
  
Abstract—In this paper, we present some studies about relations 

existing between well known Chomsky string grammars and graph 
grammars, in particularly hypergraph grammars. We are discussing 
about deterministic context free Lindenmayer Systems used to 
describe commands to a device that generates black and white digital 
images. Instead of well-known methods of drawing, we will paint 
squares, not lines. After that, we give some important properties of 
growth functions of D0L-systems. In addition, we turn the discussion 
to gray scale or color digital image generation. The second main part 
of the paper is about normal forms of hyperedge replacement 
grammars. In context freeness of these grammars, we can transform 
each of it into an equivalent grammar without λ-productions and 
without rewritings. After that, in a nondeterministic way, we will 
create equivalent grammars in Chomsky Normal Form or Greibach 
Normal Form. Both normal forms are inspired by string grammars. In 
the third part of this paper we illustrate some important differences 
between graph grammars and hypergraph grammars in context of 
freeness. On the other hand, we give a possibility to transform the 
planar structure of a hypergraph into a linear one with concern of 
determinism. This can create a path to transform a pushdown 
automaton into a generative grammar equivalent. 
 
Keywords—Chomsky, Context Freeness, Deterministic, 

Deterministic Context Free Lindenmayer Systems (D0L-systems), 
Digital Pictures, Graph Grammars, Greibach, Growth Functions, 
Hyperedge Replacement Grammars, Nondeterministic, 
Nondeterministic, Normal Form, Turtle.  

I. INTRODUCTION 

HE concepts and techniques of picture processing have 
been arisen from many different disciplines, among them 

mathematics, computer science [4], engineering or biology. L-
systems are suitable tools for drawing images of real life 
structures. This is due to their ability to model biological 
growth. Traditionally, the strings of symbols generated by L-
systems are interpreted as images either using vector 
interpretation, or, so-called, turtle geometry interpretation. In 
this paper, we consider the second approach, where the 
symbols are translated into commands to a ‘turtle’, which is a 
simple device moving on the plane and used in drawing 
pictures.  
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On the other hand, in many fields of computer science, 
diagrams rather than strings represent the information. That is 
why a study in domain of graphs and formalizations of graphs 
could be very interesting. A hypergraph represents a 
generalized graph and consists by a number of hyperedges [1]. 
A hyperedge is an atomic item labeled with a label in a 
nonempty set, called alphabet, and a fixed number of tentacles. 
On each tentacle is attached a node. Nodes are involved in 
hyperedge replacement. With labeled hyperedges, we can 
define productions. Productions consist by a label in left hand 
side and a replacing structure in right hand side. If a labeled 
hyperedge, with the left hand side in the productions set, is 
replaced by the right hand side of the same production this is 
called a direct derivation. Therefore, we can define a language, 
which represents the set of structures derivable from the start 
structure. 

Graphical languages are playing an important role in the 
definition of images or visual structures. Parts of these 
languages are based on hypergraph structures. Roughly 
speaking a hypergraph generalizes the notion of graph, and 
consists by a number of atomic items called hyperedges. Thus, 
a hyperedge generalize the notion of edge. An edge consists of 
two nodes (called source and destination, if oriented), but the 
hyperedge consists by a finite number of nodes. In the latter, 
some nodes have a special role in the derivation process.  

In area of studying complex structures which describing 
images it is interesting to develop techniques and tools that 
allow graphical language designers to define and implement 
visual languages analogously to what already happens for 
string languages. The main problem of two-dimensional 
languages is the parsing process. Hypergraphs and hyperedges 
are complex objects and we have to provide new techniques of 
parsing, which involving not just deterministic chaining, given 
by concatenation. 

A systematic development of graph grammars and graph 
language theory requires the notion of context-free graph 
grammars and languages. It is known that exist mechanisms for 
deriving graphs from graphs by applying productions. 
Hyperedge replacement works locally without any effect on the 
context of the hyperedge replaced. This result, formulated in 
[1], provides evidence that hyperedge systems represent a 
graph grammar version of context-freeness. 

Some hyperedge grammars have only one set of labels [2]. 
In that case, the set of nonterminals is empty and the terminal 
structures are not labeled.  In some of this grammars we can 
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consider derivations maximum parallel such as are in 
Lindenmayer systems. The languages generated by such 
grammars include visual structures like fractals. 

In the first part of introduction section, we present the main 
concepts used in this paper: context free Lindenmayer systems, 
a special case of them called deterministic systems (D0L-
systems), and digital pictures, which are formed by units. As 
we will see, a unit is a square defined by position, length and 
color. 

We introduce the main concepts related to hyperedges, 
graphs and hypergraphs.  

After that, in introduction, we consider the turtle device, 
which works as a drawn device. The commands for turtle are 
described by a D0L-system. Considering Sierpinski triangle, 
we give an example of its generation. The main difference 
between this method and the others is that instead of drawing 
lines we are filling units. The problem with turtle, in this case, 
is that we have to scale the dimension of the unit in order to 
draw the image, with more details, in the same frameset.     

In the first main section of this paper, we will study some 
important properties of growth functions defined for those 
D0L-systems that are describing turtle movements. We discuss 
about a recursive formula based on the Cayley-Hamilton 
theorem.  

After that, we extend the discussion at gray-scale or color 
images generation. This is doing by introducing new attributes 
in the tuple that defines the turtle state.  

In the next part of the paper, we will consider the alphabet of 
labels divided into two disjoint sets: the alphabet of terminals, 
which labels only structures as right hand side of some 
productions, and the alphabet of nonterminals, which labels 
structures as both sides of productions, same as in string 
grammars. 

In this paper, all of the grammars considered are context 
free. Therefore, it does not matter how we choose the starting 
hyperedge in the replacement and it is not relevant how many 
times we repeat the replacement, but it is important to have, in 
each step of the derivation, a production where the label of the 
replaced hyperedge exists on its left side. 

We continue the main section with considering grammars 
without λ-productions and without rewritings.  As it has shown 
in [8] this could be obtaining by starting from a regular 
grammar.  The algorithm is nondeterministic, that means it 
does not matter how we will split the left side of the production 
because the choice does not influence the result. 

In the last sections of the paper, we will make a survey about 
generative power of hyperedge replacement grammars and 
about some essential properties related to context freeness. 
After that, our discussion is about some particular hyperedge 
grammars called graph grammars. In the end of the paper, we 
turn our discussions about close relations existing with context 
free string grammars. 

II. PROBLEM FORMULATION 

A. Definitions and notations 

We start this section with basic definitions involved in this 
paper. 

 
Definition 1: [6] An 0L-system (context free Lindenmayer 

system) represents an ordered tuple (V, P0, F), where V is the 
finite, nonempty set of symbols, usually called alphabet, P0 is a 
nonempty word over V, called initial word or axiom, and F 
represents a set of ordered pairs called productions. 

 
F = {(a, P) | a∈V, P∈V* 1)} 
 

We usually denote a production by a→P. 
The main three differences between L-systems and well-

known string grammars are:  
− there is a unique alphabet (without separation between 

terminal and nonterminal symbols)  
− for each symbol, a∈V, exists at least a production in F  
− a step in the derivation chain represents  replacement of all 

symbols of current word by productions in F. 
The prefix 0, in 0L-systems, denotes the property of context 

freeness. Thus, the replacement of a symbol does not care 
about the context where the symbol exists inside of the word. 

In this paper, we consider a special case of 0L-systems, 
called D0L-systems, deterministic systems, which mean that 
for each symbol, we have exactly one production in F. 

 
Definition 2: A digital image ∑ is a finite rectangular array 

whose elements are called units. Each unit, U = (x, y, l), of ∑ is 
a square defined by a pair of Cartesian coordinates (x, y)∈R2 
(down-left corner) and a length l∈R, which is constant. 

 
A unit, U, in a digital image ∑, has two types of neighbors: 

− its four horizontal and vertical neighbors: Ul = (xl, yl, l), Ur 

= (xr, yr, l), Uu = (xu, yu, l), Ud = (xd, yd, l) such that |x-
xi|+|y-yi| = 1, i∈{l, r, u, d} 

− its four diagonal neighbors: Uul = (xul, yul, l), Uur = (xur, yur, 
l), Udl = (xdl, ydl, l), Udr = (xdr, ydr, l) such that |x-xi| = |y-yi| 
= 1, i∈{ul, ur, dl, dr} 

We shall refer to the neighbors of first type as the 4-
neighbors of U and the neighbors of both types, collectively, as 
the 8-neighbors of U. The former neighbors are said to be 4-
adjacent to U, and the latter, 8-adjacent. Note that if U is on 
the border of ∑, some of its neighbors may not exist.  

We continue with some basic definitions involved in the 
second part of the main section of this paper. 

 
Definition 1: [4] A hypergraph, H, is a tuple (VH, EH, attH, 

labH, extH), where:  
− VH is the finite set of nodes  

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 5, 2011

506



− EH is the finite set of hyperedges 
− attH: EH → VH

* 1) is the application of attaching, which 
assigns a sequence of pair wise distinct nodes to every 
hyperedge 

− labH: EH → C is the application of labeling, which assigns 
a label to every hyperedge from arbitrary but fixed and not 
empty set C, and extH∈VH

* is a sequence of pair wise 
distinct external nodes.  

 
Definition 2: [4] The type of a hyperedge, e∈E, is the 

application type: C → N with type(lab(e)) = att(e) 2). 
 

For a hypergraph, H, the type of H, type(H), is the number 
of external nodes, type(H)=|extH|. 

Let H = (VH, EH, attH, labH, extH) be a hypergraph and R a 
hypergraph over the same set of labels as H. By H[eR] we 
understand the hypergraph obtained from H by replacing 
hyperedge e, e∈EH, with the hypergraph R. The replacing 
process is made by cutting the hyperedge e from H and adding 
the hypergraph R so that the i-th external node of R is glued 
over the i-th attached node of e with i = 1,type(e). Moreover, 
extH[eR] = extH, type(H[eR]) = type(H). 

 
Definition 3: [4] A hyperedge replacement grammar, HRG, 

is a tuple (N, T, P, S), where: 
− N is the set of nonterminal labels 
− T is the set of terminal labels, N∩T=∅ 
− P is the set of productions, P = {(A, R)A∈N, R is a 

hypergraph labeled in N∪T 3), with type(A●) 4)= type(R)} 
− S∈N is the label of the starting symbol. 

 
A direct derivation in HRG, using productions from P, H 

⇒ H’, takes place if and only if exists e∈EH such as (labH(e), 
R)∈P and H’ = H[eR]. 

The language generated by the hyperedge replacement 
grammar HRG is L(HRG) = {H| ∃ S●⇒P

*H 5), labH(e)∈T ∀ 
e∈EH}. 

 
Definition 4: A graph is a system (E, V), where E ⊆ V×V is 

called the set of edges, and V is called the set of nodes. 
 
A directed graph introduces two functions s, d: E → V 

which attaching a source and a destination to each edge. In this 
case, the edge (1, 2) is different by the edge (2, 1). In the case 
of general graphs this does not happened.   

                                                                                                      
1)  For a set V, V* denotes the set of all strings over V, including the empty 

string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty 
string λ.  

1)  For a set V, V* denotes the set of all strings over V, including the empty 
string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty 
string λ.  

2) For w∈V*, |w| denotes the length of w. 
3) A λ-production is defined in [3]. 
4) A● represents a hypergraph with one hyperedge labeled with A.  
5) )⇒P

* represents a derivation in k steps, k≥0, with productions from P 
(reflexive and transitive closure) 

In addition to these functions, we consider the map of 
labeling, l: E → C, which attaching a label from C to each edge 
of E. 

Because we use graphs and edges in the process of 
derivation, we introduce two special nodes begin, end ∈ V. A 
graph without those nodes is known as underlying graph. 

In the derivation process, we consider the set of labels 
divided into two disjoint sets: nonterminals, N, and terminals, 
T.  
Definition 5: [7] A production over N is an ordered pair p = 

(A, R), where: A ∈ N is the label of the edge removed from the 
existing graph, and R is the graph which will replace the 
removed edge. 

 
The process of direct derivation can be described as 

follows:  the edge e, l(e) = A, will be removed and the 
replacing graph R will glue its nodes, beginR with s(e) and endR 
with d(e). A derivation represents a chain of valid direct 
derivations. 

Based on previous assertion we consider a graph grammar a 
tuple GG = (N, T, P, Z), where P represents the set of 
productions, and Z ∈ N the axiom. In a graph grammar, a 
derivation starts with Z and ends with a graph labeled only in 
T. 

Starting from graph definition, we can give the following 
definition of a hypergraph. 

 
Definition 6: A hypergraph represents a generalized graph, 

that means a system (HE, V), where HE ∈ V*1) and called 
hyperedge. The process of mapping between hyperedges and 
nodes is doing by the function a: HE → V*. 

 
For hypergraphs we do not have the notion of directed 

hypergraph, but we can introduce an order over V such that, 
the nodes of a hyperedge having a certain order. This order 
will be useful in parsing process. 

The process of labeling does not give any news comparing 
with the process described previously for graphs. Each 
hyperedge has a label from C, l: HE  → C. 

For each hyperedge, we will consider a special subset of 
pair wise distinct nodes, named external nodes, eH, used in the 
derivation process. The type of a hypergraph H represents the 
number of external nodes.  

Let H = (EH, VH, aH, lH, eH) be a hypergraph, and R a 
hypergraph over the same set of labels as H. By H[eR] we 
understand the hypergraph obtained from H by replacing 
hyperedge e, e∈EH, with the hypergraph R. The replacing 
process is made by cutting the hyperedge e from H and adding 
the hypergraph R, so that the i-th external node of R is glued 
over the i-th attached node of e, with i = 1, type(e). Moreover, 
eH[eR] = eH, type(H[eR]) = type(H). 

 
1)  For a set V, V* denotes the set of all strings over V, including the empty 

string λ; V+ = V*-{λ} denotes the set of all strings over A except the empty 
string λ.  
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We can consider C split into two subsets, terminal and 
nonterminals, and the definition of a hypergraph grammar is 
quite the same with the one for graph grammar, but respecting 
the particularities of hypergraphs.   

  

B. The drawn device 

Lets turn back to Lindenmayer systems and consider de 
drawn device. 

As we saw, small units compose digital images and we need 
a device to draw them. 

We call this device “turtle”. A turtle has mobility to move 
inside of the Euclidean plan. The turtle state is given by the 
triple (x, y, α), where (x, y)∈R2 are the plan coordinates and 
α∈{0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4} is the direction of 
turtle movement.  

A simple move of the turtle means advance one unit in the 
direction given by α. The simple move can be with or without 
drawing depends, the turtle is up or is down.  

In the first step, we will draw only black and white digital 
images. For this, we will consider background colored in white 
and the image colored in black.     
 The movements of the turtle, in order to draw a black and 
white digital image, can be described by a D0L-system, D = 
(V, P0, F), where V = {U, u, +, -} and P0 = {U}. The symbols 
of V have the following meaning:   
− U, simple move with drawing (we say that the turtle is 

down) 
− u, simple move without drawing (we say that the turtle is 

up) 
− +, rotate the drawing direction with angle α, 

counterclockwise 
− -, rotate the drawing direction with angle α, clockwise. 

In addition, the initial state of the turtle can be modified for 
each individual case, but most likely it is (0, 0, π/2).   

Note that the only change to the original turtle 
interpretation by Prusinkiewicz is the interpretation of U: 
Instead of drawing lines, we paint black squares. 

 
Example 1: The D0L-system that describes the Sierpinski 

triangle is defined by the tuple D = (V, P0, F), where F = {(U, 
U-u-u++U+u-U), (u, uu), (+, +), (-, -)}. The initial state of the 
turtle is the usual one. A derivation in three steps using these 
productions looks as follows: 
 
U =>  
U-u-u++U+u-U =>  
U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-U-u-u++U+u-U 
=>U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-U-u-u++U+u-
U-uuuu-uuuu++U-u-u++U+u-U-uu-uu++U-u-u++U+u-U+uu-
U-u-u++U+u-U+uuuu-U-u-u++U+u-U-uu-uu++U-u-u++U+u-
U+uu-U-u-u++U+u-U 
 

During derivation process the word wk, obtained after k≥1 
steps (w0 = U), will be represented inside of a white square 

formed by 2k × 2k
 units. When k increases, the image details 

increase. However, when k increasing the image will not be 
properly represented because it will have huge dimension. The 
simple solution is to scale the image at each step, which means 
reducing turtle unit dimension. The minimum dimension of the 
turtle unit is one pixel.  

When k approaches infinity, the image is full detailed, but 
in real representation, this cannot be doing, so we have to 
consider the finite number of steps until the turtle unit 
approaches one pixel.        

In the previous example, we start with the word w0. This is 
representing by a black square inside of a frame by q × q 
pixels. After first derivation step, the turtle unit will be scaled 
such as we can draw four units inside of the frame. w1 is 
represented as following: 

 
  

  

      
w2 is formed by 16 units. The process is simple. Each black 
unit is scaled such as instead of one initial unit we create four 
new small units colored by the same pattern. The new image, 
after two steps, is looking as following: 
 

    
    
    
 

 
The scale factor is ½.  
Continuing the derivation process, after k steps, initial 

frame is formed by 2k × 2k turtle units.   
We say about a point (x, y)∈[0, q]×[0, q] that is in the 

image generated if it is inside of a unit square colored in black. 
We define the image generated on step k by:  
 
T(wk)={(x, y) | (x, y) is in a black unit of 2k × 2k

 units}   
 

If the sequence T(w0), T(w1),… converges in the standard 
Haussdorf metric, the limit  

 
T(D) = limk→∞T(wk) 

 
is the infinite resolution image defined by the D0L-system D 
with scaling defined previously. 

C. Future considerations about context freeness 

As we mentioned, in this paper, all of the hyperedge 
replacement grammars are context free with any other 
specifications. In the context freeness, we underline two major 
results obtained in [3] and [4]. 
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First, for every hyperedge replacement grammar, HRG = (N, 
T, P, S), without rewritings6) and λ-free, exits an equivalent 
grammar, HRGNF = (N1, T, P1, S), in Chomsky Normal Form. 
That means all productions in P1 are by the form (A, H), where 
A∈N1 and |EH| = 1, lab(e)∈T, e∈EH or |EH| = 2, lab(ei)∈N, 
ei∈EH, i = 1,2. 

Secondly, for every hyperedge replacement grammar in 
Chomsky Normal Form, HRGNF = (N1, T, P1, S), exits an 
equivalent grammar, GNF = (N2, T, P2, S), in Greibach Normal 
Form. That means all productions in P2 are by the form (A, H), 
where A∈N2 and labH: EH→T∪N2, |EH|≥1 with exactly one 
hyperedge labeled in T.  

The hierarchies of nonterminal and production sets are: 
N⊆N1⊆N2, P⊆P1⊆P2  

We continue with some parallel discussions about graph 
grammars freeness and hypergraph grammars freeness. 
 In the graph case, the replaced object is an edge and the 
replacing object is a graph. In the hypergraph case, the 
replaced object is a hyperedge and the replacing object is a 
hypergraph. 

As is proof in [7] we can consider the Context-Freeness 
Lemma, which proofs that under an isomorphism, the 
derivation steps in context free string grammars can be 
simulate by direct derivations in context free graph grammars. 
The same consideration can be find in [8] related to 
hypergraphs. 

In previous work ([3], [4], [5], [6]) we proved some special 
properties for context free hyperedge replacement grammars: 
Chomsky Normal Form, Greibach Normal Form, and relation 
between this grammar and pushdown automata. 

In [7] is proved that properties are not true for graphs 
grammar without loosing the generative power. 

 In the main part of the next section, we prove that the 
generative power is not affected using the structure defined by 
a hyperedge replacement grammars 

III. GROWTH FUNCTIONS OF SYSTEMS THAT GENERATES 
IMAGES 

An important question when we deal with the D0L-systems 
is the length of their words. The growth function fD:N→N of 
the D0L-system D is defined by: 

 
fD(k) = |wk| 

 
and means the length of the word wk. 
 By studying growth functions, we determine which types of 
biological growth D0L-system is capable of modeling.  
 Here we discuss a special matrix representation of 
homomorphism introduced [8] to help growth function 
calculation.  
 

 
6) A rewriting is defined in [3]. 

 Definition 7: The incidence matrix of a homomorphism F is 
defined by the following square matrix (the dimension of the 
matrix is equal to number of symbols in alphabet): 
 

M(F) = (ma,b)a,b∈V, ma,b = |F(b)|a 
  

The element ma,b represents the number of occurrences of 
symbol a in the production where b is the left hand side 
member.  

In Example 1, we have matrix M defined as following: 
 
  

  M(F) = 
 

 

Recall now the Parikh vector, which describes the letter 
distribution of a word. Let η be a column vector with all 
elements 1 and Π the Parikh vector of the axiom P0. We can 
now discuss an important identity regarding the growth 
function of D0L-systems:      

 
fD(k) = ηTM(F)kΠT (1) 

 
that calculates the length of the word wk, after k steps, starting 
with the axiom. 
 Remark: in the previous formula we used an important result 
proofed in [7]: M(Fk) = M(F)k, which means that the incidence 
matrix after k derivations equals the incidence matrix after one 
derivation on power k. 
 Now we define a recursive formula for the growth function 
starting from the Cayley-Hamilton theorem. This says that 
every square matrix over the real or complex field satisfies its 
own characteristic equation.  
 Therefore, for a matrix of dimension n, we can calculate de 
coefficients, ci∈R, i = 1, n, such as the Cayley-Hamilton 
formula is: 
 

Mn = c1∗Mn-1 + … + cn-1∗M + cn∗M0, where 
M0 = In,  

 
If we consider that M is the incidence matrix, we apply 

previous formula to (1)  
 
ηTM(F)nΠT = c1η

TM(F)n-1ΠT + … + 
      cn-1η

TM(F)ΠT + cnη
TM(F)0ΠT 

 
that means: 
 
fD(n) = c1fD(n-1) +…+ cn-1fD(1) + cnfD(0), where n=|V|. 
 

We conclude the previous results into next theorem. 
 

3 0 0 0 
3 2 0 0 
3 0 1 0 
3 0 0 1 
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  Theorem 1: For the growth function of D0L-systems, D = 
(V, P0, F), we can find a recursive formula given by: 
 
fD(n+i) = c1fD(n+i-1) +…+ cn-1fD(i+1) + cnfD(i), where 
n=|V|, i≥0. 
 

For Example 1 the previous formula coefficients are c1 =    -
7, c2 = 17, c3 = -17, c4 = 6 and the recursive formula is: 
 
fD(i+4) = -7fD(i+3) + 17fD(i+2) - 17fD(i+1) + 6fD(i), i≥0 
with fD(3), fD(2), fD(1), fD(0) given values.   
 

 To draw gray-tone images using L-systems we can modify 
the turtle state by adding the weight, g. The weight can be an 
arbitrary real number, initially 1. Instead of painting always a 
black square, the turtle paints a grey square, whose darkness is 
giving by the current weight of the turtle. The local grayness 
function f: R2→R is describing the darkness of every point of 
the plan. Initially the plane is completely white, that is, the 
local grayness function is f(x, y) = 0, for all, x, y∈R. The 
weight of the turtle is simply adding to the darkness of the part 
f’(x, y) = f(x, y) + g. All concepts described for black and 
white images remain unchanged.  

IV. PUSHDOWN AUTOMATA FOR HYPEREDGE REPLACEMENT 
LANGUAGES 

In string grammars, we have pushdown automata as 
counterpart of context free string grammars.  

Inspired by this device we introduce in this paper an 
automaton to analyze a hyperedge replacement language. We 
proof that for each hyperedge replacement grammar we can 
construct a nondeterministic pushdown automaton and reverse 
for each pushdown automata we can build a context free 
hyperedge replacement grammar. After that, we proof the 
equivalence between the language accepted by pushdown 
automata and the language generated by hyperedge 
replacement grammar. 

First, we transform the planar structure of the hypergraph 
into a linear one. For this we use an algorithm which scans the 
hypergraph. It starts with source hyperedge, and using the list 
of attached nodes, continues with adjacent unvisited 
hyperedge. Every time when we find an unvisited hyperedge 
we add its label into a list of visited labels. The algorithm stops 
when all hyperedges were visited. 

Let H = (VH, EH, attH, labH, extH) be a hypergraph. We 
consider each attached node marked with i, where i=1, |attH|. 
We use next algorithm to obtain the linear parsing of its labels, 
LISTH. 

 
1. LINEAR(H, LISTH) 

2.  LISTH←∅ 

3.  for each hyperedge e∈EH do  

4.   visit[e]←false 

5.  endfor 

6.  Q←∅ 

7.  source←first(EH) 

8.  visit[source]←true 

9.  add(LISTH, lab(source)) 

10.  for each node x∈attlab(source)
•  do 

11.   ENQUEUE(Q,x) 

12.   attH←attH-{x} 

13.  endfor 

14.  while Q and attH are not empty do 

15.   if Q is empty 

16.    source←next_unvisited(EH) 

17.    visit[source]←true 

18.    add(LISTH, lab(source)) 

19.    for each node x∈attlab(source)
• do 

20.     ENQUEUE(Q,x) 

21.     attH←attH-{x} 

22.    endfor 

23.   endif 

24.   x←head(Q) 

25.   DEQUEUE(Q) 

26.   for each hyperedge e∈EH do 

27.    if not visit[e] and x∈Elab(e)
• 

28.     add(LISTH, lab(e)) 

29.     for each node y∈attlab(e)
• do 

30.      if y∈attH 
31.       ENQUEUE(Q,y) 
32.       attH←attH-{y} 

33.      endif 

34.     endfor 

35.    endif 

36.   endfor 

37.  endwhile 

 

Procedure LINEAR works as follows. In lines 3-4 assign the 
value false, in vector visit, to every hyperedge. Q is the queue 
where are stored parsed nodes. Initial Q is empty (line 6). 
Variable source denote the entrance of the hypergraph. We 
can consider the entrance of the hypergraph one of the 
hyperedges adjacent with the node marked with 1 (line 7). 
Corresponding to this adjust the value of the visit with true 
(line 8), add its label to the list, LISTH (line 9), insert all 
attached nodes in Q and remove them from attH (lines 10 -13).   

The main loop of the algorithm is contained in lines 14 -37. 
The loop iterates as long as are nodes in Q and the set of 
attached nodes is not empty. The first condition is necessary to 
test if all nodes of current hypergraph were visited and the 
second condition is used in case of multiple hypergraph 
connected components (exits nodes unreachable from current 
hyperedges).  When Q is empty, it searches for a new 
component (line 16). The new source can be one of the 
hyperedges, which has attached the first unvisited node marked 
with higher index. In lines, 17-23 follows the same steps as it 
did in lines 8 - 13.  The loop continues with extracting the head 
of the Q (line 24). In lines 26-36 takes all hyperedges adjacent 
with the node x. If the hyperedges are not yet visited inserts 
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them labels into LISTH (line 28) and all them attached nodes, 
which are still in attH inserts into Q. 

Next, we analyze the running time on the input hypergraph 
H. After initialization, no visit element is ever false, and thus 
the test in line 27 ensures that each hyperedge is visited only 
once. So, the total time to visit all hyperedges is O(|EH|).  Every 
hyperedge brings with it all its attached nodes, which are in 
attH in the same time. Those nodes are enqueued in Q and 
removed from attH.  The operation of enqueuing and dequeuing 
take O(1) time. Because a node is only ones enqueued and 
dequeued the total time devoted to queue operations is 
O(|attH|). Thus, the total running time of LINEAR is 
O(|EH|⋅|attH|) which means square time complexity. 

With previous procedure we can transform into a linear 
structure every hypergraph even it’s connected or not. 

 
Definition 8: A nondeterministic pushdown automaton for 

hyperedge replacement languages, PDAH, is a system (Q, Σ, Γ, 
δ, q0, Z0, F), where: 

− Q is a finite set of states; 
− Σ is an alphabet, called the input alphabet 
− Γ is an alphabet, called the stack alphabet 
− q0∈Q is the initial state 
− Z0∈Γ is the start symbol 
− F⊆Q is the set of final states 
− δ: Q×(Σ∪{ε})×Γ→℘(Q×Γ*) is the transition 

function. 
 
Instantaneous description of a PDAH is a triple (q, w, γ), 

where q∈Q, w is a string of input symbols and γ is a string of 
stack symbols.  

A transition of PDAH from (q, w, Zα) to (p, w’, βα), 
denoted by (q, aw, Zα) ├ (p, w, βα), exists if and only if (p, 
β)∈δ(q, a, Z), where a may be ε or an input symbol. 

We define the language accepted by empty stack of PDAH 
to be: 

{w|(q0, w, Z0) ├
* (p, ε, ε), p∈Q} 

Let now GNF = (N, T, P, S), be a hyperedge replacement 
grammar in Greibach normal form. We transform derivations, 
which use productions of P, into transitions, which use δ 
function from PDAH. 

V. GENERATIVE POWER OF HYPEREDGE REPLACEMENT 
LANGUAGES 

Definition 9: A graph grammar is called m-bounded, m ∈ N, 
if the right-hand side of each production (A, R) has at most m 
nodes. 

 
Theorem 2: [7] For each m ∈ N there exists a graph with 

nodes of connection, G, such that the language generated by G 
cannot be generated by an m-bounded graph grammar. 

 
 Because finite graph languages are context-free, the 
unbounded theorem says that the number of nodes in right side 

of productions cannot be bounded without reducing the 
generative power of replacement system. On the other hand is 
known that each edge in a graph has exactly two nodes. 
Keeping in mind the first assertion, means that each production 
has an unbounded number of labeled edge on right side without 
reducing the generative power. The immediate conclusion is 
we cannot transform a graph context free grammar into a 
normal form. This is the first main difference between graph 
grammars and string grammars. 
 In [3] we gave an example, which show the generative 
power of hyperedge replacement grammar. The language L = 
{(anbncn), n>=1}. This language cannot be generated by a 
string grammar context free. 
 
 Definition 10: A hypergraph grammar is called m-bounded, 
m ∈ N, if the right-hand side of each production (A, R) has at 
most m labeled hyperedges. 
 
 The previous definition takes care of the fact that each 
hyperedge in a hypergraph can have a finite number of nodes. 
 
 Theorem 3:  In case of hypergraphs, grammars are bounded. 
 Proof: With respect of generative power, each context free 
hypergraph grammar uses a production, which increases the 
number of nodes. Let H[eR] that one, where e is a hyperedge 
and R a hypergraph. The only condition necessary to respect in 
the derivation process is that eH[eR] = eH. So, we can consider 
that type(e) < type(R). In such a way, the total number of nodes 
increases. 
 
 With this theorem we proved that we can introduce the 
Chomsky normal form and in relation with this, the Greibach 
normal form. 
 Next step usually done next with string grammars is to find a 
push down automata, which recognized the language generated 
by a free context grammar. We gave an algorithm about that in 
[5]. The main part of the algorithm is parsing the hyperedges 
such that transform the planar structure into linear one. We 
assumed there that the solution of algorithm is not 
deterministic. 
 In this paper we consider the indexing mapping for nodes, 
which attach to each node a certain order in set of nodes. Let 
us say that we have the edge e with attached nodes vivj…vk. 
Using the indexing mapping, we have vi of index less than vj in 
previous list of attached nodes. 
 In the same way, we consider the indexing mapping for 
labels, which attach to each label a certain order in set of 
labels. 

The algorithm described in [5] will produce one 
deterministic linear solution. Therefore, we can generate one 
and just one push down automata, which recognizing the 
language generated by a hypergraph context free grammar with 
conditions: hypergraph be connected and establish one 
hyperedge to be the first one. The algorithm is presented 
bellow:  
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1. LinearDeterministic(H, LISTH) 

2.  LISTH←∅ 

3.  for each hyperedge e∈EH do  

4.   visit[e]←false 

5.  endfor 

6.  Q←∅ 

7.  source←first(EH) 

8.  visit[source]←true 

9.  add(LISTH, lab(source)) 

10.  while attlab(source)
• has nodes do 

11.   x = next node of attlab(source)
• 

12.   ENQUEUE(Q,x) 

13.  endwhile 

14.  while Q is not empty do 

15.   x←head(Q) 

16.   DEQUEUE(Q) 

17.   while EH has labels do 

18.    e = next label of EH 

19.    if not visit[e] and x∈Elab(e)
• 

20.     add(LISTH, lab(e)) 

21.     while attlab(e)
• has nodes

 
do 

22.      y = next node of attlab(e)
• 

23.      if y∈attH 
24.       ENQUEUE(Q,y) 
25.       attH←attH-{y} 

26.      endif 

27.     endwhile 

28.    endif 

29.   endwhile 

30.  endwhile 

 

The algorithm is a version of that presented in [5] with the 
specification of unique solution. This will lead us to the unique 
push down automata and after that to the reverse construction: 
having a push down automata to create a unique generative 
grammar. 
  

VI. CONCLUSION 

Digital images can be decomposing in units, and can be 
drawn with special devices. The movements of those devices 
can be described by D0L-systems. We can find a recursive 
formula for growth functions that describes the word generated 
during the derivation. We can draw not only black and white 
images, but grayscale or colored images. Drawing of color 
images is based on weight turtles. We can introduce the forth 
member in the tuple that describes the state of the turtle for 
grayscale images and two more attributes to describe color 
images, corresponding to RGB codification of colors.   

Context free hyperedge replacement grammars have a 
behavior very much like context-free Chomsky grammars. The 
important difference is related to transformation of a planar 
structure into a linear one. All the algorithms involved in 
transformations are nondeterministic. 

In the end of the paper, we gave a possibility to create an 
equivalent generative grammar starting from a pushdown 
automaton. 
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