

Abstract—In this paper, we present some studies about relations

existing between well known Chomsky string grammars and graph
grammars, in particularly hypergraph grammars. We are discussing
about deterministic context free Lindenmayer Systems used to
describe commands to a device that generates black and white digital
images. Instead of well-known methods of drawing, we will paint
squares, not lines. After that, we give some important properties of
growth functions of D0L-systems. In addition, we turn the discussion
to gray scale or color digital image generation. The second main part
of the paper is about normal forms of hyperedge replacement
grammars. In context freeness of these grammars, we can transform
each of it into an equivalent grammar without λ-productions and
without rewritings. After that, in a nondeterministic way, we will
create equivalent grammars in Chomsky Normal Form or Greibach
Normal Form. Both normal forms are inspired by string grammars. In
the third part of this paper we illustrate some important differences
between graph grammars and hypergraph grammars in context of
freeness. On the other hand, we give a possibility to transform the
planar structure of a hypergraph into a linear one with concern of
determinism. This can create a path to transform a pushdown
automaton into a generative grammar equivalent.

Keywords—Chomsky, Context Freeness, Deterministic,

Deterministic Context Free Lindenmayer Systems (D0L-systems),
Digital Pictures, Graph Grammars, Greibach, Growth Functions,
Hyperedge Replacement Grammars, Nondeterministic,
Nondeterministic, Normal Form, Turtle.

I. INTRODUCTION

HE concepts and techniques of picture processing have
been arisen from many different disciplines, among them

mathematics, computer science [4], engineering or biology. L-
systems are suitable tools for drawing images of real life
structures. This is due to their ability to model biological
growth. Traditionally, the strings of symbols generated by L-
systems are interpreted as images either using vector
interpretation, or, so-called, turtle geometry interpretation. In
this paper, we consider the second approach, where the
symbols are translated into commands to a ‘turtle’, which is a
simple device moving on the plane and used in drawing
pictures.

Manuscript received August 12, 2011.
Silviu Razvan Dumitrescu is from Department of Informatics, Faculty of

Mathematics and Informatics, Transilvania University of Brasov, Iuliu Maniu
50, ROMANIA(silviu.dumitrescu@unitbv.ro), holds a career over 15 years in
education and is interested in areas such as formal languages, modern
programming languages .

1

On the other hand, in many fields of computer science,
diagrams rather than strings represent the information. That is
why a study in domain of graphs and formalizations of graphs
could be very interesting. A hypergraph represents a
generalized graph and consists by a number of hyperedges [1].
A hyperedge is an atomic item labeled with a label in a
nonempty set, called alphabet, and a fixed number of tentacles.
On each tentacle is attached a node. Nodes are involved in
hyperedge replacement. With labeled hyperedges, we can
define productions. Productions consist by a label in left hand
side and a replacing structure in right hand side. If a labeled
hyperedge, with the left hand side in the productions set, is
replaced by the right hand side of the same production this is
called a direct derivation. Therefore, we can define a language,
which represents the set of structures derivable from the start
structure.

Graphical languages are playing an important role in the
definition of images or visual structures. Parts of these
languages are based on hypergraph structures. Roughly
speaking a hypergraph generalizes the notion of graph, and
consists by a number of atomic items called hyperedges. Thus,
a hyperedge generalize the notion of edge. An edge consists of
two nodes (called source and destination, if oriented), but the
hyperedge consists by a finite number of nodes. In the latter,
some nodes have a special role in the derivation process.

In area of studying complex structures which describing
images it is interesting to develop techniques and tools that
allow graphical language designers to define and implement
visual languages analogously to what already happens for
string languages. The main problem of two-dimensional
languages is the parsing process. Hypergraphs and hyperedges
are complex objects and we have to provide new techniques of
parsing, which involving not just deterministic chaining, given
by concatenation.

A systematic development of graph grammars and graph
language theory requires the notion of context-free graph
grammars and languages. It is known that exist mechanisms for
deriving graphs from graphs by applying productions.
Hyperedge replacement works locally without any effect on the
context of the hyperedge replaced. This result, formulated in
[1], provides evidence that hyperedge systems represent a
graph grammar version of context-freeness.

Some hyperedge grammars have only one set of labels [2].
In that case, the set of nonterminals is empty and the terminal
structures are not labeled. In some of this grammars we can

Similarities Between String Grammars
and Graph Grammars

Silviu Razvan Dumitrescu

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

505

consider derivations maximum parallel such as are in
Lindenmayer systems. The languages generated by such
grammars include visual structures like fractals.

In the first part of introduction section, we present the main
concepts used in this paper: context free Lindenmayer systems,
a special case of them called deterministic systems (D0L-
systems), and digital pictures, which are formed by units. As
we will see, a unit is a square defined by position, length and
color.

We introduce the main concepts related to hyperedges,
graphs and hypergraphs.

After that, in introduction, we consider the turtle device,
which works as a drawn device. The commands for turtle are
described by a D0L-system. Considering Sierpinski triangle,
we give an example of its generation. The main difference
between this method and the others is that instead of drawing
lines we are filling units. The problem with turtle, in this case,
is that we have to scale the dimension of the unit in order to
draw the image, with more details, in the same frameset.

In the first main section of this paper, we will study some
important properties of growth functions defined for those
D0L-systems that are describing turtle movements. We discuss
about a recursive formula based on the Cayley-Hamilton
theorem.

After that, we extend the discussion at gray-scale or color
images generation. This is doing by introducing new attributes
in the tuple that defines the turtle state.

In the next part of the paper, we will consider the alphabet of
labels divided into two disjoint sets: the alphabet of terminals,
which labels only structures as right hand side of some
productions, and the alphabet of nonterminals, which labels
structures as both sides of productions, same as in string
grammars.

In this paper, all of the grammars considered are context
free. Therefore, it does not matter how we choose the starting
hyperedge in the replacement and it is not relevant how many
times we repeat the replacement, but it is important to have, in
each step of the derivation, a production where the label of the
replaced hyperedge exists on its left side.

We continue the main section with considering grammars
without λ-productions and without rewritings. As it has shown
in [8] this could be obtaining by starting from a regular
grammar. The algorithm is nondeterministic, that means it
does not matter how we will split the left side of the production
because the choice does not influence the result.

In the last sections of the paper, we will make a survey about
generative power of hyperedge replacement grammars and
about some essential properties related to context freeness.
After that, our discussion is about some particular hyperedge
grammars called graph grammars. In the end of the paper, we
turn our discussions about close relations existing with context
free string grammars.

II. PROBLEM FORMULATION

A. Definitions and notations

We start this section with basic definitions involved in this
paper.

Definition 1: [6] An 0L-system (context free Lindenmayer

system) represents an ordered tuple (V, P0, F), where V is the
finite, nonempty set of symbols, usually called alphabet, P0 is a
nonempty word over V, called initial word or axiom, and F
represents a set of ordered pairs called productions.

F = {(a, P) | a∈V, P∈V* 1)}

We usually denote a production by a→P.
The main three differences between L-systems and well-

known string grammars are:
− there is a unique alphabet (without separation between

terminal and nonterminal symbols)
− for each symbol, a∈V, exists at least a production in F
− a step in the derivation chain represents replacement of all

symbols of current word by productions in F.
The prefix 0, in 0L-systems, denotes the property of context

freeness. Thus, the replacement of a symbol does not care
about the context where the symbol exists inside of the word.

In this paper, we consider a special case of 0L-systems,
called D0L-systems, deterministic systems, which mean that
for each symbol, we have exactly one production in F.

Definition 2: A digital image ∑ is a finite rectangular array

whose elements are called units. Each unit, U = (x, y, l), of ∑ is
a square defined by a pair of Cartesian coordinates (x, y)∈R2
(down-left corner) and a length l∈R, which is constant.

A unit, U, in a digital image ∑, has two types of neighbors:

− its four horizontal and vertical neighbors: Ul = (xl, yl, l), Ur

= (xr, yr, l), Uu = (xu, yu, l), Ud = (xd, yd, l) such that |x-
xi|+|y-yi| = 1, i∈{l, r, u, d}

− its four diagonal neighbors: Uul = (xul, yul, l), Uur = (xur, yur,
l), Udl = (xdl, ydl, l), Udr = (xdr, ydr, l) such that |x-xi| = |y-yi|
= 1, i∈{ul, ur, dl, dr}

We shall refer to the neighbors of first type as the 4-
neighbors of U and the neighbors of both types, collectively, as
the 8-neighbors of U. The former neighbors are said to be 4-
adjacent to U, and the latter, 8-adjacent. Note that if U is on
the border of ∑, some of its neighbors may not exist.

We continue with some basic definitions involved in the
second part of the main section of this paper.

Definition 1: [4] A hypergraph, H, is a tuple (VH, EH, attH,

labH, extH), where:
− VH is the finite set of nodes

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

506

− EH is the finite set of hyperedges
− attH: EH → VH

* 1) is the application of attaching, which
assigns a sequence of pair wise distinct nodes to every
hyperedge

− labH: EH → C is the application of labeling, which assigns
a label to every hyperedge from arbitrary but fixed and not
empty set C, and extH∈VH

* is a sequence of pair wise
distinct external nodes.

Definition 2: [4] The type of a hyperedge, e∈E, is the

application type: C → N with type(lab(e)) = att(e) 2).

For a hypergraph, H, the type of H, type(H), is the number
of external nodes, type(H)=|extH|.

Let H = (VH, EH, attH, labH, extH) be a hypergraph and R a
hypergraph over the same set of labels as H. By H[eR] we
understand the hypergraph obtained from H by replacing
hyperedge e, e∈EH, with the hypergraph R. The replacing
process is made by cutting the hyperedge e from H and adding
the hypergraph R so that the i-th external node of R is glued
over the i-th attached node of e with i = 1,type(e). Moreover,
extH[eR] = extH, type(H[eR]) = type(H).

Definition 3: [4] A hyperedge replacement grammar, HRG,

is a tuple (N, T, P, S), where:
− N is the set of nonterminal labels
− T is the set of terminal labels, N∩T=∅
− P is the set of productions, P = {(A, R)A∈N, R is a

hypergraph labeled in N∪T 3), with type(A●) 4)= type(R)}
− S∈N is the label of the starting symbol.

A direct derivation in HRG, using productions from P, H

⇒ H’, takes place if and only if exists e∈EH such as (labH(e),
R)∈P and H’ = H[eR].

The language generated by the hyperedge replacement
grammar HRG is L(HRG) = {H| ∃ S●⇒P

*H 5), labH(e)∈T ∀
e∈EH}.

Definition 4: A graph is a system (E, V), where E ⊆ V×V is

called the set of edges, and V is called the set of nodes.

A directed graph introduces two functions s, d: E → V

which attaching a source and a destination to each edge. In this
case, the edge (1, 2) is different by the edge (2, 1). In the case
of general graphs this does not happened.

1) For a set V, V* denotes the set of all strings over V, including the empty

string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty
string λ.

1) For a set V, V* denotes the set of all strings over V, including the empty
string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty
string λ.

2) For w∈V*, |w| denotes the length of w.
3) A λ-production is defined in [3].
4) A● represents a hypergraph with one hyperedge labeled with A.
5))⇒P

* represents a derivation in k steps, k≥0, with productions from P
(reflexive and transitive closure)

In addition to these functions, we consider the map of
labeling, l: E → C, which attaching a label from C to each edge
of E.

Because we use graphs and edges in the process of
derivation, we introduce two special nodes begin, end ∈ V. A
graph without those nodes is known as underlying graph.

In the derivation process, we consider the set of labels
divided into two disjoint sets: nonterminals, N, and terminals,
T.
Definition 5: [7] A production over N is an ordered pair p =

(A, R), where: A ∈ N is the label of the edge removed from the
existing graph, and R is the graph which will replace the
removed edge.

The process of direct derivation can be described as

follows: the edge e, l(e) = A, will be removed and the
replacing graph R will glue its nodes, beginR with s(e) and endR
with d(e). A derivation represents a chain of valid direct
derivations.

Based on previous assertion we consider a graph grammar a
tuple GG = (N, T, P, Z), where P represents the set of
productions, and Z ∈ N the axiom. In a graph grammar, a
derivation starts with Z and ends with a graph labeled only in
T.

Starting from graph definition, we can give the following
definition of a hypergraph.

Definition 6: A hypergraph represents a generalized graph,

that means a system (HE, V), where HE ∈ V*1) and called
hyperedge. The process of mapping between hyperedges and
nodes is doing by the function a: HE → V*.

For hypergraphs we do not have the notion of directed

hypergraph, but we can introduce an order over V such that,
the nodes of a hyperedge having a certain order. This order
will be useful in parsing process.

The process of labeling does not give any news comparing
with the process described previously for graphs. Each
hyperedge has a label from C, l: HE → C.

For each hyperedge, we will consider a special subset of
pair wise distinct nodes, named external nodes, eH, used in the
derivation process. The type of a hypergraph H represents the
number of external nodes.

Let H = (EH, VH, aH, lH, eH) be a hypergraph, and R a
hypergraph over the same set of labels as H. By H[eR] we
understand the hypergraph obtained from H by replacing
hyperedge e, e∈EH, with the hypergraph R. The replacing
process is made by cutting the hyperedge e from H and adding
the hypergraph R, so that the i-th external node of R is glued
over the i-th attached node of e, with i = 1, type(e). Moreover,
eH[eR] = eH, type(H[eR]) = type(H).

1) For a set V, V* denotes the set of all strings over V, including the empty

string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty
string λ.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

507

We can consider C split into two subsets, terminal and
nonterminals, and the definition of a hypergraph grammar is
quite the same with the one for graph grammar, but respecting
the particularities of hypergraphs.

B. The drawn device

Lets turn back to Lindenmayer systems and consider de
drawn device.

As we saw, small units compose digital images and we need
a device to draw them.

We call this device “turtle”. A turtle has mobility to move
inside of the Euclidean plan. The turtle state is given by the
triple (x, y, α), where (x, y)∈R2 are the plan coordinates and
α∈{0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4} is the direction of
turtle movement.

A simple move of the turtle means advance one unit in the
direction given by α. The simple move can be with or without
drawing depends, the turtle is up or is down.

In the first step, we will draw only black and white digital
images. For this, we will consider background colored in white
and the image colored in black.
 The movements of the turtle, in order to draw a black and
white digital image, can be described by a D0L-system, D =
(V, P0, F), where V = {U, u, +, -} and P0 = {U}. The symbols
of V have the following meaning:
− U, simple move with drawing (we say that the turtle is

down)
− u, simple move without drawing (we say that the turtle is

up)
− +, rotate the drawing direction with angle α,

counterclockwise
− -, rotate the drawing direction with angle α, clockwise.

In addition, the initial state of the turtle can be modified for
each individual case, but most likely it is (0, 0, π/2).

Note that the only change to the original turtle
interpretation by Prusinkiewicz is the interpretation of U:
Instead of drawing lines, we paint black squares.

Example 1: The D0L-system that describes the Sierpinski

triangle is defined by the tuple D = (V, P0, F), where F = {(U,
U-u-u++U+u-U), (u, uu), (+, +), (-, -)}. The initial state of the
turtle is the usual one. A derivation in three steps using these
productions looks as follows:

U =>
U-u-u++U+u-U =>
U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-U-u-u++U+u-U
=>U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-U-u-u++U+u-
U-uuuu-uuuu++U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-
U-u-u++U+u-U+uuuu-U-u-u++U+u-U-uu-uu++U-u-u++U+u-
U+uu-U-u-u++U+u-U

During derivation process the word wk, obtained after k≥1
steps (w0 = U), will be represented inside of a white square

formed by 2k × 2k
 units. When k increases, the image details

increase. However, when k increasing the image will not be
properly represented because it will have huge dimension. The
simple solution is to scale the image at each step, which means
reducing turtle unit dimension. The minimum dimension of the
turtle unit is one pixel.

When k approaches infinity, the image is full detailed, but
in real representation, this cannot be doing, so we have to
consider the finite number of steps until the turtle unit
approaches one pixel.

In the previous example, we start with the word w0. This is
representing by a black square inside of a frame by q × q
pixels. After first derivation step, the turtle unit will be scaled
such as we can draw four units inside of the frame. w1 is
represented as following:

w2 is formed by 16 units. The process is simple. Each black
unit is scaled such as instead of one initial unit we create four
new small units colored by the same pattern. The new image,
after two steps, is looking as following:

The scale factor is ½.
Continuing the derivation process, after k steps, initial

frame is formed by 2k × 2k turtle units.
We say about a point (x, y)∈[0, q]×[0, q] that is in the

image generated if it is inside of a unit square colored in black.
We define the image generated on step k by:

T(wk)={(x, y) | (x, y) is in a black unit of 2k × 2k

 units}

If the sequence T(w0), T(w1),… converges in the standard
Haussdorf metric, the limit

T(D) = limk→∞T(wk)

is the infinite resolution image defined by the D0L-system D
with scaling defined previously.

C. Future considerations about context freeness

As we mentioned, in this paper, all of the hyperedge
replacement grammars are context free with any other
specifications. In the context freeness, we underline two major
results obtained in [3] and [4].

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

508

First, for every hyperedge replacement grammar, HRG = (N,
T, P, S), without rewritings6) and λ-free, exits an equivalent
grammar, HRGNF = (N1, T, P1, S), in Chomsky Normal Form.
That means all productions in P1 are by the form (A, H), where
A∈N1 and |EH| = 1, lab(e)∈T, e∈EH or |EH| = 2, lab(ei)∈N,
ei∈EH, i = 1,2.

Secondly, for every hyperedge replacement grammar in
Chomsky Normal Form, HRGNF = (N1, T, P1, S), exits an
equivalent grammar, GNF = (N2, T, P2, S), in Greibach Normal
Form. That means all productions in P2 are by the form (A, H),
where A∈N2 and labH: EH→T∪N2, |EH|≥1 with exactly one
hyperedge labeled in T.

The hierarchies of nonterminal and production sets are:
N⊆N1⊆N2, P⊆P1⊆P2

We continue with some parallel discussions about graph
grammars freeness and hypergraph grammars freeness.
 In the graph case, the replaced object is an edge and the
replacing object is a graph. In the hypergraph case, the
replaced object is a hyperedge and the replacing object is a
hypergraph.

As is proof in [7] we can consider the Context-Freeness
Lemma, which proofs that under an isomorphism, the
derivation steps in context free string grammars can be
simulate by direct derivations in context free graph grammars.
The same consideration can be find in [8] related to
hypergraphs.

In previous work ([3], [4], [5], [6]) we proved some special
properties for context free hyperedge replacement grammars:
Chomsky Normal Form, Greibach Normal Form, and relation
between this grammar and pushdown automata.

In [7] is proved that properties are not true for graphs
grammar without loosing the generative power.

 In the main part of the next section, we prove that the
generative power is not affected using the structure defined by
a hyperedge replacement grammars

III. GROWTH FUNCTIONS OF SYSTEMS THAT GENERATES
IMAGES

An important question when we deal with the D0L-systems
is the length of their words. The growth function fD:N→N of
the D0L-system D is defined by:

fD(k) = |wk|

and means the length of the word wk.
 By studying growth functions, we determine which types of
biological growth D0L-system is capable of modeling.
 Here we discuss a special matrix representation of
homomorphism introduced [8] to help growth function
calculation.

6) A rewriting is defined in [3].

 Definition 7: The incidence matrix of a homomorphism F is
defined by the following square matrix (the dimension of the
matrix is equal to number of symbols in alphabet):

M(F) = (ma,b)a,b∈V, ma,b = |F(b)|a

The element ma,b represents the number of occurrences of
symbol a in the production where b is the left hand side
member.

In Example 1, we have matrix M defined as following:

 M(F) =

Recall now the Parikh vector, which describes the letter
distribution of a word. Let η be a column vector with all
elements 1 and Π the Parikh vector of the axiom P0. We can
now discuss an important identity regarding the growth
function of D0L-systems:

fD(k) = ηTM(F)kΠT (1)

that calculates the length of the word wk, after k steps, starting
with the axiom.
 Remark: in the previous formula we used an important result
proofed in [7]: M(Fk) = M(F)k, which means that the incidence
matrix after k derivations equals the incidence matrix after one
derivation on power k.
 Now we define a recursive formula for the growth function
starting from the Cayley-Hamilton theorem. This says that
every square matrix over the real or complex field satisfies its
own characteristic equation.
 Therefore, for a matrix of dimension n, we can calculate de
coefficients, ci∈R, i = 1, n, such as the Cayley-Hamilton
formula is:

Mn = c1∗Mn-1 + … + cn-1∗M + cn∗M0, where
M0 = In,

If we consider that M is the incidence matrix, we apply

previous formula to (1)

ηTM(F)nΠT = c1η

TM(F)n-1ΠT + … +
 cn-1η

TM(F)ΠT + cnη
TM(F)0ΠT

that means:

fD(n) = c1fD(n-1) +…+ cn-1fD(1) + cnfD(0), where n=|V|.

We conclude the previous results into next theorem.

3 0 0 0
3 2 0 0
3 0 1 0
3 0 0 1

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

509

 Theorem 1: For the growth function of D0L-systems, D =
(V, P0, F), we can find a recursive formula given by:

fD(n+i) = c1fD(n+i-1) +…+ cn-1fD(i+1) + cnfD(i), where
n=|V|, i≥0.

For Example 1 the previous formula coefficients are c1 = -
7, c2 = 17, c3 = -17, c4 = 6 and the recursive formula is:

fD(i+4) = -7fD(i+3) + 17fD(i+2) - 17fD(i+1) + 6fD(i), i≥0
with fD(3), fD(2), fD(1), fD(0) given values.

 To draw gray-tone images using L-systems we can modify
the turtle state by adding the weight, g. The weight can be an
arbitrary real number, initially 1. Instead of painting always a
black square, the turtle paints a grey square, whose darkness is
giving by the current weight of the turtle. The local grayness
function f: R2→R is describing the darkness of every point of
the plan. Initially the plane is completely white, that is, the
local grayness function is f(x, y) = 0, for all, x, y∈R. The
weight of the turtle is simply adding to the darkness of the part
f’(x, y) = f(x, y) + g. All concepts described for black and
white images remain unchanged.

IV. PUSHDOWN AUTOMATA FOR HYPEREDGE REPLACEMENT
LANGUAGES

In string grammars, we have pushdown automata as
counterpart of context free string grammars.

Inspired by this device we introduce in this paper an
automaton to analyze a hyperedge replacement language. We
proof that for each hyperedge replacement grammar we can
construct a nondeterministic pushdown automaton and reverse
for each pushdown automata we can build a context free
hyperedge replacement grammar. After that, we proof the
equivalence between the language accepted by pushdown
automata and the language generated by hyperedge
replacement grammar.

First, we transform the planar structure of the hypergraph
into a linear one. For this we use an algorithm which scans the
hypergraph. It starts with source hyperedge, and using the list
of attached nodes, continues with adjacent unvisited
hyperedge. Every time when we find an unvisited hyperedge
we add its label into a list of visited labels. The algorithm stops
when all hyperedges were visited.

Let H = (VH, EH, attH, labH, extH) be a hypergraph. We
consider each attached node marked with i, where i=1, |attH|.
We use next algorithm to obtain the linear parsing of its labels,
LISTH.

1. LINEAR(H, LISTH)

2. LISTH←∅

3. for each hyperedge e∈EH do

4. visit[e]←false

5. endfor

6. Q←∅

7. source←first(EH)

8. visit[source]←true

9. add(LISTH, lab(source))

10. for each node x∈attlab(source)
• do

11. ENQUEUE(Q,x)

12. attH←attH-{x}

13. endfor

14. while Q and attH are not empty do

15. if Q is empty

16. source←next_unvisited(EH)

17. visit[source]←true

18. add(LISTH, lab(source))

19. for each node x∈attlab(source)
• do

20. ENQUEUE(Q,x)

21. attH←attH-{x}

22. endfor

23. endif

24. x←head(Q)

25. DEQUEUE(Q)

26. for each hyperedge e∈EH do

27. if not visit[e] and x∈Elab(e)
•

28. add(LISTH, lab(e))

29. for each node y∈attlab(e)
• do

30. if y∈attH
31. ENQUEUE(Q,y)
32. attH←attH-{y}

33. endif

34. endfor

35. endif

36. endfor

37. endwhile

Procedure LINEAR works as follows. In lines 3-4 assign the
value false, in vector visit, to every hyperedge. Q is the queue
where are stored parsed nodes. Initial Q is empty (line 6).
Variable source denote the entrance of the hypergraph. We
can consider the entrance of the hypergraph one of the
hyperedges adjacent with the node marked with 1 (line 7).
Corresponding to this adjust the value of the visit with true
(line 8), add its label to the list, LISTH (line 9), insert all
attached nodes in Q and remove them from attH (lines 10 -13).

The main loop of the algorithm is contained in lines 14 -37.
The loop iterates as long as are nodes in Q and the set of
attached nodes is not empty. The first condition is necessary to
test if all nodes of current hypergraph were visited and the
second condition is used in case of multiple hypergraph
connected components (exits nodes unreachable from current
hyperedges). When Q is empty, it searches for a new
component (line 16). The new source can be one of the
hyperedges, which has attached the first unvisited node marked
with higher index. In lines, 17-23 follows the same steps as it
did in lines 8 - 13. The loop continues with extracting the head
of the Q (line 24). In lines 26-36 takes all hyperedges adjacent
with the node x. If the hyperedges are not yet visited inserts

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

510

them labels into LISTH (line 28) and all them attached nodes,
which are still in attH inserts into Q.

Next, we analyze the running time on the input hypergraph
H. After initialization, no visit element is ever false, and thus
the test in line 27 ensures that each hyperedge is visited only
once. So, the total time to visit all hyperedges is O(|EH|). Every
hyperedge brings with it all its attached nodes, which are in
attH in the same time. Those nodes are enqueued in Q and
removed from attH. The operation of enqueuing and dequeuing
take O(1) time. Because a node is only ones enqueued and
dequeued the total time devoted to queue operations is
O(|attH|). Thus, the total running time of LINEAR is
O(|EH|⋅|attH|) which means square time complexity.

With previous procedure we can transform into a linear
structure every hypergraph even it’s connected or not.

Definition 8: A nondeterministic pushdown automaton for

hyperedge replacement languages, PDAH, is a system (Q, Σ, Γ,
δ, q0, Z0, F), where:

− Q is a finite set of states;
− Σ is an alphabet, called the input alphabet
− Γ is an alphabet, called the stack alphabet
− q0∈Q is the initial state
− Z0∈Γ is the start symbol
− F⊆Q is the set of final states
− δ: Q×(Σ∪{ε})×Γ→℘(Q×Γ*) is the transition

function.

Instantaneous description of a PDAH is a triple (q, w, γ),

where q∈Q, w is a string of input symbols and γ is a string of
stack symbols.

A transition of PDAH from (q, w, Zα) to (p, w’, βα),
denoted by (q, aw, Zα) ├ (p, w, βα), exists if and only if (p,
β)∈δ(q, a, Z), where a may be ε or an input symbol.

We define the language accepted by empty stack of PDAH
to be:

{w|(q0, w, Z0) ├
* (p, ε, ε), p∈Q}

Let now GNF = (N, T, P, S), be a hyperedge replacement
grammar in Greibach normal form. We transform derivations,
which use productions of P, into transitions, which use δ
function from PDAH.

V. GENERATIVE POWER OF HYPEREDGE REPLACEMENT
LANGUAGES

Definition 9: A graph grammar is called m-bounded, m ∈ N,
if the right-hand side of each production (A, R) has at most m
nodes.

Theorem 2: [7] For each m ∈ N there exists a graph with

nodes of connection, G, such that the language generated by G
cannot be generated by an m-bounded graph grammar.

 Because finite graph languages are context-free, the
unbounded theorem says that the number of nodes in right side

of productions cannot be bounded without reducing the
generative power of replacement system. On the other hand is
known that each edge in a graph has exactly two nodes.
Keeping in mind the first assertion, means that each production
has an unbounded number of labeled edge on right side without
reducing the generative power. The immediate conclusion is
we cannot transform a graph context free grammar into a
normal form. This is the first main difference between graph
grammars and string grammars.
 In [3] we gave an example, which show the generative
power of hyperedge replacement grammar. The language L =
{(anbncn), n>=1}. This language cannot be generated by a
string grammar context free.

 Definition 10: A hypergraph grammar is called m-bounded,
m ∈ N, if the right-hand side of each production (A, R) has at
most m labeled hyperedges.

 The previous definition takes care of the fact that each
hyperedge in a hypergraph can have a finite number of nodes.

 Theorem 3: In case of hypergraphs, grammars are bounded.
 Proof: With respect of generative power, each context free
hypergraph grammar uses a production, which increases the
number of nodes. Let H[eR] that one, where e is a hyperedge
and R a hypergraph. The only condition necessary to respect in
the derivation process is that eH[eR] = eH. So, we can consider
that type(e) < type(R). In such a way, the total number of nodes
increases.

 With this theorem we proved that we can introduce the
Chomsky normal form and in relation with this, the Greibach
normal form.
 Next step usually done next with string grammars is to find a
push down automata, which recognized the language generated
by a free context grammar. We gave an algorithm about that in
[5]. The main part of the algorithm is parsing the hyperedges
such that transform the planar structure into linear one. We
assumed there that the solution of algorithm is not
deterministic.
 In this paper we consider the indexing mapping for nodes,
which attach to each node a certain order in set of nodes. Let
us say that we have the edge e with attached nodes vivj…vk.
Using the indexing mapping, we have vi of index less than vj in
previous list of attached nodes.
 In the same way, we consider the indexing mapping for
labels, which attach to each label a certain order in set of
labels.

The algorithm described in [5] will produce one
deterministic linear solution. Therefore, we can generate one
and just one push down automata, which recognizing the
language generated by a hypergraph context free grammar with
conditions: hypergraph be connected and establish one
hyperedge to be the first one. The algorithm is presented
bellow:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

511

1. LinearDeterministic(H, LISTH)

2. LISTH←∅

3. for each hyperedge e∈EH do

4. visit[e]←false

5. endfor

6. Q←∅

7. source←first(EH)

8. visit[source]←true

9. add(LISTH, lab(source))

10. while attlab(source)
• has nodes do

11. x = next node of attlab(source)
•

12. ENQUEUE(Q,x)

13. endwhile

14. while Q is not empty do

15. x←head(Q)

16. DEQUEUE(Q)

17. while EH has labels do

18. e = next label of EH

19. if not visit[e] and x∈Elab(e)
•

20. add(LISTH, lab(e))

21. while attlab(e)
• has nodes

do

22. y = next node of attlab(e)
•

23. if y∈attH
24. ENQUEUE(Q,y)
25. attH←attH-{y}

26. endif

27. endwhile

28. endif

29. endwhile

30. endwhile

The algorithm is a version of that presented in [5] with the
specification of unique solution. This will lead us to the unique
push down automata and after that to the reverse construction:
having a push down automata to create a unique generative
grammar.

VI. CONCLUSION

Digital images can be decomposing in units, and can be
drawn with special devices. The movements of those devices
can be described by D0L-systems. We can find a recursive
formula for growth functions that describes the word generated
during the derivation. We can draw not only black and white
images, but grayscale or colored images. Drawing of color
images is based on weight turtles. We can introduce the forth
member in the tuple that describes the state of the turtle for
grayscale images and two more attributes to describe color
images, corresponding to RGB codification of colors.

Context free hyperedge replacement grammars have a
behavior very much like context-free Chomsky grammars. The
important difference is related to transformation of a planar
structure into a linear one. All the algorithms involved in
transformations are nondeterministic.

In the end of the paper, we gave a possibility to create an
equivalent generative grammar starting from a pushdown
automaton.

REFERENCES
[1] S. Dumitrescu, About Normal Forms for Hyperedge Replacement
Grammars, New Aspects of Computers, Proceedings of the 12th WSEAS
International Conference on Computers, July 23-25, Heraklion, Greece,
2008, ISSN 1790-5109, ISBN 978-960-6766-85-5, pp. 208-211
[2] S. Dumitrescu, Hyperedge Replacement Languages and Pushdown
Automata, Recent Advances in Mathematical and Computational Methods in
Science and Engineering, Proceedings of the 10th WSEAS International
Conference on Mathematical and Computational Methods in Science and
Engineering, nov 7-9, Bucharest, Romania, 2008, ISSN 1790-2769, ISBN
978-960-474-019-2, pp. 487-490
[3] S. Dumitrescu, Aspects of Context Freeness for Hyperedge Replacement
Grammars, Foundations of Computing and Decision Sciences, Vol. 30, No. 2,
pg. 91 – 101, 2005
[4] S. Dumitrescu, Structuri vizuale si Limbaje Formale, Editura Universitatii
Transilvania din Brasov, 2006, ISBN (10) 973-635-857-7; (13) 978-973-635-
857-9
[5] S. Dumitrescu, Several aspects of context freeness for hyperedge
replacement grammars, WSEAS Transactions on Computers, 2008, vol. 7,
Issue 10, ISSN 1109-2750, pp. 1594-1604.
[6] S. Dumitrescu, About Graph and Hypergraph Context Free Grammars,
Recent Researches in Computer Science, Proceedings of the 15th WSEAS
International Conference on Computers, July 15-17, Corfu Island, Greece,
2011, ISSN 1792-4251, ISBN 978-1-61804-019-0, pp. 481-484
[7] S. Dumitrescu, About Digital Images and Lindenmayer Systems,
Mathematical Methods, Computational Techniques, Intelligent Systems,
Proceedings of the 12th WSEAS International Conference on Mathematical,
Computational Techniques, Intelligent Systems, may 3-6, Kantaoui, Sousse,
Tunisia, 2010, ISSN 1790-2769, ISBN 978-960-474-188-5, pp. 48-51
[8] A. Paz and A. Salomaa, Integral sequential word functions and growth
equivalence of Lindenmayer systems, Information and Control, 23:313-343,
1973
[9] A. Salomaa, Formal Language, Academic Press, 1973
[10] J. Dassow, A. Habel, St. Taubenger, Chain-Code Pictures and Collages
Generated by Hyperedge Replacement, Graph Grammars and Their

Applications to Computer Science, Springer-Verlag, 1996.
[11] F. Drewes, Tree Based Picture Generation, Theoretical Computer
Science, No. 246, 2000, pg. 1 – 51
[12] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph
Transformation, World Scientific, 1997
[13] A. Habel, H. Kreowski, Characteristics of Graph Languages Generated by
Edge Replacement, Theoretical Computer Science, No. 51, pg. 81-115, 1987

Silviu Razvan Dumitrescu, Department of Informatics, Faculty of
Mathematics and Informatics, Transilvania University of Brasov, Iuliu Maniu
50, ROMANIA
silviu.dumitrescu@unitbv.ro

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

512

