

Abstract—One of the goals of existing strategies in companies

and organizations regarding the security of information systems is to

protect computer networks against attacks caused by viruses. For

detection, and if necessary, removing computer viruses, specialized

companies are increasingly concerned with the development of

advanced antivirus products. However, although there have been

made efforts in this regard, in recent years a new threat appeared,

related to false antivirus programs for which there are still

insufficient protection tools. The purpose of our software is to

improve existing products in dealing with false antiviruses or false

alerts, which may pose serious threats to computer safety. Once

infected, these programs block access to the system, overwhelming

the antivirus software. The application is created based on the fact

that the same false antivirus makes the same files, the file is

encrypted and sent again “into the wild” as 0-Day Malware file. We

developed a open-source program that assists the existing security

solution in cleaning the computer from false antiviruses or false alerts

and provides an option to help the user with an alternative,

combining commands from the terminal (command prompt) with a

console application type, which means it can be run directly from the

console.

Keywords—Antivirus software, false antivirus, security

solutions, rogue, fake antivirus, fake alert.

I. INTRODUCTION

NSURING the security of information systems is one of

the most important present challenges. Thus, most

companies and organizations are concerned with development

of administrative strategies and operational plans related to

this issue [1]. In this respect, one of the major preoccupations

is to protect computer systems against viruses.

In computing, the term “virus” is applied to various software

applications, which can be found in the literature under the

generic name of malware [2]. Computer users employ the term

“virus” instead of “malware”, as it is a much better-known

term. False antiviruses or rogues (the name is derived from the

fact that false antiviruses appear and then shortly disappear),

belong to Trojan category [3]. Generally, false antiviruses

have a lifespan that ranges from a few hours

C. Pop is with “Vasile Goldis” Western University, 310025 Arad,

Romania (e-mail: pop_catalin88@ yahoo.com).

A. Naaji is with Department of Computer Science, “Vasile Goldis”

Western University, 310025 Arad, Romania (+40-257-214505; e-mail:

anaaji@uvvg.ro).

C. Popescu was with Department of Computer Science, “Vasile Goldis”

Western University, 310025 Arad, Romania. (e-mail:

popescu.marius.c@gmail.com).

to one week. False antiviruses are classified into two

categories: FakeAV and Fake Alert.

 FakeAV antiviruses are copies of legitimate security

programs or some other programs that seem to be security

programs. They can disguise themselves as: antiviruses, anti-

spyware, anti-adware, and, in some cases, even as computer

maintenance programs [4].

One method for obtaining false antiviruses is by copying

legitimate antiviruses programs from their official sites, using

some key elements (logos, statistics etc.). In order to attract

visitors, these sites usually post video guides, presenting the

efficiency, purchasing methods, as well as free technical

support.

FakeAlert applications are alerts warning computer users

that their PC is infected. A recurrent method consists of

creating a false Security Center and then warning the user that

the antivirus is not activated or not installed [5]. Another one

is to prompt messages in the tray area, warning of security

issues. Recently, a new method appeared, displaying a window

that warns the user that there is a security issue and that a PC

scan is recommended.

0-Day Malware is a virus that manages to infect the

computer in the absence of signatures or other detection

methods featured in the antivirus. The lifetime of such a virus

is shown in Fig.1 [2], where:

Zoo period is the period that has elapsed since the virus was

created and up until it was launched into the wild;

Vulnerability window is the period since the virus was

spread on the Internet and up until a signature was created;

Updating systems is the period after signatures were

uploaded and installed;

Protected is the period subsequent to the deletion of the

virus.

Open-source Security Solution for False

Antiviruses Removing

C. Pop, A. Naaji, and M. Popescu

E

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

240

Fig. 1 lifetime of a virus from the perspective of a malware research

As regards infection methods, the most common of them is

by downloading the executable file. In time, these have

evolved from using FakeCodecs (required for viewing video

files), to toolbars form, to the current exploits or IFrames.

On the sites of false antiviruses, there are usually certain

prizes to attract users, as well as certificates attesting the rate

of confidence for that product.

Currently, the most widely used infection methods are:

- highjacking official antivirus pages and redirecting them

towards infected ones;

- false FlashPlayers, Windows or even codec updates;

- using exploits;

- using other programs or Play-Per-Install (PPI).

An example for how a false antivirus acts, is the one that

uses the Search Engine Optimization Poisoning technique [6].

The actions of the false antivirus consist of the following steps:

- User looks for news on the incident using a popular search

engine;

- User clicks a malicious link that connects to a malicious

site;

- User is redirected several times, which ends with the

download of troj_fakeav.smry;

- User sees bogus alert of nonexistent system infection.

Considering that an antivirus with classic signature

detection cannot find 0-Day Malware on time, we have created

an open-source application with a General Public License

(GPL), so that anyone could contribute to its development.

 Some of the existing possibilities for false antiviruses

analysis are presented in section II. The section III describes

the structure and the features of our software. Section IV

presents the techniques we want to implement as future

developments for obtaining a competitive and flexible security

tool.

II. EXISTING TOOLS FOR FALSE ANTIVIRUSES ANALYSIS

Before creating a security solution for false antiviruses, it is

necessary to highlight some existing tools used in various

situations, as well as their analysis methods [7].

The research was conducted in a laboratory consisted of two

computers: one virtual and the other dedicated.

The virtual computer was implemented using the Oracle VM

VirtualBox application [8], available both on Windows and

Linux operating system.

The research performed in this paper uses the Windows XP

operating system, with no installed updates. After installing

Windows XP, the virtual hard drive is copied onto VirtualBox,

to avoid re-installing the entire system.

The dedicated computer is only used for tests, as a second

option, since nowadays most viruses cannot run on virtual

computers. In this case we need a platform for analysis. As in

the case of the virtual computer, the operating system is

installed only once, then a backup application is used. The

resulting file is copied to an external storage device (in our

case a USB flash drive).

In domain of information security, the computer system that

is expressly set up to attract programs and/or attacks is named

honeypot [5].

The tools we use are free or open-source, and depend on the

type of analyzed malware. In the case of false antiviruses, the

chances for a computer to be usable are minimal. In this case

we need an Ultimate Boot CD (UBCD) [9]. It contains a wide

range of applications, arranged into categories, running from a

CD-ROM and requires approximately 100 Mb. Upon request,

UBCD offers a customizing possibility, by adding or removing

applications. If the computer starts, then the analysis mode is

more effective, as the behavior may be observed in real time.

The tools used for this analysis are:

- RegShot [10], an open-source program, with the possibility

to create snapshots and to compare registries; this helps

observe the changes occurring in the computer.

- Autoruns [11], a free utility that can view and change

programs that start on computer startup.

- ProcMon (Process Monitor) [12], a free utility that

provides real-time information on active processes.

- Rootkit Revealer [13], a free program providing advanced

rootkit detection.

- GMER [14], a free program allowing rootkit search in key

parts of the operating system; this program is more advanced

than Rootkit Revealer.

The analysis mode is always the same, regardless of the

computer the analysis is run on. Thus, the following steps are

needed:

- creating a backup of registries, which are saved on an

external drive;

- creating several administrator accounts;

- running the file to be analyzed;

- restarting the computer.

If the computer does not start, UBCD is used to make a

copy of registries, which will be compared to the first copy,

using RegShot. Then the log is analyzed to establish why the

PC does not start (in most cases, the winlogon.exe, userinit.exe

files are copied and the computer starts). From the report

provided by the RegShot tool, we may already add a few files

from the list of infected files, which are to be deleted.

OpenRogueRemoval may also delete some rootkits, which are

best detected if specialized software like GMER and Rootkit

Revealer are used. Another way to detect rootkits is by using a

Live CD with a Linux-type distribution, but this method

requires advanced computing knowledge. For a more detailed

analysis, to check whether other files have remained, we use

autoruns and procmon. The files we find are entered to the list

of infected files [15].

III. APPLICATION PRESENTATION

False antiviruses make the same files from one version to

another; the only difference is, in most cases, the name. This

was first observed in the case of Zbot (a very dangerous

botnet).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

241

The application has four components [16]: scan, view

startup, view active processes and check system files. The

program is written in the C++ programming language and

designed for use on the following operating systems: Windows

XP, Windows Vista and Windows 7.

1. Scan. Upon scanning, the user has the option of scanning

a default file or creating a new file. That file is recommended

to be of the text type (*.txt), as it is easier to use. The user may

enter the destinations of files he wishes to delete into a file; it

is recommended for deletion to occur in safe mode with

command prompt, because, if the file is active, then normal

deletion is not recommended and, in some cases, not possible

(it runs in the memory, or is injected into various processes – a

very good example is the explorer.exe application).

2. View startup. To view programs on computer startup,

instead of the direct registry interrogation method, a Windows

command is used:

wmic startup get caption,
command>StartupLog.txt

Using the previous command, logs of different formats may

be generated (in this case of the.txt type) only by changing the

extension Startup.* (txt, doc, html, etc.).

 3. View active processes. This option, an alternative to the

task manager, intended for command prompt, lists active

processes, their name and Process ID (PID), having the

purpose to access processes, even if the computer is infected.

In many cases, after the computer has been cleaned, the task

manager, as well as regedit and msconfig, are not accessible

because the malware restricted their access, and this option is

an alternative.

 4. Check system files. This option requires the operating

system installation CD, it is recommended to be used only if

the computer is greatly infected and only after disinfection, or

in cases where the operating system has problems starting.

This option uses a Windows command and is compatible with

Windows XP, Windows Vista and Windows 7. It also entails a

disadvantage for users with Windows updates on: if updates

change viral files (in the system), with this option those files

will be replaced, and downloaded on the next update. As in

any program written in C++, the libraries we wish to use are

imported. The application uses the following libraries [17]:
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<iostream>
#include<windows.h>
#include<string>
#include<tlhelp32.h>
#include<fstream>
#include "resource.h"
using namespace std;
int remove(const char *pathname);
#define IDI_ICON 101

A resource.rc file must be created; this is a file called

resource file and is used to create icons, version, etc. In our

case, the resource file must include resource.h and be attached

to the application. The file must also contain the name of the

icon file (name.ico), and its size must be 32 x 32 pixels:

resource.rc: #include "resource.h"
IDI_ICON ICON DISCARDABLE "icon.ico"

IDI_ICON is an identifier, ICON is a resource,

DISCARDABLE is an attribute, in case of error using the

previous icon, “icon.ico” is the name of the icon. The icon

must be in the working directory in order to be used.

The menu of the application contains five components, the

last one being the exit option. The menu, as well as all options,

is built so that, after each operation, the program is closed. For

using a new option, or even the same one, we must re-launch

the program. This option was added because the program is

designed to also run on UBCD or on similar CDs. Since these

CDs run in RAM, after each program or option run on that CD,

we must run a program entitled free mem, which frees

memory. Efforts were made so that, after each option, the

memory would not be too loaded, and to offer the possibility

to run this program without difficulty. It is recommended to

run this program after scanning with OpenRogueRemoval.

The structure of the menu is:

void optionOne();
void optionTwo();
void optionThree();
void optionFour();
int main()
{ Menu – GUI }

The main section only contains the interface and the

selection options.

void optionOne()
{ Scanning engine }

Option one, or the scan mode, contains the module by which

files are deleted.

void optionTwo()
{ Startup }

Option two lists and ends active processes.

void optionThree()
{ Active processes }

Option three lists startup programs and writes them into a

log file.

void optionFour()
{ SFC – System File Checker }

Option four checks system files, but it requires the operating

system installation CD. The interface is drawn in the main

section, using only the cout and /n (new line), /t (tabulator)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

242

instructions. Before drawing the interface, the system (“cls”)

command is used, where cls is a command used in the

command prompt, to clear the screen. For adding a name

instead of the file destination, in our case

“OpenRogueRemoval – Utility for removing false antiviruses”,

the “title” command was used. The interface being created, the

selection option is added - first, adding it before system(“cls”).

char sel;
do
{ system("cls");
system("title OpenRogueRemoval - Utility for

removing false anti-viruses");
Continue interface …

The selection option Sel is the character which the user

enters to select the desired option, using the switch instruction.

The user must enter a number between 1 and 5 to select an

option.

Interface …
cout <<"\tSelect desired option:";
 sel=getch();
 switch(sel)
 {
 case '1': optionOne(); break;
 case '2': optionTwo(); break;
 case '3': optionThree(); break;
 case '4':
 optionFour();
 break;
 case '5':
 exit(1);
 }
 }
 while(true);

In the next paragraphs we will describe the components of

the menu.

A. Scan

The working principle of the scanning engine is to extract

the information from a file and then to delete the file. For

OpenRogueRemoval to delete this malware, the engine must

read the entire line, regardless of the characters it contains, and

to delete all. For spaces or special characters, optionOne is

created after the main section.

void optionOne()
{
system("cls");
string lineRead="";
char fileCondemned[100];
char nameFileRules[24];
ifstream f(nameFileRules);

After defining all variables, the possibility to enter the file

from the keyboard is created. The entering form will be

name.extension (for example rules.txt).

cout <<"Enter file name + extension: ";
cin >>nameFileRules;

If the file is opened successfully, we use getline() [17] from

the specified file (entered from the keyboard).
f.open(nameFileRules, ios::in);
 if (f.is_open())
 {
 while(f.good())
 {
 getline (f,lineRead);

The file is browsed through, chars are transformed into

strings, so that the file can be deleted; the remove() function

[18], from the stdlib.h library only accept strings.

 for (int i=0; i<=lineRead.length();i++)
 {
 fileCondemned[i]=lineRead[i];
 }

In order to use the remove() function from the stdio.h

library, immediately after using namespace std, one must add:

int remove(const char *pathname);

If, on deleting the file, an error occurred, then the message

“deletion was not possible” will be displayed.

if(remove(fileCondemned) == -1)
 {
 cout <<"Deletion of file"<<fileCondamned
 <<"was not possible"<<endl;
 }

The successful deletion message is displayed, after system

(“pause”) is entered, for the user to be able to view in detail if

the files were deleted successfully or not.

cout <<"Deletion of file"<<fisierCondamnat
<<"was successful"<<endl;
 }
 system("pause");
 f.close();
 }
 else
 cout<<"Error opening the file:
 "<<f<<endl;
}

B. Startup

This module is merely informative and creates a log file, in

which it lists all startup entries (Fig. 2).

Fig. 2 the startup interface

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

243

The purpose of this module is to offer an alternative to

existing products. In case the computer is infected with a false

antivirus and blocks access to viewing startup entries, this

module offers the possibility to view using safe mode with

command prompt, by creating optionTwo() from the menu.

void optionTwo()
{
 system("cls");
 int startupselect;
 cout<<"Warning: the Startuplog.txt file

will be created. If it already exists, it will
be overwritten. Continue? (1 for yes 0 for
no)\n";
 cin>>startupselect;
 cout<<"+-->";

The user has to choose between two variants: if the file

exists, overwrite it, if not, create it.

if (startupselect == 1)
 {

 system("wmic startup get
caption,command > StartupLog.txt");
 cout<<"StartupLog.txt has been

creat\n";
 system("pause");
 }
 exit(1);
}

The wmic command can create log files not only in the

current directory, for example:

wmic startup get caption,command>
C:\StartupLog.txt

In this case, the log file is created in C:\. The reason why the

log file was chosen to be created in the same place as the

application is that the file can be created regardless of the

device from which the program is run (USB flash drive,

external hard drive), and to avoid incompatibilities. This

module requires administrator rights in order to generate and

create the file. An example of generated file (on a clean

computer) is:

Caption Command

Sidebar %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun

Sidebar %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun

DAEMON Tools Lite "C:\Program Files\DAEMON Tools Lite\DTLite.exe" -autorun

ctfmon.exe C:\WINDOWS\system32\ctfmon.exe

Malwarebytes'Anti-Malware(reboot) "C:\ProgramFiles\Malwarebytes'Anti-Malware\mbam.exe" /runcleanupscript

COMODO Internet Security "C:\Program Files\COMODO\COMODO Internet Security\cfp.exe" -h

SunJavaUpdateSched "C:\Program Files\Common Files\Java\Java Update\jusched.exe"

where:

- Caption is the name of the application and

- Command is destination and parameters (for example - h is

hide, run in hidden mode).

Unlike msconfig, this command also displays the Sidebar. In

this case it is displayed twice because the computer has two

users.

C. Active Processes

This module offers the possibility to view and end a

process. It does not work if running from an antivirus CD or

similar. This option can be used on an infected computer by

creating beforehand two or three administrator accounts. In

Windows XP, the following procedure must be completed:

right click on OpenRogueRemoval � Run as � enter the

name and password of an administrator account (different

from the one that is logged in). The OpenRogueRemoval

application will display the active processes. For this option

we created optionThree().

void optionThree()
{

system("cls");
 int processelect;
 int pidselect;

SetConsoleTextAttribute(GetStdHandle(STD_
OUTPUT_HANDLE), 15);
cout<<endl<<"List of Activ Processes"
<<endl;

This interface only uses colors 15 (white) and 8 (grey).

HANDLE WINAPI CreateToolhelp32Snapshot(
 DWORD dwFlags,
 DWORD th32ProcessID);

The handler CreateToolhelp32Snapshoot [19] is used to

make a read-only copy of objects from the system memory.

HANDLE

hSnapShot=CreateToolhelp32Snapshot(TH32CS_SNAP
PROCESS,0);
 BOOL WINAPI Process32Next(
 HANDLE hSnapshot,
LPPROCESSENTRY32 lppe);

Process32Next takes over the information from the next

process [20] and hSnapShot is a handler on the snapshot.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

244

TH32CS_SNAPPROCESS includes the list of processes in the

snapshot and lppe is a pointer to the structure

PROCESSENTRY32. The function returns true if the data on

the first process have been copied into the buffer.

PROCESSENTRY32* processInfo=new
PROCESSENTRY32;
 processInfo->dwSize=sizeof
(PROCESSENTRY32);

while(Process32Next(hSnapShot,processInfo)!=
FALSE)
{
SetConsoleTextAttribute(GetStdHandle(STD_O
UTPUT_HANDLE), 8);
cout<<endl<<"=============================
====================";
SetConsoleTextAttribute(GetStdHandle(STD_O
UTPUT_HANDLE), 15);
cout<<endl<<"+--> Name:"<<processInfo->
szExeFile;
cout<<endl<<"+--> PID:"<<processInfo->
th32ProcessID;

}

ProcessInfo is the member of the dwSize=sizeof

(PROCESSENTRY32) structure which provides information on

processes and browses through to the last process. Then, the

name and PID are listed (szExeFile and th32ProcessID are

used). The listing is composed of all processes running at that

moment, as it is only a “copy” of processes. It is not done in

real time and if, for example, a process was ended after this

option has been interrogated, it will be listed as it being there.

The possibility to end a process was also implemented. Ending

is made according to the PID of the process, listing in this

module being identical to that in the Task Manager.

SetConsoleTextAttribute(GetStdHandle(STD_OUT
PUT_HANDLE), 8);
cout<<endl<<"=============================
====================";
SetConsoleTextAttribute(GetStdHandle(STD_O
UTPUT_HANDLE), 15);

 cout<<endl;
 cout<<"[1] End a process"<<endl;
 cout<<"[0] Exit"<<endl<<"+--> ";
 cin>>processelect;
 if (processelect==1)
{
 cout<<"End the process with the PID \n";
 cout<<"===> ";
 cin>>pidselect;

To end this process, the process handler is used to “open”

the second process (in order to end the first one), and close the

handler.

HANDLE process = OpenProcess(PROCESS_
TERMINATE, FALSE, pidselect);
 TerminateProcess(process,0);
 CloseHandle(process);

cout<<"[!] The Process "<<pidselect
<<"has been ended"<<endl;

}

If the user only wishes to view the processes, without ending

them, an exit option has been introduced as well.

if (processelect==0)

 {
 exit(1);
 }
 system("pause");
 exit(1);
}

 Fig. 3 present the interface for ending the processes

according to their PID.

Fig. 3 ending the process according to PID

D. Check System Files Section

This option, in order to be functional on Windows XP,

Windows Vista and Windows 7, uses the command sfc,

provided by Microsoft.

The option has three parameters:

- /scannow - scans all system files immediately;

- /scanonce - scans all system files once;

- /scanboot - scans all system files each time the computer is

restarted.

All parameters require administrator rights.

Fig. 4 present the interface with the message requesting

administrator rights for using sfc utility.

Fig. 4 example of using sfc utility (without permission)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

245

In the next section we used the /scannow parameter,

preceded by a pause.

void optionFour()
{
 system("cls");
 cout <<"Checking system files \n\n"
 <<endl;
cout <<"Warning: This option requires the
operating system installation CD
\n\n"<<endl;

 system("pause");
 system("sfc//scannow");
 exit(1);
 }

In the following example, we can see how the locations of

false antivirus AVG 2011 were introduced. The specific file is

FakeAV_AVG2011.txt.

C:\Documents and Settings\All Users\Start
Menu\AVG Antivirus 2011\AVG Antivirus
2011.lnk
C:\Documents and Settings\All Users\Start
Menu\AVG Antivirus 2011\Uninstall.lnk
C:\Program Files\AVG Antivirus 2011\avg.exe
C:\WINDOWS\system32\iesafemode.exe

In case the user is infected with the false antivirus AVG

Anti-Virus 2011, both on Windows XP (in this case), and on

Windows Vista or Windows 7, the destinations may be added

into a single file. The only difference is the username in the

destination. In this case, for uninstalling the fake antivirus

using OpenRougeRemoval we have to enter in safe mode

because the malware is injected into the explorer.exe file.

Fig. 5 presents the interface corresponding to removing the

false antivirus AVG 2011, using our software.

Fig. 5 removing the false antivirus AVG 2011, using

OpenRogueRemoval

IV. FUTURE DEVELOPMENT DIRECTIONS

The software for detecting and removing false antiviruses

could be improved by adding some facilities, such as:

- Changing the program so that the user does not have to

open the rule file and enabling him to enter the username or

administrator name himself (the program would detect it

automatically).

- Adding the option to run in real time, adding in startup and

minimizing in the tray or starting with the –h attribute and, if it

finds a file that is in the list, warn the user with the message

“Found potential virus”.

- Adding a new option for checking whether the hostfile has

been modified, and if it has, then display a message to the user.

The hostfile restricts access to some sites, and viruses change

this file and add to it the addresses of security products. This

way, the “victim” cannot download a program to disinfect the

computer.

- Adding the open-source ClamAV antivirus, with the

specification that the entire interface and all options will be

modified so that they may run in safe mode with command

prompt (the menu will feature another scanning portion with

ClamAV).

V. CONCLUSIONS

The application is intended for users with advanced

knowledge in computing, providing the possibility to create

rules for different false antiviruses. In this paper we presented

a single example (AVG Antivirus 2011) of a list for a false

antivirus. These lists, intended for one type of false antivirus,

may contain different versions of the same antivirus (in most

cases, viral components are the same, except for the targeted

user and operating system). The user must only change the

username, or create a user with administrator rights.

As regards the startup, it provides more information than

the msconfig file and has the advantage that it can be used

without an interface (from the command prompt).

Upon listing processes, the application offers a great

advantage, as viruses disable msconfig, task manager and

regedit, and if the computer has another user with

administrator rights, this second user can run this program and

end that process.

Checking protected files (system files or viral components),

in case a virus makes changes or is injected, is a pretty good

solution.

An antivirus with the classic signature detection cannot

detect this malware on time. This program is provided as an

alternative. The fact that the program is open-source with a

General Public License, so anyone can contribute both rule

files and improvements, is very important. Another advantage

of this application is that it can run both in safe mode and from

an anti-virus CD or similar. This was the starting point in

creating the false antivirus software.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

246

This software could be added to a security product in the

form of a module, and on each update of classical definitions.

It would also update these rules. The advantage is that this

module will require very little memory (maximum 1 Mb) and

it is the “heuristic” variant of that security solution. The

application does not have false alarms (False Positive). The

application should be extended for other viruses that have the

same behavior and the same files, from one version to another.

It would be added to a security solution as a “cloud” module;

when finding a file from the list, it would send it to a

laboratory, to analyze it together with all the files with it

interacts.

REFERENCES

[1] J. A. Ruiz-Vanoye, O. Díaz-Parra, I. R. Ponce-Meddelin, and J.C.

Olivares-Rojas, “Strategic planning for the computer science security”,

WSEAS Transactions on Computers, issue 5, vol. 7, pp.387-396, May

2008.

[2] H.M. Halvorsen, “0-Day malware”, Project of the Norwegian University

of Science and Technology, 2008, pp. 28-35.

[3] P. Wang, X.C.You, and B.X. Fang, A, “A large network malicious code

detection system:VDS”, WSEAS Transaction on Information Science

and Applications, issue 4, vol .1, pp. 994-1003, October 2004.

[4] P.Zsor, The Art of Computer Virus Research, Boston: Addison Wesley

Professional, 2005, pp. 36, 434.

[5] A. Sanabria, “Malware analysis environment design and architecture”,

SANS Institute, USA, 2007.

[6] Detcraig. (2011, June 26). Cross-Border Korean Shelling Searches Lead

to FAKEAV. TrendMicro, Available:

http://community.trendmicro.com/t5/Web-Threat-Spotlight/Cross-

Border-Korean-Shelling-Searches-Lead-to-FAKEAV/ba-p/20928.

[7] H. M. El-Bakry, and N. Mastorakis, “Fast virus detection by using high

speed time delay neural networks”, Proceedings of the 10th WSEAS

International Conference on Neural Networks, pp.169-183, 2009.

[8] Oracle VM VirtualBox. Available:
http://www.virtualbox.org/wiki/Downloads.

[9] Ultimate Boot CD. Available: http://www.ultimatebootcd.com/.

[10] RegShot. Available: http://sourceforge.net/projects/regshot/.

[11] M. Russinovich, and B. Cogswell (2011, June 20). Autoruns for

Windows. Available:

 http://technet.microsoft.com/en-us/sysinternals/bb963902.

[12] M. Russinovich, and B. Cogswell (2011, June 20). Process Monitor.

Available: http://technet.microsoft.com/en-us/sysinternals/bb896645.

[13] B. Cogswell, and M. Russinovich (2006, November 1).

RootkitRevealer. Available:

http://technet.microsoft.com/en-us/sysinternals/bb897445.

[14] GMER. Available: http://www.gmer.net/.

[15] S.P. Correll, “Business of Rogueware”, PandaLabs Research, Spain,

2009.

[16] C. Pop, M. Popescu M., and A. Naaji, “Security Solution for False
Antivirus Detection”, Recent Researches in Communications and

Computers, pp. 227-231, July 2012.

[17] String library. Getline Function. Available:

http://www.cplusplus.com/reference/string/getline/.

[18] C++ library. Remove function. Available:

http://www.cplusplus.com/reference/clibrary/cstdio/remove/

[19] CreateToolhelp32Snapshot. Available:

http://msdn.microsoft.com/en-us/library/ms682489%28v=

vs.85%29.aspx

[20] Process32Next. Available:

http://msdn.microsoft.com/en-us/library/ms684836%28VS.85%29.aspx.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 6, 2012

247

