

Abstract—Evacuation operation, which is a process of
evacuating residents from any dangerous sites to safer destination in
the shortest possible time, is of prime importance in emergency
management. Untimely assistance and poor coordination at the
operation level have always been the major problem in evacuation
process during flash floods. This paper focuses on evacuation vehicle
routing solution using a modification of a discrete particle swarm
optimization (DPSO) with a new search decomposition procedure.
Comparative analysis of this algorithm and a genetic algorithm (GA)
using the severe flash floods events datasets is performed. The
findings indicate that the DPSO provides better performance in both
solution quality and processing time. Further experimental analysis
for a large evacuation dataset can be considered to confirm the
performance of a modified DPSO.

Keywords—Discrete particle swarm optimization, Evacuation

operation, Flash floods, Genetic algorithm, Search decomposition.

I. INTRODUCTION

isasters have made news as catastrophic events had
affected people and had incurred losses due to
infrastructure damage. It had resulted in loss of life,

properties and suffering from serious psychological stress
which eventually leads to critical health condition [1]. In
December 2006, 15 people had been reported dead and more
than 100,000 people had to flee their homes in Johor state [2].
These circumstances have resulted from flash floods. The
occurrence of flash flood is due to heavy rainfall that is
associated with thunderstorms [3-4]. Table 1 shows the
number of people affected of the flash flooded districts in
Johor state for December, 2006 and January, 2007.

Table 1 Flash flood figures for districts in Johor state [2]

Number of people affected
Districts

December 2006 January 2007

Johor Bharu 20,530 15,229
Kota Tinggi 14,864 15,660
Kluang 19,091 19,210
Muar 34, 253 4,233
Batu Pahat 30, 619 55,259
Pontian 5,978 5,583
Segamat 15,148 8,784
Mersing 1,329 4,517
Total 111,193 128,475

Heavy rains and overflowing rivers have flooded towns and
villages. Malaysia Metrological Department [3] has reported
that Kota Tinggi district in Johor faced the most severe flash
flood compared to other districts in Johor. This is due to the
unusual heavy rainfall and the physiographic of the basin in
Kota Tinggi. The seriousness of the situation leads this paper
to concentrate on the flash flood evacuation operation in the
district of Kota Tinggi. Evacuation datasets of these flash
floods event were acquired and computationally experimented.
The dataset is shown in Table 2.

Evacuation operation, which is a process of evacuating
residents from any dangerous sites to safer destination in the
shortest possible time, is of prime importance in emergency
management. Untimely assistance and poor coordination at the
operation level have always been the major problem in
evacuation process during flash floods. A lot of people have to
be safely evacuated at the shortest possible time to avoid loss
of lives during disaster. Much effort has been done in
producing manual evacuation guideline [5-7], developing
evacuation system [8], developing simulation [9-10], and
developing a wide variety of algorithms [10-12] to facilitate
the evacuation operation for different types of disasters.

 During the evacuation process, the most challenging task is
to move people to safer locations. As time is the decision
factor in the evacuation process, urgent and firmly decisions
are required. An evacuation plan should be efficiently
constructed by taking into consideration the routes of vehicle.
This paper addresses the evacuation vehicle routing problem
(EVRP) that considers the routing of capacitated vehicles from
a vehicle location (single source) to various numbers of
potential flooded areas (PFA). This problem is seemed similar
to vehicle routing problem (VRP).

EVRP is associated with the routing of vehicles to
destinations with limitations of vehicle capacity and depends
on the standard travelling speed of each vehicle. Commonly,
EVRP relies on the same core problem of the vehicle routing
problem (VRP). The VRP which was introduced by Dantzig
and Ramser in 1959 [13] is customer based oriented and
involves the routing of an unlimited number of vehicles from
the depot to customer locations and return to depot with the
shortest travelling cost [14-15].

However, EVRP deals with different routing processes,
vehicles from vehicle location travelled and picking up people
at each PFA and then route them to relief centers. During a

A Modified Discrete Particle Swarm
Optimization for Solving Flash Floods

Evacuation Operation

1 Marina Yusoff, 2Junaidah Ariffin, 1Azlinah Mohamed

D

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

460

pickup, each of vehicles is allocated with a number of people.
The allocation is generated from [10]. It has been observed
that EVRP is closely related to the capacitated vehicle routing
problem (CVRP), primarily in its handling capacity constraints
[16-19]. In particular, EVRP deals with routing of a number of
vehicles to PFA, whereas CVRP deals with the delivery of
goods to customers. Like EVRP, CVRP assumes that each
customer is served by exactly one vehicle without exceeding
the capacity constraints of each vehicle. Several optimization
algorithms have been employed [13][15-17] for solving
CVRP. For example, GA with local search is applied in [16]
and DPSO with binary position and a hybrid of DPSO-SA in
[17]. In general, they obtained an effective result in terms of
processing time with no assurance for optimal results.
The recent solution for the EVRP [18] had shown good
performance for DPSO compared to GA for a single vehicle
location to a single PFA. This paper concentrates on the
performance of these algorithms considering the routing the
capacitated vehicles from a single vehicle location to multiple
PFA with the introduction of a search decomposition
procedure in its solution representation.

This paper is organized as follows. Section 2 reviews the
PSO algorithm. Section 3 presents the problem formulation.
Section 4 presents the EVRP solution and the modified DPSO
algorithm. Section 5 explains the computational results and
discussion. Finally, Section 6 concludes the paper and
addresses some future work.

II. PARTICLE SWARM OPTIMIZATION

PSO was introduced by Kennedy and Eberhart in the mid-

1990s. It is a population-based stochastic approach which has
been grouped under swarm intelligence [19-20] and
evolutionary computation [22]. PSO can be used to solve
continuous and discrete problems. PSO was derived from a
concept of a flock of birds which fly everywhere to find food.
Each bird is illustrated as a particle. Each particle moves
stochastically in search space for a feasible solution. Each of
the particles has its own velocity and position. PSO can
indicate the velocity and position of particles in a multi-
dimensional space. By updating both velocity and position, a
feasible solution can be achieved. The fitness values comprise
of global (Gbest) and personal best (Pbest) derived from the
simulated behavior of a group of particles [23]. Pbest is the
solution offered by each of the particle while the Gbest is the
best solution obtained from all particles.

PSO algorithm has been used to solve continuous problem.

The algorithm is shown in Algorithm 1 [20]. The algorithm
starts with the initialization of the population of particles or
swarm size, followed by the initialization of inertia weight (W)
and acceleration constants (C1 and C2). Step 4 and 5 initialize
the minimum value (Vinitialize(min)) and maximum value of
velocity (Vinitialize(max)) and minimum position (Dmin) and
maximum value of position (Dmax), respectively. Next is the
calculation of Pbest and Gbest value for each particle. Step 9
calculates the new velocity value for each particle using
equation 1. Step 10 updates the new position, D(new) using
Equation 2. Finally, Pbest (new) and Gbest (new) are determined

based on the fitness value set for the problem. Iteration starts
from step 7 until step 13 to update the current velocity and
position of each particle. This iteration will be done until it
satisfies the stopping condition.

Algorithm 1 PSO

1. Begin

2. Initialize number of particles and populations

3. Declare W, C1 and C2

4. Initialize Vinitialize(min) and Vinitialize(max)

5. Initialize Dmin and Dmax

6. Calculate Pbest and Gbest value for each

particle

7. Do

8. For each particle

9. Calculate new velocity value, V(new)

10. Calculate new position, D(new)

11. Calculate Pbest (new)

12. Calculate Gbest (new)

13. While (stopping condition is reached)

14. End

PSO has the capability to explore regions of the search space

and exploit the search to refine a feasible solution. These
search strategies are influenced by the parameters; acceleration
constants (C1 and C1) and inertia weight [20][24] that has been
applied in the PSO algorithm. Equation 1 and 2 present the
velocity and position formulas for the canonical PSO,
respectively.

Vid(new)= W *Vid + C1* r1* (Pbest(id) - Xid + C2* r2 *

(Gbest(id)-Xid) (1)
Xid(new)=Xid + Vid(new) (2)

where:
 Vid(new) = new velocity of the ith particle in dth dimension
 Vid = current velocity of the ith particle in dth dimension

Xid = current position of the ith particle in dth dimension
Xid(new) = new position of the ith particle in dth dimension
W = inertia weight
 C1 and C2= acceleration coefficient

r1 and r2 = random function in the range of [0,1]
 Pbest(id) = position of the personal best of the ith particle in dth

dimension
Gbest(id) =position of the global best derived from all particles

in the swarm.

A considerable amount of research has been directed towards

the modification of canonical PSO to solve several types of
continuous problems. The inventors of PSO explored discrete
binary PSO with special attention to discrete problems, leading
to a new means of updating the position of particles [25] to
accommodate discrete binary problems. The particle position
is determined based on sigmoid function [25]. The use of
DPSO with multiple discrete values (rather than binary) was
also explored. Mohemmed et al employed a discrete particle
position to represent nodes in the shortest path problem [26].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

461

Izakian et al mapped a grid job scheduling problem to direct
and indirect representation for the particle position [27]. Direct
representation used binary value while indirect representation
used multi discrete value. Direct representation is shown faster
than indirect representation. For the direct representation, the
particle position is calculated based on the new formulation for
the velocity which only considers the Pbest.

III. PROBLEM FORMULATION

The EVRP involves a static routing of a number of vehicles
from vehicle location to a single and multiple PFA. EVRP
addresses the objective function to find the minimum total
travelling time for all capacitated vehicles from vehicle
location to the PFA. This problem is mathematically
formulated based on the SPP formulation [28]. The problem
can be formally defined as follows: Let G = (N, E) be a
weighted directed graph. Define N = {N0, N1,…, Nn}. N0
represents the vehicle location and Nn is the destination node
(PFA). E is the set of edges. tij represents the travelling cost of

traversing from i to j. For each edge (i, j) ∈ E, travel time tij≥

0, is a non negative integers. H={H1, H2,,Hk} is the set of all
vehicles that are able to move from node i and j. The objective
function is to find the minimum total travelling time for all
vehicles from N0 to Nn. The EVRP is mathematically
formulated as shown below:

Minimize (3)

Subject to:

 – = (4)

 (5)

 where:

i = index of nodes, i

j = index of nodes, j

k = index of vehicle H, k

 Tijk= represents the travelling time of vehicle k traversing
from i to j.

 Xij = is a binary variable which is 1 if the node i to node j is
traversed, otherwise it is 0.

Constraints 4 ensure that the path starts at N0, end at Nn, and
either pass through or avoid every other node j. Constraint 5 is
the set of bound decision variables.

IV. EVRP SOLUTION

The solution of EVRP has adopted the similar process of
nodes expansion and the random selection of PV as discussed
in [28]. The calculation of travelling time, total travelling time
for each of the vehicle travelled through valid path, and the
total travelling time for all vehicles that travelled through all
the valid paths can be referred to [18]. In EVRP, each array of
PV is assigned to each of the vehicles where the number of PV
at each level comprises of a number of child nodes (Cn)
multiples with the number of vehicles (Vm), or Cn x Vm for each
level of the expansion of the graph as illustrated in Fig. 1 and
2.

Fig. 1 The illustration of search decomposition procedure into
branches

N0 - N1 N0 - N2

PV1 PV2 V1

PV1 PV2 V2

PV1 PV2 .

. . .

PV1 PV2 Vm

Fig 2. Illustration of a sub-particle for the Level 1

Each particle is represented in 3-dimensions, which consist

of number of search decomposition (Dt), Cn, and Vm, or Dt x Cn
x Vm. The procedure of the search decomposition is shown in
Fig. 3. The decomposition imposes the expansion of nodes
from source node. This procedure would enable some
limitation on the search space for the movement of particles as
illustrated in Fig. 1.

1: Begin

2: Initialize the search tree

3: Do

4: If there is no leaf

5: Failure

6: Else

7: Expand node

8: Choose one path in a random selection and assigned

 PVmin to this path

9: Calculate traveling time for each vehicle

10: While (all nodes expanded or there no leaf to expand)

11: End

N5
N6

Level 3

(Standard
Travelling Speed)

Level 1

Level 2

N0

N1 N2

D1

N3
N4

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

462

Fig 3. A search decomposition procedure
The new solution representation for EVRP that is discussed

above is implemented in DPSO as shown in Algorithm 2. The
algorithm starts with the normal process of PSO. Step 2 and 3
initialize the number of population and the coefficient values
C1 and C2, respectively. Step 4 performs the initialization of
PV and velocities. Step 5 retrieves vehicle's information which
includes the vehicle id, vehicle capacity, and its standard
travelling speed. Step 6 and 7 perform the search
decomposition procedure for each of the vehicle. In this step,
only one path is selected and the selected node is assigned with
PVmin upon selection of the path as demonstrated in Fig. 3
After all nodes are expanded, the Pbest and Gbest of each
particle are calculated. Pbest is the total distance for each
particle, whereas Gbest is the minimum total distance obtained
from all particles. The iteration process starts at step 9 through
22 until a maximum iteration is achieved. In this iteration, each
particle is updated with a new velocity and new position value
(PV) at step 10 until 12. The new velocity and position value
are in the form of positive integer. Then, PV for all sub
particles is updated using step 13. Step 14 performs the
decomposition procedure of PV. Pbest(new) and Gbest(new) are
calculated at step 15 and 16, respectively. Finally, steps 17
through 21 are the conditions for the selection of the best
current fitness for each of the iteration.

V. COMPUTATIONAL RESULTS AND DISCUSSION

The performances of these algorithms are analyzed based on
the objective function to find the minimum total travelling time
for all the capacitated vehicles from vehicle location to PFA.
The comparison involves two aspects: total travelling time for
all vehicles from vehicle location to PFA, and the processing

time. The selection of parameters was selected based on
previous research [13]. DPSO is compared to GA with one
point crossover using the same solution representation.
Datasets for the computational experiment are from flash flood
evacuation in Malaysia starting from VR1_PFAs_06 until
VR5_PFAs_07 with various number of destinations (multiple
PFA) are shown in Table 2.

Table 2 EVRP datasets

Dataset
Number

of PFA

Number of

nodes

Number

people

Number

of

vehicles

generated

from [10]

VR1_PFAs_06 2 47 1416 174

VR2_PFAs_06 3 59 2631 260

VR3_PFAs_06 4 83 3155 370

VR4_PFAs_06 5 119 4584 508

VR5_PFAs_06 6 140 5032 612

VR6_PFAs_06 2 47 7269 750

VR7_PFAs_06 3 59 8484 1316

VR8_PFAs_06 4 83 9008 1366

VR1_PFAs_07 2 49 1566 238

VR2_PFAs_07 3 61 3106 374

VR3_PFAs_07 4 88 3180 355

VR4_PFAs_07 5 109 3800 496

VR5_PFAs_07 6 133 3996 516

A. Performance of a modified DPSO

This section discusses the results for the datasets involved
with more than one PFA. The experiments for those datasets
used 30 population of particles, 30 experiments and based on
the iteration up to 200 or until all vehicles arrived at PFA. The
performance of the algorithms is based on the total travelling
time (fitness value) obtained by all the travelled vehicles and
processing time. Average of the total travelling time and
processing time is calculated based on 30 experiments. The
results are tabulated in Table 3 until Table 15. Table 3
compares the results of the travelled vehicles from vehicle
location to the two PFA. It is apparent that DPSO
outperformed the other algorithms at average of 2.699 KM. As
can be seen in the table, although, average of processing time
is 0.469 seconds for DPSO which is of about 0.010 second
more than the average of processing time for GA. This shows
that there is very little difference in terms of processing time.

Algorithm 2 Modified DPSO

1: Begin

2: Initialize number of population

3: Declare C1 and C2

4: Initialize PV, Vintialize(min) and Vinitialize(max) for all

particles in random

5: Retrieve vehicle's information from[10]

6: For each vehicles

7: Perform search decomposition procedure

8: Calculate Pbest and Gbest

9: Do

10: For each particle

11: Calculate V(new)

12: Calculate PV(new)

13: Update PV for all sub particles

14: Perform step 6 and 7

15: Calculate Pbest (new)

16: Calculate Gbest (new)

17: If (Gbest (new) > Gbest)

18: Assign Gbest as the best current fitness

19: If (Gbest (new) =< Gbest)

20: Gbest= Gbest (new)

21: Assign Gbest(new) as the best current fitness

22: While (maximum iteration is achieved)

23: End

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

463

Table 3 Performance of DPSO and GA using dataset
VR1_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) iter

Avg 2.699 0.469 1 2.702 0.459 1
Min 2.654 0.421 1 2.654 0.421 1
Max 2.750 0.605 1 2.750 0.577 1

Std Dev 0.049 0.047 0 0.049 0.034 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Table 4 shows the results of VR2_PFAs_06. It clearly shows
from the table that DPSO gave better result compared to the
other three algorithms whereas GA failed to obtain any results
for 200 iterations.

Table 4 Performance of DPSO and GA using dataset
VR2_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) iter

Avg 6.618 1.809 1 6.783 1.946 1

Min 2.654 0.453 1 6.727 1.794 1

Max 6.822 2.153 1 6.913 2.278 1

Std Dev 0.750 0.288 0 0.056 0.096 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

As shown in Table 5, on average, DPSO has shown a better

fitness value but requires about 0.009 seconds more for the
average of processing time when compared to GA. Although
GA gives less processing time, the average of total travelling
time is slightly higher than DPSO. What is interesting here is
the achievement of DPSO in terms of total travelling time.
Hence, this algorithm with the new solution representation
provides better performance in finding solutions to EVRP
focusing on the multiple PFA. This is supported by the results
of VR1_PFAs_06 and VR2_PFAs_06, VR4_PFAs_06,
VR5_PFAs_06, VR6_PFAs_06, VR7_PFAs_06, and
VR8_PFAs_06.

Table 5 Performance of DPSOs and GAs using dataset
VR3_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) iter

Avg 10.518 14.254 1 10.573 14.147 1

Min 10.313 9.001 1 10.313 9.360 1

Max 11.137 40.498 1 11.137 16.863 1

Std Dev 0.245 5.190 0 0.267 1.247 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

The findings support that the embedded search

decomposition procedure and random selection of PV brings a
significant contribution to the solution of EVRP, in this case
for multiple PFA. The random selection assist in obtaining fast

convergence because of the limitations of search space
required. Overall, DPSO gave a better solution quality
(minimum total travelling time) than the other three algorithms
for the multiple PFA and competitive to GA for some datasets.

Table 6 Performance of DPSOs and GAs using dataset
VR4_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 17.977 22.141 1 18.174 21.594 1.033

Min 16.405 13.930 1 16.405 13.400 1

Max 20.429 25.973 2 21.185 24.197 2
Std
Dev

1.067 1.875 0.183 1.082 2.638 0.305

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Table 7 Performance of DPSOs and GAs using dataset
VR5_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 23.897 55.378 1 24.230 55.352 1
Min 22.838 45.302 1 22.888 46.582 1
Max 25.611 67.205 1 25.793 99.372 1
Std
Dev

0.787 5.927 0 1.028 9.700 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Table 8 Performance of DPSOs and GAs using dataset
VR6_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 11.364 2.478 1 11.377 2.592 1

Min 11.101 1.809 1 11.101 1.856 1

Max 12.641 4.508 1 11.522 4.337 1

Std Dev 0.342 0.803 0 0.204 0.818 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Table 9 Performance of DPSOs and GAs using dataset
VR7_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 24.047 6.083 1 24.110 6.510 1

Min 23.594 5.163 1 23.594 5.741 1

Max 24.305 7.909 1 24.852 6.942 1

Std Dev 0.303 0.426 0 0.311 0.212 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

464

Table 10 Performance of DPSOs and GAs using dataset
VR8_PFAs_06

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 25.491 12.588 1 25.696 13.518 1

Min 24.916 11.123 1 24.916 11.700 1

Max 26.728 15.475 1 26.767 25.678 1

Std Dev 0.467 0.682 0 0.483 2.366 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Results for DPSO performed better than the GA as shown in
Table 11. The total travelling time for GA is a slightly lower
than this algorithm.

Table 11 Performance of DPSOs and GAs using
VR1_PFAs_07

DPSO GA

ttvs PT (s) iter ttvs PT (s) iter

Avg 10.170 3.314 1 10.173 3.452 1

Min 10.167 0.920 1 10.167 1.482 1

Max 10.187 5.132 1 10.193 8.596 1

Std
Dev

0.009 1.085 0 0.007 1.565 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

The next comparison highlights (Table 12) the results of the

VR2_PFAs_07. So far, the proposed DPSO has shown good
results with one iteration for convergence (all vehicles arrive at
the assigned PFA). Although an average of processing time of
DPSO is slightly higher than GA for VR2_PFAs_07, the total
travelling time for this algorithm is 0.29% lower than GA,
which is about 1.98 minutes. With a minimum total travelling
time, all people can be picked-up by the assigned vehicles at
each of the PFA at the shortest time.

Table 12 Performance of DPSOs and GAs using
VR2_PFAs_07

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 11.494 9.358 1 11.527 9.095 1

Min 11.385 3.978 1 11.385 4.493 1

Max 11.723 22.433 1 13.583 21.419 1

Std
Dev

0.090 3.826 0 0.391 4.141 0

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

As shown in Table 13, the result validates the employment of
DPSO in solving EVRP. This algorithm provides the best
results with less total processing time compared to GA to
move all vehicles from vehicle location to four PFAs, using
VR3_PFAs_07. This result again ensures all vehicles arrive at

PFA at a minimum total travelling time, which is important in
evacuation operation.
Table 13 Performance of DPSOs and GAs using
VR3_PFAs_07

DPSO GA

ttvs PT (s) iter ttvs PT (s) iter

Avg 12.170 7.594 2.300 12.174 17.006 2.400

Min 11.736 4.025 1.000 11.625 3.931 1.000

Max 13.466 22.479 5.000 13.257 309.620 10.00

Std
Dev

0.535 3.836 1.343 0.552 55.332 1.905

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

DPSO outperformed GA for both of VR4_PFAs_07 and

VR5_PFAs_07 as shown in Table 14 and 15 in its total
travelling time and processing time. It is noted that the use of
DPSO has successfully achieved the best performance among
the other three algorithms. Thus, these results validate that this
algorithm satisfy the objective function which is to find the
minimum total travelling time.

Table 14 Performance of DPSOs and GAs using
VR4_PFAs_07

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 17.965 19.537 1.100 18.029 19.549 1.259

Min 17.232 10.249 1.000 17.315 9.891 1.000

Max 19.943 31.731 2.000 19.991 60.707 2.000

Std
Dev

0.573 5.987 0.305 0.716 9.662 0.447

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

Table 15 Performance of DPSOs and GAs using
VR5_PFAs_07

DPSO GA

ttvs PT (s) iter ttvs PT (s) Iter

Avg 20.426 19.716 1.5 20.429 20.467 1.6

Min 19.511 13.603 1.0 19.647 13.962 1.0

Max 22.616 28.797 5.0 23.027 29.578 4.0

Std
Dev

0.693 4.106 0.9 0.900 5.104 0.9

* ttvs – total travelling time (hour), PT - processing time (second), iter -

number of iteration

B. Discussion

This paper produced results which corroborate the solution
of [28] for SPP. With some modification to the solution, the
findings confirmed that DPSO proved to perform better than
GA in getting the minimum total travelling time. Although the
processing time obtained was statistically different between
these algorithms, on average DPSO consumed less time. The
use of multi-valued discrete particle position (PV) with the
employment of search decomposition and random selection of

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

465

PV was observed to have successfully achieved good
performance for a small number datasets.

The suggested mean of limiting the movement of particles in
search space, using the search decomposition procedure and
random selection support this algorithm. The decomposition of
graph with random selection of PV depends on the number of
expanded branches. Hence, the number of nodes traversed by
each vehicle is dependent on the branch that was randomly
selected. With this procedure at least one vehicle can traverse
from vehicle location until PFA using a valid path because the
selection of PV is limited to the number of branches. Based on
the findings provided by DPSO, it can be illustrated that
several valid paths were able to be determined using 30
populations of particles granted a higher possibility of using
less travelling time for the vehicles travelled from vehicle
location to multiple PFA. With the high possibility of getting a
valid node, the best solution would become faster and lead to
the fast convergence due to the less search space. This
confirmed what was mentioned in the literature review that the
DPSO has a capability of finding optimal solution and fast
convergence compared to the GA.

The calculation of velocity involving exploitation, and
exploration of particles in DPSO has contributed to the
solution. The exploitation presents means of particles to
perform a local search while the exploration is globally
seeking the best solution, which was gathered from the
selection of Gbest.

VI. CONCLUSION

This paper discusses the solution to evacuation process in
achieving the objective function which is to find the minimum
total travelling time for all the capacitated vehicles from
vehicle location to the multiple PFA. A new solution
representation incorporates the search decomposition
procedure and random of PV selection were addressed. The
new solution is embedded in DPSO. They were compared to
GA in which using the same solution representation. Overall, it
can be concluded that DPSO that was applied with a new
solution representation provided better results compared to GA
for multiple PFA. Further experiment can be done using
dataset from PFA to relief centers for the EVRP incorporating
the limitations of the capacity at the relief center and for large
evacuation scenarios.

ACKNOWLEDGEMENT

This study has been made possible under the support of the
Ministry of Science and Technology Malaysia through the
Science Fund and University Technology MARA.

REFERENCES

[1] M. Omar, Evacuation Planning in Malaysia, Putrajaya,
2007.

[2] Social and Welfare Department. (2010, February 10).
Laporan Bencana Banjir Tahun 2006 Hingga 2008.
Available:http://www.jkmnj.gov.my/utama/index.php?
option=com_content&view=article&id=54%3Alaporan

-bencana-banjir-tahun-2006-hingga-
2008&catid=1%3Alatest-news&Itemid=64.

[3] Malaysian Meteorological Department. (2011, May10).
Laporan Hujan Lebat, Ribut Petir Serta Angin Kencang
Yang Mengakibatkan Banjir Di Kelantan, Terengganu,
Perlis Dan Kedah Pada 01~02 November 2010.
Available:http://www.met.gov.my/

[4] A. Shafie, “A Case Study on Floods of 2006 and 2007
in Johor, Malaysia,” Tech. Rep. Colorado State
University, 2009.

[5] S. Hoffman, “Preparing for disaster: protecting the
most vulnerable in emergencies,” UC Davis L. Rev.,
vol. 42, pp. 1491-1547, 2008.

[6] S. P. Simonovic and S. Ahmad, “Computer-based
Model for Flood Evacuation Emergency Planning”,
Natural Hazards, vol. 34, pp. 25-51, 2005.

[7] D. Magiswary, R. Murali, M. Saravanan, and K.
Maniam, “ICT and disaster preparedness in Malaysia:
an exploratory study,” WSEAS Transactions on

Information Science and Applications, vol. 7, pp. 735-
748, 2010.

[8] Y.-C. Chiu, “Traffic scheduling simulation and
assignment for area-wide evacuation,” in Proc. 7th
International IEEE Conference on Intelligent

Transportation Systems, 2004, pp. 537-542
[9] C. W. Johnson, “Applying the lessons of the attack on

the world trade center, 11th September 2001, to the
design and use of interactive evacuation simulations,”
In Proc. Conference on Human Factors in Computing
Systems, 2005, pp. 651-660.

[10] M. Yusoff, J. Ariffin, and A. Mohamed, “Solving
Vehicle Assignment Problem Using Evolutionary
Computation,” in Proc. Advances in Swarm

Intelligence. vol 1, 2010, pp. 523-532.
[11] L. Özdamar and W. Yi, “Greedy neighborhood search

for disaster relief and evacuation logistics,” Intelligent
Systems, IEEE, vol. 23, 2008, pp. 14-23.

[12] C. Xie and M. A. Turnquist, “Lane-based evacuation
network optimization: An integrated Lagrangian
relaxation and tabu search approach,” Transportation
Research Part C: Emerging Technologies, vol. 19,
2011, pp. 40-63.

[13] I. Brajevic, “Artificial Bee Colony Algorithm for the
Capacitated Vehicle Routing Problem,”in Proc.
European Computing Conference, Paris, 2011, pp.
239-244.

[14] T. J. Ai and V. Kachitvichyanukul, “A Particle Swarm
Optimization for the Vehicle Routing Problem with
Simultaneous Pickup and Delivery,” Computers and
Operations Research, vol. 36, 2009, pp. 1693-1702

[15] D. Ponce, “Bio-inspired metaheuristics for the vehicle
routing problem,” in Proc. 9th WSEAS International

Conference on Applied Computer Science, 2009, pp.
80-84.

[16] S.-W. Lin, K.-C. Ying, Z.-J. Lee, and F.-H. Hsi,
“Applying Simulated Annealing Approach for
Capacitated Vehicle Routing Problems,” in Proc. IEEE

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

466

International Conference on Systems, Man and

Cybernetics. (SMC '06), Taipei, 2006, pp. 639-644.
[17] L. Zhishuo and C. Yueting, “A Hybrid Ant Colony

Algorithm for Capacitated Vehicle Routing Problem,”
in Proc. IEEE International Conference on Systems,
Man and Cybernetics, Taipei, Taiwan, 2006, pp. 3907-
3911.

[18] M. Yusoff, J. Ariffin, and A. Mohamed, “A Multi-
valued Discrete Particle Swarm Optimization for the
Evacuation Vehicle Routing Problem,” Advances in
Swarm Intelligence, vol. LNCS 6728, 2011, pp. 182-
193.

[19] J. Kennedy, “Swarm intelligence,” in Handbook of
Nature-Inspired and Innovative Computing, 2006, pp.
187-219.

[20] P. Engelbrecht, “Computational intelligence: An
Introduction,” 2nd ed. West Sussex: John Wiley &
Son, 2007.

[21] K. E. Parsopoulos and M. N. Vrahatis, “Parameter
selection and adaptation in unified particle swarm
optimization,” Mathematical and Computer Modelling,

vol. 46, 2007, pp. 198-213.
[22] C. Trelea, “The particle swarm optimization algorithm:

convergence analysis and parameter selection,”
Information Processing Letters, vol. 85, 2003, pp. 317-
325.

[23] R. Guner and M. Sevkli, “A Discrete Particle Swarm
Optimization Algorithm for Uncapacitated Facility
Location Problem,” Journal of Artificial Evolution and
Applications, vol. 2008, pp. 1-9, 2008.

[24] Y. Shi and R. Eberhart, “Empirical study of particle
swarm optimization,” in Proc. 1999 Congress on
Evolutionary Computation, Piscataway, NJ: IEEE
Service Center, 1999.

[25] J. Kennedy and R. C. Eberhart, “A Discrete Binary
Version of the Particle Swarm Algorithm,” in Proc.
IEEE International Conference on Systems, Man, and

Cybernetics, Orlando, FL, USA, 1997, pp. 4104-4108.
[26] W. Mohemmed, N. C. Sahoo, and T. K. Geok,

“Solving shortest path problem using particle swarm
optimization,” Applied Soft Computing, vol. 8, 2008,
pp. 1643-1653.

[27] H. Izakian, B. T. Ladani, A. Abraham, and V. a.
Sn´aˇsel, “A discrete particle swarm optimization
approach for grid job scheduling,” International

Journal of Innovative Computing, vol. 6, 2010.
[28] M. Yusoff, J. Ariffin, and A. Mohamed, “A Discrete

Particle Swarm Optimization with Random Selection
Solution for the Shortest Path Problem,” in Proc.
International Conference on Soft Computing and

Pattern Recognition, Paris, France, 2010, pp. 133 –
138.

Marina Yusoff is currently a PHD student in Universiti Teknologi
MARA. Prior to this she was a lecturer in Universiti Teknologi MARA and
worked as a senior executive of Information Technology in SIRIM Berhad,
Malaysia. She holds a Bachelor Degree in Computer Science from the
University of Science Malaysia, and MSC in Information Technology from
Universiti Teknologi MARA. She is interested in the development of
intelligent application, modification and enhancement artificial
intelligence techniques include particle swarm optimization, neural
network, genetic algorithm, and ant colony. She has presented her research
in many conferences locally and internationally.
Junaidah Ariffin is currently a Professor of Civil Engineering and the
Head of the Flood-Marine Excellence Centre, Universiti Teknologi MARA
Shah Alam, Malaysia. She holds a PhD in water Resources Engineering
from the University of Science Malaysia. She is responsible for research
projects related to flood forecasting, operations and planning, inundation
models, flood evacuations and sediment transport in rivers amounting to
more than RM1 million. Her long list of publications on the above can be
found from the university website. Currently she teaches the subject on
erosion and sedimentation to the Masters graduates and fluid mechanics
for the undergraduates. She is also the editor and reviewer of 3
international journals.
Azlinah Mohamed (MSc Artificial Intelligence, University of Bristol UK,
PhD Universiti Kebangsaan Malaysia) is a Professor currently working in
Universiti Teknologi MARA. Prior to this she was a tutor in University of
Bristol and a Research Fellow in Universiti Kebangsaan Malaysia. Prof.
Dr. Azlinah’s current areas of interest are Hybrid Techniques, Pattern
Recognition, and Web-based Decision Support Systems using intelligent
agents in electronic government applications. She has presented her
research in many conferences and published her work in journals
internationally and locally. Besides that, she has also contributed as an
examiner and reviewer to many conferences, journals and universities
academic activities. In addition, she had also held administration post
pertaining to academic development at the university level. Currently, she
is the Special Officer on Academic Affairs and Development to the Vice
Chancellor of the University.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

467

