-5768, pp. 140-146

[17] L. Richardson, S. Ruby, RESTful Web-Services, O’Reilly, 2007.

[18] S. Tanasa, C. Olaru, S. Andrei, Java de la 0 la expert, Polirom, Iaşi,

2007

[19] D. Tidwell, J. SNall, P. Kulchenko, Programming Web-Services with

SOAP, O’Reily, 2001.

[20] * * * apache-cxf-2.2.7. http://axis.apache.org

[21] * * * apache-xmlrpc-3.1.3. http://ws.apache.org/xmlrpc

[22] * * * RESTEasy JAX-RS: RESTFul Web Services for Java.

http://jboss.org/resteasy

[23] *** http://axis.apache.org

[24] *** The Java EE Tutorial Sun Microsystems, 2008,

http://download.oracle.com/javaee/6/api

[25] ***, JavaTM Platform Enterprise Edition, v 5.0 API Specifications

[26] *** http://en.wikipedia.org/wiki/Representational_State_Transfer

[27] *** http://en.wikipedia.org/wiki/Web_service

[28] *** http://flexria.wordpress.com/2008/08/01/web-services-and-php-

soap-vs-xml-rpc-vs-rest

[29] *** http://ws.apache.org/xmlrpc

[30] *** http://www.infoq.com/articles/rest-introduction A Brief

Introduction to REST

[31] *** http://www.javapassion.com

[32] *** http://www.javaworld.com/jw-01-2000/jw-01-howto.html

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

223

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://jboss.org/resteasy
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://ws.apache.org/xmlrpc

