
 

 

  

Abstract— Using the rules of music theory, a program was 

written which automatically creates original compositions. These 

compositions were parameterized by user input concerning 

preferences on genre, tempo, and tonality. Based on these 

preferences, initial compositions were generated, and the “best” 

composition was presented to the user. Following the rules of music 

theory guarantees that the program produces harmonious 

compositions, but certain aspects of musical composition cannot be 

defined by music theory.  It is in these aspects of musical 

composition where the human mind uses creativity. Using the 

population of compositions initially generated for the user, the 

program then used a genetic algorithm to evolve compositions that 

increasingly match the user’s preferences, allowing the program to 

make decisions that cannot be made using music theory alone. The 

resulting “best” composition of the evolved population was then 

presented to the user for evaluation. To test the effectiveness of this 

approach, each composition, both initial and final was ranked by 

subjects on a scale from 1 to 10. Subjects expressed a significant 

preference for the evolved compositions over initial compositions. 

 

Keywords— Artificial creativity, artificial intelligence, genetic 
algorithms, machine learning, music  

I. INTRODUCTION 

HIS research describes a program using rules of music 

theory to create original compositions and then using a 

genetic algorithm to utilize the preferences of listeners and 

generate qualitatively better compositions. Following the rules 

of music theory guarantees harmonious compositions, but 

certain aspects of musical composition cannot be defined by 

music theory.  It is in these aspects of musical composition 

where the human mind uses creativity. To test the effectiveness 

of the approach, subjects were interviewed about certain 

musical preferences, and these preferences were used as a 

basis for the fitness evaluation function of the genetic 

algorithm. The results of the research were evaluated both 

quantitatively, based on the program’s own fitness evaluation 

of the compositions, and qualitatively, based on subject ratings 

of compositions. In this paper, we first discuss current research 

in automated music composition, then the basis for genetic 
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algorithms, and finally basics of music theory.  We then 

describe the operation of the algorithm, experimental design 

and results, and conclusions and future directions based on 

those results. 

A. Current Research in the Literature 

The study of artificial creativity in the domain of music has 

focused on both compositional and improvisational music.  

Several projects available on the web show the innovation of 

such studies. Work in the domain of compositional music has 

been done by David Cope with his Experiments in Musical 

Intelligence [1], [2], a computer system that deconstructs 

existing music into separate parts and recombines those parts 

to from new musical works.   Work in this domain has also 

been done by the developers of Wolfram Tones [3], a software 

system that takes an arbitrary program from the 

“computational universe” and uses that program's output to 

compose music.  Work in the domain of improvisational 

musical creativity has also been done at Georgia Tech [4] 

where researchers have developed a robot that can play 

improvisational jazz on a marimba.   

Beyond the public projects, more focused research on 

musical composition can be found in the literature. Klinger 

and Rudolph [5] have used an evolutionary approach to 

simulate creativity in generating musical melody lines. They 

then evaluated the melodies in two automated methods: an 

artificial neural network, and a decision tree. These 

evaluations were compared to human (interactive) evaluations 

of the same melodies. They found that the decision tree 

produced by the C4.5 data mining algorithm more closely 

agreed with human evaluators than did the artificial neural 

network. The significance is that if the evaluation can be 

automated, the bottleneck of human interaction can be reduced 

or eliminated. Our research also seeks to eliminate the 

bottleneck of human interaction, though in our work it is 

evaluation of an entire composition and not just the melody 

lines. 

Alfonseca, Cebrian and Ortega [6] used the normalized 

compression distance as a fitness function to evaluate 

compositions generated from a given composition. As an 

example used in their paper, if we wish to generate 

compositions similar to those of Mozart, then the system 

would be seeded with one of (or several of) Mozart’s 

compositions. In this approach, the intent was to choose a 

piece of music from a given artist and then allow the system to 

compose music similar to that style. In addition to the standard 
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recombination and mutation operators used in evolutionary 

algorithms, they also used fusion and elision. Fusion allows the 

genotype to be concatenated with a piece broken either from 

itself or from a sibling and elision allows one gene to be 

eliminated.  Different permutations of these operators were 

used in combination to produce different strategies, and each 

strategy was evaluated for effectiveness. It was found that a 

combination of strategies based on different points in the 

learning curve produced the best results, and that fusion 

doesn’t seem to produce better results, but elision does. Our 

current research allows the user to select a genre rather than a 

composer, and the system attempts to compose music 

according to preferences rather than similarity to a particular 

artist. 

Maddox and Otten [7] used an evolutionary algorithm to 

generate four-part 18
th
 century harmony in the style of J.S. 

Bach. They stressed that randomly generating musical notes 

would be entirely too time consuming to be effective, and that 

it was necessary to have reasonable constraints in generating 

the music and to have a method for automating the quality of 

the results. Following from their results, our research uses 

music theory to constrain the generation of compositions and 

uses a fitness function for automated evaluation which is based 

on user-expressed preferences.  

An overview of research on evolutionary computation in 

this domain is discussed in [8]. The authors categorize existing 

research according to four types: interactive, example-based, 

rule-based, and autonomous systems. Throughout the 

categorization, the roles of creator and critic, or author and 

audience, are used in relation to the systems. Interactive 

systems, in general, use automated composition as the creator 

and have a human listener as the critic. An issue with these 

systems is that the human critic is a bottleneck in evaluation. 

The second type of system, example-based, includes a user as 

the creator who provides examples to a system (usually an 

artificial neural network) which then learns specified themes 

from the presented examples. In a sense, then, the human is 

both the creator and critic initially, but the systems learn to 

become the critic over time. The third type of system is rule-

based. In this type, a human provides rules to evaluate system 

generated compositions, again placing the human in the role of 

critic and the system in the role of creator, though this does not 

appear to have the same bottleneck effect as the interactive 

systems do. Finally, the last type of system is the autonomous 

one. In these systems, both critic and creator are automated; 

that is, the system creates its own compositions and then 

evaluates them. The authors comment that some of the 

drawbacks inherent in each type of system can be overcome by 

the development of hybrid systems which incorporate aspects 

of each type. 

The research discussed in this paper incorporates aspects of 

three of the types of evolutionary systems discussed in [8]. The 

interactive aspect is addressed with human input of musical 

preferences and then evaluation of the best system generated 

compositions both initially and after evolution. In this aspect, 

the human is the critic and the system is the creator. The third 

type of system discussed was rule-based. Our research uses the 

rules of music theory to generate initial compositions. A 

human encoded these rules into the program, which form a 

first pass at composition evaluation, and the system is still the 

creator. Finally, our research also addresses the autonomous 

type of system in that it composes its own music, and in the 

absence of human intervention or evaluation, it evaluates its 

own compositions according to fitness measures; thus, it serves 

as both creator and critic. 

Section two of this paper describes the architecture of our 

software and its approach to music composition and evaluation 

such that it follows the results of existing research but adds to 

these approaches. 

   

B. Genetic Algorithm Background 

A genetic algorithm (GA) is a search algorithm that imitates 

the process of natural evolution.  Every genetic algorithm has a 

population containing a number of individuals, each of which 

contains some number of chromosomes. A chromosome is 

defined by an array of values that define some characteristic of 

the individual.  A GA begins with an initially random 

population.  Once the population has been initialized, 

selection, crossover, and mutation are used to create a new 

member of the population. During the selection process two 

members of the population are selected to be parents using 

fitness proportionate selection.  Once two members have been 

selected the crossover process begins.  

 

The crossover process contains two steps.  First, for each 

chromosome the individuals contain, a single crossover point 

is selected.  Second, all values beyond that point in both 

chromosome strings are swapped between the two parent 

individuals. This results in a child individual who then 

undergoes the mutation process. 

 

During the mutation process some of the values in each of 

the individuals chromosomes are selected for mutation at 

random based on the GA's mutation rate.  These values are 

then changed or mutated.   

 

A more thorough explanation of genetic algorithms can be 

found in [9].    

C. Music Theory Background 

A piece of music is written by specifying a series of parts.  

Each of these parts is written by specifying a series of notes 

which are defined by their duration and pitch.   

In western music the standard unit used to measure a note's 

duration is the whole note, whose length is typically equal to 

four beats.  Most other note durations are described as 

fractions of the whole note.  For example, a half note is half 

the duration of a whole note or two beats.  The amount of time 

between each beat is determined by the tempo of the piece.  

Every musical piece can be broken up into measures which are 
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defined by the song's time signature.  A time signature consists 

of two numbers.  The first number indicates how many notes 

are in each measure, while the second number defines the 

duration of each of these notes. For example, in the time 

signature 3/4 each measure contains three quarter notes, while 

in the time signature 6/8 each measure contains six eighth 

notes.    

In western music nearly all pitches of a song are part of a 

scale or sequence of pitches.  The two most common musical 

scales in the west are the major scale and the pentatonic scale.  

Most music revolves around some kind of chord progression 

or series of chords.  A chord is a set if pitches are heard 

simultaneously.  Most music contains three note chords called 

triads.  The most common of the triads are the major and 

minor chords.  Songs that begin and end on major chords are 

said to have major tonality while songs that begin and end on 

minor chords are said to have minor tonality.  

 

An in depth explanation of music theory can be found in 

[10]. 

II. SYSTEM FUNCTIONALITY 

Previous research in compositional and improvisational music 

has focused on the generation of music through different 

means, and certainly to emulate certain different styles. 

However, none have addressed the qualitative experience of 

human listeners, nor attempted to allow the music to evolve 

toward listener preferences. This research uses music theory 

principles to generate an initial composition, but then allows a 

user to specify preferences, and then learns or evolves toward 

that user’s preferred style. 

A. Program Description 

    The program begins by defining a desired style for the 

genetic algorithm to optimize toward and a population to store 

individual genetic codes and generate new genetic codes.  

After this the program enters a loop in which the following 

four step process in repeated: 

� Step 1: Program calls the population's getCode() function 

to obtain a new genetic code. 

� Step 2: A song generator, G, is created using the genetic 

code obtained in step one and a song is generated by G.  

During this process the generator determines the style of 

the genetic code. 

� Step 3: The genetic code's style is then compared to the 

desired style and a value is obtained quantifying how 

close the genetic code's style is to the desired style. This 

value becomes the genetic code's fitness. 

� Step 4: The new genetic code is inserted into the 

population 

 

1. Obtaining the Genetic Code 

Each song's genetic code consists of four chromosomes: 

an Arpeggio Chromosome that defines what notes of a 

chord are played when a part plays an arpeggio; a Melody 

Chromosome that determines the pitch and duration of 

each note in the melodies; a Rhythm Chromosome that 

determines the duration of notes in the song's rhythms; 

and a Basic Structure Chromosome that determines things 

like key, instrument voices, and chord progressions.  The 

population's getCode() function begins by checking the 

population size.  If the population is smaller than the 

initial population size then getCode() simply sets the 

above chromosomes equal to random values and returns 

the resulting genetic code.  If the population is larger than 

the initial population size then getCode() performs the 

following steps: 

� Step 1: Two members of the population are selected 

using fitness proportionate selection. 

� Step 2: If both selected individuals have above 

average fitness then the function proceeds to step 

three otherwise the function returns to step one. 

� Step 3: Crossover and mutation are performed on all 

chromosomes of both selected individuals. 

� Step 4: A new code is created and returned using the 

resulting chromosomes.  

 

2. Generating a Song and Defining a Style 

    The Generator begins creating a song by obtaining the 

song's tempo, voicing, time signature, and number of 

movements from its genetic code.  It then generates each of 

the song's movements.   

 

a. Generating a Movement 

 The Generator creates movements using the 

generateMovements() function, which returns a pattern 

that can be used as a movement in the song.  This 

function begins by consulting the  genetic code's Basic 

Structure Chromosome in order to determine the number 

of verses that will be in the movement.  The function then 

generates each of these verses and adds each verse to a 

pattern that is then returned.  

 

b. Generating a Verse 

 When a verse is created its constructor initializes a 

series of values such as the number of chords, tempo, 

time signature data, and voicing of the verse.  It then calls 

the verse's generateVerse() function.  This function  

begins by generating the verse's chord progression.   The 

function then generates the verse's beat, rhythm,  bass-

line, harmonies, and melody in that order.  If the verse is 

to contain more than one melody the harmonizing melody 

is generated last.  Each of these parts are then added to 

the verse and the verse is transposed to the appropriate 

key. 

 

i. Generating a Beat 

    When a beat is generated its constructor begins by 

initializing its time signature.  The constructor then 

consults the genetic code's Rhythm Chromosome to 

determine the instrumentation of the percussion in the 

beat.  Finally the beat's generateBeat() function is 

called.   This function begins by generating  the beat's 

ride part, low accent part, and high accent part in that 

order.  Each of the parts are than assigned to an 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 5, 2011

527



 

 

instrument based on the instrumentation chosen by the 

Rhythm Chromosome in the constructor.  These parts 

are then added to a pattern and that pattern is returned. 

 

ii. Generating a Rhythm 

   When a rhythm is created its constructor begins by 

initializing the rhythm's chord progression, number of 

measures, rhythm chromosome, voice, and time 

signature.  The constructor then calls the rhythm's 

generateRhythm() function.  This function first 

calculates the number of 16th notes in each measure 

based on the time signature.  This value is assigned to 

the variable notesLeft.  Next, it consults the Rhythm 

Chromosome to determine the duration of the first note 

in the rhythm.  This value is assigned to the variable i.   

While  notesLeft is greater than zero the following 

steps are repeated: 

� Step 1: Set the variable dur16 equal to the number 

of 16
th
 notes in i. 

� Step 2: Set the variable duration equal to a 

character representation of i. 

� Step 3: Set i equal to a new duration value obtained 

by consulting the Rhythm Chromosome. 

� Step 4: If (notesLeft-dur16) is equal to zero goto 

step 1 

� Step 5: Set notesLeft equal to (notesLeft-dur16) 

� Step 6: Add duration to the rhythm  

    The generateRhythm function then loops the rhythm 

generated above for each measure.  You will notice 

that the generateRhythm() function generates durations  

but not pitches.  This is because the the rhythm's 

pitches are already defined by the verse's chord 

progression. 

 

iii. Generating a Harmony 

    When a harmony is generated its constructor is 

passed several parameters, one of which is the 

parameter chordProg, which is an array containing 

each chord of the verse's chord progression.  The 

constructor begins by creating the array pitches.  Next, 

the constructor calculates the number of 16th notes in 

each measure based on the time signature.  This value 

is assigned to the variable notesLeft.  Another variable 

j is set to zero.  The constructor then repeats the 

following steps for each note, r, in the rhythm: 

� Step 1: Set p equal to a note in the chord denoted 

by chordProg[j] 

� Step 2: Add p to pitches 

� Step 3: Set dur16 equal to the duration in 16
th
 

notes of r 

� Step 4: Set  notesLeft equal to (notesLeft-dur16) 

� Step 5: If notesLeft is equal to zero increment j and 

set notesLeft equal to number of 16
th
 notes in the 

measure 

    After this a harmony pattern is created in which each 

note's duration is that of the corresponding rhythm 

note's duration and each note's pitch is defined by the 

array pitches. 

 

iv.   Generating a Melody 

    When a melody is created its constructor begins by 

consulting the melody chromosome in order to 

determine what scale the melody is to use.  After this 

the functions generateDurations() and 

generatePitches() are called. 

    The generateDurations() function determines the 

durations of all notes in the melody.  It begins by  

obtaining a duration from the melody chromosome.  

This value is assigned to the variable 

potentialDuration.  For each note in the rhythm that 

the melody must harmonize with, determine if the note 

the melody will play is longer or shorter than this note.  

If the note the melody will play is shorter than the note 

it is to harmonize with then do the following: 

� Step 1: Set notesLeft equal to the number of 16
th
 

notes in the note to harmonize with. 

� Step 2: Set dur16 equal to the number of 16
th
 notes 

in potentialDuration and set the variable duration 

equal to potentialDuration 

� Step 3: Set  potentialDuration equal to a new 

duration obtained from the melody chromosome. 

� Step 4: If (notesLeft-dur16) is less than 0 then goto 

step 2 

� Step 5:  Set notesLeft equal to  (notesLeft-dur16) 

� Step 6: Add duration to the array that is to contain 

durations of all melody notes. 

� Step 7:  If notesLeft is greater than zero then goto 

step 2 

    If the note the melody will play is longer than the 

note it is to harmonize with then do the following: 

� Step 1: Set dur16 equal to the number of 16th notes 

in the current note to harmonize with 

�  Step 2: While dur16 doesn't equal 8 or 4 and dur16 

is less than 16 set dur16 equal to dur16 plus  the 

number of 16
th
 notes in the next note to harmonize 

with 

�  Step 3: If dur16 is less than or equal to 16 then set 

the string duration equal to the string equivalent of 

the duration described by dur16 and add duration 

to the array that is to contain durations of all 

melody notes 

� Step 4: If dur16 is greater than 16 then undo all 

actions performed in the above steps and have the 

melody play a note that is shorter than the note it is 

to harmonize with 

The generatePitches() function  determines the pitches 

of all notes in the melody by doing the following for 

each duration in the melody: 

� Step 1: If the duration is a whole note or half 

note then set the next pitch to an arpeggio of the 

chord it is to harmonize with. 

� Step 2: Else consult the melody chromosome to 

determine if the next pitch will be a note of a 

scale or a note of an arpeggio of the the chord it 

is to harmonize with and set the next pitch 

accordingly. 
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v. Generating a Harmonizing Melody 

    When a harmonizing melody is created its 

constructor begins by consulting the melody 

chromosome in order to determine what scale the 

melody is to use.  After this the functions 

generateDurations() and generatePitches() are called. 

    The generateDurations() function begins by  

obtaining a duration from the melody chromosome.  

This value is assigned to the variable 

potentialDuration.  For each note in the first melody 

that the harmonizing melody must harmonize with, 

determine if the note the harmonizing melody will play 

is longer or shorter than this note.  If the note the 

harmonizing melody will play is shorter than the note it 

is to harmonize with then do the following: 

� Step 1: Set notesLeft equal to the number of 16
th
 

notes in the note to harmonize with. 

�  Step 2: Set dur16 equal to the number of 16
th
 

notes in potentialDuration and set the variable 

duration equal to potentialDuration 

� Step 3: Set  potentialDuration equal to a new 

duration obtained from the melody chromosome. 

�  Step 4: If (notesLeft-dur16) is less than 0 then 

goto step 2 

�  Step 5: Set notesLeft equal to  (notesLeft-dur16) 

�  Step 6: Add duration to the array that is to 

contain durations of all harmonizing melody notes. 

�  Step 7: If notesLeft is greater than zero then goto 

step 2 

    If the note the harmonizing melody will play is 

longer than the note it is to harmonize with then do the 

following: 

� Step 1: Set dur16 equal to the number of 16th 

notes in the current note to harmonize with 

�  Step 2: While dur16 doesn't equal 8 or 4 and 

dur16 is less than 16 set dur16 equal to dur16 plus  

the number of 16
th
 notes in the next note to 

harmonize with 

�  Step 3: If dur16 is less than or equal to 16 then set 

the string duration equal to the string equivalent of 

the duration described by dur16 and add duration 

to the array that is to contain durations of all 

melody notes 

� Step 4: If dur16 is greater than 16 then undo all 

actions performed in the above steps and have the 

melody play a note that is shorter than the note it is 

to harmonize with 

    The generatePitches() function  determines the 

pitches of all notes in the harmonizing melody by 

doing the following for each duration of the 

harmonizing melody: 

� Step 1: If the duration is a whole note or half note 

or if the note the pitch must harmonize with is not 

part of an arpeggio then set the next pitch to an 

arpeggio of the chord it is to harmonize with. 

� Step 2: Else consult the melody chromosome to 

determine if the next pitch will be a note of a scale 

or a note of an arpeggio of the the chord it is to 

harmonize with and set the next pitch accordingly. 

 

c. Defining a Style 

    As the generator composes the song it defines the 

genetic code's style.  A style is defined by the 

following ten evaluation criteria: 

• Tempos Used (TM): an ArrayList of all tempos 

used in the style. 

• Tonality (TN): a string describing tonality of the 

style as either major, minor, or ambiguous. 

• Time Signatures Used (TS): an ArrayList of all 

time signatures used in the style. 

• Pitch Variation (PV): the relative standard 

deviation of pitches in the melodies. 

• Note Duration Variation (NDV): the relative 

standard deviation of note durations in melodies.  

• Rhythmic Complexity (RC): the relative standard 

deviation of note durations in rhythm. 

• Number of Parts (NI): the number of instruments 

used in the style. 

• Instruments Used (TI): an ArrayList containing all 

instruments used in the style.  

• Percent of Jazz Chords: (PJC) the percentage of 

triads that have added pitches. 

• Scales Used (SU):  an ArrayList containing all 

scales used in the style.  

 

3. Determining a Genetic Code's Fitness 

   Every style in the system contains a compareTo() function 

that takes a style as a parameter and returns a value between 

zero and one.  A values of one is returned if the two styles 

are identical and a value of zero is returned if the two styles 

have nothing in common.  A code's fitness is determined by 

calling its style's compareTo() function, and the higher the 

returned value, the higher the fitness.   

    The compareTo() function calculates its total return value 

(RV) using each of the evaluation criteria as follows: 

 

               (1) 

where X =  the evaluation criteria of TM, TS, TI, and SU. 

 

                        (2) 

where X = the evaluation criteria of PV, NDV, RC, and 

PJC. 

 

                (3) 

 

        (4) 

 

Finally, the total return value is calculated as: 

                                         (5) 

where X ranges across all evaluation criteria. 
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4. Adding the Genetic Code to the Population 

    Once a genetic code's fitness has been determined, the 

genetic code is inserted into the population by the 

population's offerMember() function.  This function takes a 

genetic code as a parameter and inserts it into the 

population.  If the population is already at maximum size 

then offerMember() removes the oldest member of the 

population before inserting the new genetic code. 

B. Hypothesis 

    Quantitatively, the performance of the program in 

generating “better” compositions is easily measured by 

tracking the average fitness of the population of compositions, 

where this fitness is determined by user preference selections. 

However, this does not address the qualitative aspect as judged 

by a human listener. To address this, subjects were asked to 

rate the initial composition generated by the program on a 

scale from 1 to 10, and also to rate the evolved composition, 

also on a scale from 1 to 10. It was hypothesized that human 

listeners would rate the evolved composition more highly than 

the initial composition. The following section explains how 

both the quantitative and qualitative aspects of the program's 

composing abilities were tested. 

III. EXPERIMENTAL DESIGN 

To test both the quantitative and qualitative aspects of 

automated music composition, subjects were interviewed 

about their musical preferences. These subjective preferences 

were used to adjust program parameters so that the learning 

portion of the program could evolve toward styles which the 

user liked. 

 

Ten evaluation criteria were used from which the program 

learned. These were: 

• Tempo (TM) 

• Tonality (TN) 

• Time Signature (TS) 

• Number of Instruments (NI) 

• Type of Instruments (TI) 

• Pitch Variation (PV) 

• Note Duration Variation (NDV) 

• Rhythmic Complexity (RC) 

• Scales Used (SU) 

• Percent of Jazz Chords (PJC) 

 

The first of these were asked of the subjects directly. For 

tempo, subjects were asked if they preferred music that was 

slow, medium or fast, or some combination of these. (The 

program allows more than one tempo to be included in a 

composition.) Next, subjects were asked about tonality. The 

options for these are major, minor, or atonal (a combination of 

major and minor keys). If subjects were unclear on the 

meaning of these terms, they were phrased as generally happy, 

sad, or a combination. 

 

The remaining criteria were inferred from the subjects’ 

preferred musical genre. The mapping from musical genre to 

criteria is shown in Table 1. As with tempo, the program 

handles multiple values for time signature and type of 

instrument. 

 

Table 1: Musical Genre to Criteria Mapping 
Genre: TS N

I 

* 

TI PV ND

V 

RC SU

** 

PJ

C 

Blue- 

grass/ 

Celtic 
4/4 

6/8 4 

Banjo 

Bass 

Fiddle  

Guitar 

Mandolin 

Piano .6 .6 .4 M .2 

Blues 
6/8 

4/4 

8/8 4 

Bass  

Guitar 

Organ 

Piano .5 .6 .5 P .7 

Classical All A Any .75 .8 .6 M .8 

Country/ 

Folk 4/4 

6/8  

3/4 4 

Banjo 

Bass 

Fiddle  

Guitar 

Mandolin 

Piano .5 .5 .4 P .05 

Experi- 

mental All A Any .85 .85 .85 M .9 

Hard  

Rock 

4/4 

6/8 

8/8 4 

Bass  

Guitar 

Organ 

Piano .5 .5 .4 P .4 

Indus- 

trial All 4 

Bass  

Guitar .4 .8 .8 P .0 

Jazz 

All A 

Banjo 

Bass 

Fiddle 

Flute 

Organ  

Piano 

Sax 

Trumpet 

Xylophone .75 .8 .85 M .95 

Metal 
All 4 

Bass  

Guitar .7 .8 .8 M .2 

Pop 

4/4  

6/8  

8/8 4 

Bass  

Guitar 

Piano .4 .4 .4 P .2 

Punk 
2/2  

4/4 4 

Bass  

Guitar .3 .1 .1 P .0 

Rap 
4/4  

8/8 4 

Bass  

Fiddle 

Guitar 

Piano .4 .5 .6 M .7 

Soft  

Rock 

4/4  

6/8  

8/8 4 

Bass  

Guitar 

Organ 

Piano .5 .5 .5 P .5 

Swing/ 

Big  

Band 

4/4  

6/8 8 

Banjo 

Bass 

Fiddle 

Flute 

Organ 

Piano 

Sax 

Trombone 

Trumpet 

Tuba 

Xylophone .7 .7 .8 M .8 

Waltz 3/4 A Any .5 .4 .3 M .5 
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After subjects provided their preference criteria, program 

parameters were adjusted to reflect these choices. The initial 

composition based on these parameters was saved as the 

“before” sample, and the program was allowed to evolve until 

a given fitness level, either 8.0 or 9.0 on a scale of 10.0, was 

reached, and that composition was saved as the “after” sample. 

Subjects were then asked to rate each sample according to how 

much they liked it on a scale from 1 to 10. The fitness level 

and associated learning curves measure the quantitative aspect 

of the program’s performance, while the subject ratings 

capture the qualitative aspect of the system. 

 

IV. RESULTS 

Ten subjects were interviewed and the program was run for 

each one. In all trials, the algorithm converged to an 

acceptable level. On average, the program rated its own fitness 

level on “before” compositions at 5.06, while, on average, 

subjects rated the initial compositions at 5.1. 

The least number of generations required to converge to the 

acceptable fitness level was 238 generations, while the most 

was 2,650, with an average convergence of 1,012 generations. 

On average, the program rated the fitness level of “after” 

compositions at 8.5, while subjects rated their liking of these 

compositions, on average, at 6.25.  

Learning curves were typical of what one would expect 

from a genetic algorithm. Figure 1 shows the average fitness 

rating as calculated by the program across all subjects. From 

an average starting point of rating compositions at 

approximately 5.0, the algorithm shows a general trend of 

increasing fitness with some variation, until it levels off or 

converges at a level of approximately 8.5. 

 

 
Figure 1: Average Fitness across All Trials 

 

 

 

The correspondence between user ratings and system ratings 

was tested for correlation. There was a slight negative 

correlation between before ratings of users and the system (r= 

-0.68) and little correlation between after ratings given by 

users and by the system (r=0.49). Figure 2 shows these results 

graphically. 
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Figure 2: User vs. System Ratings 

 

Of most interest to this research, however, is the rating 

given by human listeners of the compositions tailored to 

evolve according to their preferences. Our hypothesis stated 

that human listeners would rate the evolved composition more 

highly than the initial composition. 

As shown in Figure 3, more human subjects rated the 

compositions higher after learning occurred than the opposite, 

though three subjects did rate the composition higher before 

learning. In Figure 3, those data points above the line of 

equality are those that preferred the initial composition over 

the learned composition, and vice versa. Note that subjects 

whose ratings are identical to another subject’s ratings are 

combined into one data point. 

  

  
Figure 3: Before and After Ratings of Compositions 
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Figure 4: Frequency Distribution of the Data 

 

The difference between “before” and “after” ratings was 

also tested for statistical significance. Since the hypothesis 

states that the expected difference is in one direction, the one-

tailed test for significance was used, and it was evaluated as a 

paired t-test. Before and after data sets were also evaluated for 

approximate normal distribution (see Figure 4), and were 

found to meet this assumption. The difference between the two 

sets of ratings was statistically significant at the 95% level (p < 

0.05). 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

This research has demonstrated that compositions evolved 

from individual preference were rated by the program as closer 

to the given evaluation criteria via its fitness function, but 

more importantly, human listeners also rated the evolved 

compositions as better, and this difference was statistically 

significant. This study sets the ground work for additional 

investigation into the area of artificial creativity and machine 

learning in musical composition. 

Correlation between user ratings of compositions and 

system ratings, both before and after learning, showed little 

correspondence. A possible reason for this is the method in 

which genre was defined. Our research used an ad hoc 

parameterization of different genres, relying on the knowledge 

of the authors. Percanella and Restaino [11] have researched a 

method of classifying musical genres based on fractal 

dimensions, providing a more objective method of definition. 

Future work may benefit from using the more formalized 

definition of genre and testing this against user perception.  

During the course of subject interviews, comments made by 

listeners were recorded. Some of the areas of change suggested 

were to allow the listener to express different levels of 

importance for each of the criteria. That is, for one person, the 

choice of instrumentation may be of higher importance, while 

for another, the tonality (major, minor, or atonal) may be more 

critical. This could easily be incorporated into the program. 

Additional composition features that users suggested included 

being able to express a preference for the key in which the 

composition was written, the length of the composition, and 

changes in tempo within the composition. Again, these are 

changes that are easily made. 

Since the results have demonstrated promise on a small 

subject population, future work in the area will be directed at a 

larger subject population, including changes to the program as 

discussed above. 
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