

Abstract— Using the rules of music theory, a program was

written which automatically creates original compositions. These

compositions were parameterized by user input concerning

preferences on genre, tempo, and tonality. Based on these

preferences, initial compositions were generated, and the “best”

composition was presented to the user. Following the rules of music

theory guarantees that the program produces harmonious

compositions, but certain aspects of musical composition cannot be

defined by music theory. It is in these aspects of musical

composition where the human mind uses creativity. Using the

population of compositions initially generated for the user, the

program then used a genetic algorithm to evolve compositions that

increasingly match the user’s preferences, allowing the program to

make decisions that cannot be made using music theory alone. The

resulting “best” composition of the evolved population was then

presented to the user for evaluation. To test the effectiveness of this

approach, each composition, both initial and final was ranked by

subjects on a scale from 1 to 10. Subjects expressed a significant

preference for the evolved compositions over initial compositions.

Keywords— Artificial creativity, artificial intelligence, genetic
algorithms, machine learning, music

I. INTRODUCTION

HIS research describes a program using rules of music

theory to create original compositions and then using a

genetic algorithm to utilize the preferences of listeners and

generate qualitatively better compositions. Following the rules

of music theory guarantees harmonious compositions, but

certain aspects of musical composition cannot be defined by

music theory. It is in these aspects of musical composition

where the human mind uses creativity. To test the effectiveness

of the approach, subjects were interviewed about certain

musical preferences, and these preferences were used as a

basis for the fitness evaluation function of the genetic

algorithm. The results of the research were evaluated both

quantitatively, based on the program’s own fitness evaluation

of the compositions, and qualitatively, based on subject ratings

of compositions. In this paper, we first discuss current research

in automated music composition, then the basis for genetic

Manuscript submitted August14, 2011.

N. Fortier is master’s student in Computer Science at Montana State

University, Bozeman, MT, USA. He graduated with his B.S. in Software

Engineering from Montana Tech, Butte, MT 59701 USA. (phone: 406-498-

1303, e-mail: nathan.fortier@gmail.com).

M. Van Dyne, PhD, is an associate professor of Computer Science at

Montana Tech, Butte, MT 59701 USA. (phone: 406-496-4855, e-mail:

mvandyne@mtech.edu).

algorithms, and finally basics of music theory. We then

describe the operation of the algorithm, experimental design

and results, and conclusions and future directions based on

those results.

A. Current Research in the Literature

The study of artificial creativity in the domain of music has

focused on both compositional and improvisational music.

Several projects available on the web show the innovation of

such studies. Work in the domain of compositional music has

been done by David Cope with his Experiments in Musical

Intelligence [1], [2], a computer system that deconstructs

existing music into separate parts and recombines those parts

to from new musical works. Work in this domain has also

been done by the developers of Wolfram Tones [3], a software

system that takes an arbitrary program from the

“computational universe” and uses that program's output to

compose music. Work in the domain of improvisational

musical creativity has also been done at Georgia Tech [4]

where researchers have developed a robot that can play

improvisational jazz on a marimba.

Beyond the public projects, more focused research on

musical composition can be found in the literature. Klinger

and Rudolph [5] have used an evolutionary approach to

simulate creativity in generating musical melody lines. They

then evaluated the melodies in two automated methods: an

artificial neural network, and a decision tree. These

evaluations were compared to human (interactive) evaluations

of the same melodies. They found that the decision tree

produced by the C4.5 data mining algorithm more closely

agreed with human evaluators than did the artificial neural

network. The significance is that if the evaluation can be

automated, the bottleneck of human interaction can be reduced

or eliminated. Our research also seeks to eliminate the

bottleneck of human interaction, though in our work it is

evaluation of an entire composition and not just the melody

lines.

Alfonseca, Cebrian and Ortega [6] used the normalized

compression distance as a fitness function to evaluate

compositions generated from a given composition. As an

example used in their paper, if we wish to generate

compositions similar to those of Mozart, then the system

would be seeded with one of (or several of) Mozart’s

compositions. In this approach, the intent was to choose a

piece of music from a given artist and then allow the system to

compose music similar to that style. In addition to the standard

A Genetic Algorithm Approach to Improve

Automated Music Composition

Nathan Fortier, Michele Van Dyne

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

525

recombination and mutation operators used in evolutionary

algorithms, they also used fusion and elision. Fusion allows the

genotype to be concatenated with a piece broken either from

itself or from a sibling and elision allows one gene to be

eliminated. Different permutations of these operators were

used in combination to produce different strategies, and each

strategy was evaluated for effectiveness. It was found that a

combination of strategies based on different points in the

learning curve produced the best results, and that fusion

doesn’t seem to produce better results, but elision does. Our

current research allows the user to select a genre rather than a

composer, and the system attempts to compose music

according to preferences rather than similarity to a particular

artist.

Maddox and Otten [7] used an evolutionary algorithm to

generate four-part 18
th
 century harmony in the style of J.S.

Bach. They stressed that randomly generating musical notes

would be entirely too time consuming to be effective, and that

it was necessary to have reasonable constraints in generating

the music and to have a method for automating the quality of

the results. Following from their results, our research uses

music theory to constrain the generation of compositions and

uses a fitness function for automated evaluation which is based

on user-expressed preferences.

An overview of research on evolutionary computation in

this domain is discussed in [8]. The authors categorize existing

research according to four types: interactive, example-based,

rule-based, and autonomous systems. Throughout the

categorization, the roles of creator and critic, or author and

audience, are used in relation to the systems. Interactive

systems, in general, use automated composition as the creator

and have a human listener as the critic. An issue with these

systems is that the human critic is a bottleneck in evaluation.

The second type of system, example-based, includes a user as

the creator who provides examples to a system (usually an

artificial neural network) which then learns specified themes

from the presented examples. In a sense, then, the human is

both the creator and critic initially, but the systems learn to

become the critic over time. The third type of system is rule-

based. In this type, a human provides rules to evaluate system

generated compositions, again placing the human in the role of

critic and the system in the role of creator, though this does not

appear to have the same bottleneck effect as the interactive

systems do. Finally, the last type of system is the autonomous

one. In these systems, both critic and creator are automated;

that is, the system creates its own compositions and then

evaluates them. The authors comment that some of the

drawbacks inherent in each type of system can be overcome by

the development of hybrid systems which incorporate aspects

of each type.

The research discussed in this paper incorporates aspects of

three of the types of evolutionary systems discussed in [8]. The

interactive aspect is addressed with human input of musical

preferences and then evaluation of the best system generated

compositions both initially and after evolution. In this aspect,

the human is the critic and the system is the creator. The third

type of system discussed was rule-based. Our research uses the

rules of music theory to generate initial compositions. A

human encoded these rules into the program, which form a

first pass at composition evaluation, and the system is still the

creator. Finally, our research also addresses the autonomous

type of system in that it composes its own music, and in the

absence of human intervention or evaluation, it evaluates its

own compositions according to fitness measures; thus, it serves

as both creator and critic.

Section two of this paper describes the architecture of our

software and its approach to music composition and evaluation

such that it follows the results of existing research but adds to

these approaches.

B. Genetic Algorithm Background

A genetic algorithm (GA) is a search algorithm that imitates

the process of natural evolution. Every genetic algorithm has a

population containing a number of individuals, each of which

contains some number of chromosomes. A chromosome is

defined by an array of values that define some characteristic of

the individual. A GA begins with an initially random

population. Once the population has been initialized,

selection, crossover, and mutation are used to create a new

member of the population. During the selection process two

members of the population are selected to be parents using

fitness proportionate selection. Once two members have been

selected the crossover process begins.

The crossover process contains two steps. First, for each

chromosome the individuals contain, a single crossover point

is selected. Second, all values beyond that point in both

chromosome strings are swapped between the two parent

individuals. This results in a child individual who then

undergoes the mutation process.

During the mutation process some of the values in each of

the individuals chromosomes are selected for mutation at

random based on the GA's mutation rate. These values are

then changed or mutated.

A more thorough explanation of genetic algorithms can be

found in [9].

C. Music Theory Background

A piece of music is written by specifying a series of parts.

Each of these parts is written by specifying a series of notes

which are defined by their duration and pitch.

In western music the standard unit used to measure a note's

duration is the whole note, whose length is typically equal to

four beats. Most other note durations are described as

fractions of the whole note. For example, a half note is half

the duration of a whole note or two beats. The amount of time

between each beat is determined by the tempo of the piece.

Every musical piece can be broken up into measures which are

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

526

defined by the song's time signature. A time signature consists

of two numbers. The first number indicates how many notes

are in each measure, while the second number defines the

duration of each of these notes. For example, in the time

signature 3/4 each measure contains three quarter notes, while

in the time signature 6/8 each measure contains six eighth

notes.

In western music nearly all pitches of a song are part of a

scale or sequence of pitches. The two most common musical

scales in the west are the major scale and the pentatonic scale.

Most music revolves around some kind of chord progression

or series of chords. A chord is a set if pitches are heard

simultaneously. Most music contains three note chords called

triads. The most common of the triads are the major and

minor chords. Songs that begin and end on major chords are

said to have major tonality while songs that begin and end on

minor chords are said to have minor tonality.

An in depth explanation of music theory can be found in

[10].

II. SYSTEM FUNCTIONALITY

Previous research in compositional and improvisational music

has focused on the generation of music through different

means, and certainly to emulate certain different styles.

However, none have addressed the qualitative experience of

human listeners, nor attempted to allow the music to evolve

toward listener preferences. This research uses music theory

principles to generate an initial composition, but then allows a

user to specify preferences, and then learns or evolves toward

that user’s preferred style.

A. Program Description

 The program begins by defining a desired style for the

genetic algorithm to optimize toward and a population to store

individual genetic codes and generate new genetic codes.

After this the program enters a loop in which the following

four step process in repeated:

� Step 1: Program calls the population's getCode() function

to obtain a new genetic code.

� Step 2: A song generator, G, is created using the genetic

code obtained in step one and a song is generated by G.

During this process the generator determines the style of

the genetic code.

� Step 3: The genetic code's style is then compared to the

desired style and a value is obtained quantifying how

close the genetic code's style is to the desired style. This

value becomes the genetic code's fitness.

� Step 4: The new genetic code is inserted into the

population

1. Obtaining the Genetic Code

Each song's genetic code consists of four chromosomes:

an Arpeggio Chromosome that defines what notes of a

chord are played when a part plays an arpeggio; a Melody

Chromosome that determines the pitch and duration of

each note in the melodies; a Rhythm Chromosome that

determines the duration of notes in the song's rhythms;

and a Basic Structure Chromosome that determines things

like key, instrument voices, and chord progressions. The

population's getCode() function begins by checking the

population size. If the population is smaller than the

initial population size then getCode() simply sets the

above chromosomes equal to random values and returns

the resulting genetic code. If the population is larger than

the initial population size then getCode() performs the

following steps:

� Step 1: Two members of the population are selected

using fitness proportionate selection.

� Step 2: If both selected individuals have above

average fitness then the function proceeds to step

three otherwise the function returns to step one.

� Step 3: Crossover and mutation are performed on all

chromosomes of both selected individuals.

� Step 4: A new code is created and returned using the

resulting chromosomes.

2. Generating a Song and Defining a Style

 The Generator begins creating a song by obtaining the

song's tempo, voicing, time signature, and number of

movements from its genetic code. It then generates each of

the song's movements.

a. Generating a Movement

 The Generator creates movements using the

generateMovements() function, which returns a pattern

that can be used as a movement in the song. This

function begins by consulting the genetic code's Basic

Structure Chromosome in order to determine the number

of verses that will be in the movement. The function then

generates each of these verses and adds each verse to a

pattern that is then returned.

b. Generating a Verse

 When a verse is created its constructor initializes a

series of values such as the number of chords, tempo,

time signature data, and voicing of the verse. It then calls

the verse's generateVerse() function. This function

begins by generating the verse's chord progression. The

function then generates the verse's beat, rhythm, bass-

line, harmonies, and melody in that order. If the verse is

to contain more than one melody the harmonizing melody

is generated last. Each of these parts are then added to

the verse and the verse is transposed to the appropriate

key.

i. Generating a Beat

 When a beat is generated its constructor begins by

initializing its time signature. The constructor then

consults the genetic code's Rhythm Chromosome to

determine the instrumentation of the percussion in the

beat. Finally the beat's generateBeat() function is

called. This function begins by generating the beat's

ride part, low accent part, and high accent part in that

order. Each of the parts are than assigned to an

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

527

instrument based on the instrumentation chosen by the

Rhythm Chromosome in the constructor. These parts

are then added to a pattern and that pattern is returned.

ii. Generating a Rhythm

 When a rhythm is created its constructor begins by

initializing the rhythm's chord progression, number of

measures, rhythm chromosome, voice, and time

signature. The constructor then calls the rhythm's

generateRhythm() function. This function first

calculates the number of 16th notes in each measure

based on the time signature. This value is assigned to

the variable notesLeft. Next, it consults the Rhythm

Chromosome to determine the duration of the first note

in the rhythm. This value is assigned to the variable i.

While notesLeft is greater than zero the following

steps are repeated:

� Step 1: Set the variable dur16 equal to the number

of 16
th
 notes in i.

� Step 2: Set the variable duration equal to a

character representation of i.

� Step 3: Set i equal to a new duration value obtained

by consulting the Rhythm Chromosome.

� Step 4: If (notesLeft-dur16) is equal to zero goto

step 1

� Step 5: Set notesLeft equal to (notesLeft-dur16)

� Step 6: Add duration to the rhythm

 The generateRhythm function then loops the rhythm

generated above for each measure. You will notice

that the generateRhythm() function generates durations

but not pitches. This is because the the rhythm's

pitches are already defined by the verse's chord

progression.

iii. Generating a Harmony

 When a harmony is generated its constructor is

passed several parameters, one of which is the

parameter chordProg, which is an array containing

each chord of the verse's chord progression. The

constructor begins by creating the array pitches. Next,

the constructor calculates the number of 16th notes in

each measure based on the time signature. This value

is assigned to the variable notesLeft. Another variable

j is set to zero. The constructor then repeats the

following steps for each note, r, in the rhythm:

� Step 1: Set p equal to a note in the chord denoted

by chordProg[j]

� Step 2: Add p to pitches

� Step 3: Set dur16 equal to the duration in 16
th

notes of r

� Step 4: Set notesLeft equal to (notesLeft-dur16)

� Step 5: If notesLeft is equal to zero increment j and

set notesLeft equal to number of 16
th
 notes in the

measure

 After this a harmony pattern is created in which each

note's duration is that of the corresponding rhythm

note's duration and each note's pitch is defined by the

array pitches.

iv. Generating a Melody

 When a melody is created its constructor begins by

consulting the melody chromosome in order to

determine what scale the melody is to use. After this

the functions generateDurations() and

generatePitches() are called.

 The generateDurations() function determines the

durations of all notes in the melody. It begins by

obtaining a duration from the melody chromosome.

This value is assigned to the variable

potentialDuration. For each note in the rhythm that

the melody must harmonize with, determine if the note

the melody will play is longer or shorter than this note.

If the note the melody will play is shorter than the note

it is to harmonize with then do the following:

� Step 1: Set notesLeft equal to the number of 16
th

notes in the note to harmonize with.

� Step 2: Set dur16 equal to the number of 16
th
 notes

in potentialDuration and set the variable duration

equal to potentialDuration

� Step 3: Set potentialDuration equal to a new

duration obtained from the melody chromosome.

� Step 4: If (notesLeft-dur16) is less than 0 then goto

step 2

� Step 5: Set notesLeft equal to (notesLeft-dur16)

� Step 6: Add duration to the array that is to contain

durations of all melody notes.

� Step 7: If notesLeft is greater than zero then goto

step 2

 If the note the melody will play is longer than the

note it is to harmonize with then do the following:

� Step 1: Set dur16 equal to the number of 16th notes

in the current note to harmonize with

� Step 2: While dur16 doesn't equal 8 or 4 and dur16

is less than 16 set dur16 equal to dur16 plus the

number of 16
th
 notes in the next note to harmonize

with

� Step 3: If dur16 is less than or equal to 16 then set

the string duration equal to the string equivalent of

the duration described by dur16 and add duration

to the array that is to contain durations of all

melody notes

� Step 4: If dur16 is greater than 16 then undo all

actions performed in the above steps and have the

melody play a note that is shorter than the note it is

to harmonize with

The generatePitches() function determines the pitches

of all notes in the melody by doing the following for

each duration in the melody:

� Step 1: If the duration is a whole note or half

note then set the next pitch to an arpeggio of the

chord it is to harmonize with.

� Step 2: Else consult the melody chromosome to

determine if the next pitch will be a note of a

scale or a note of an arpeggio of the the chord it

is to harmonize with and set the next pitch

accordingly.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

528

v. Generating a Harmonizing Melody

 When a harmonizing melody is created its

constructor begins by consulting the melody

chromosome in order to determine what scale the

melody is to use. After this the functions

generateDurations() and generatePitches() are called.

 The generateDurations() function begins by

obtaining a duration from the melody chromosome.

This value is assigned to the variable

potentialDuration. For each note in the first melody

that the harmonizing melody must harmonize with,

determine if the note the harmonizing melody will play

is longer or shorter than this note. If the note the

harmonizing melody will play is shorter than the note it

is to harmonize with then do the following:

� Step 1: Set notesLeft equal to the number of 16
th

notes in the note to harmonize with.

� Step 2: Set dur16 equal to the number of 16
th

notes in potentialDuration and set the variable

duration equal to potentialDuration

� Step 3: Set potentialDuration equal to a new

duration obtained from the melody chromosome.

� Step 4: If (notesLeft-dur16) is less than 0 then

goto step 2

� Step 5: Set notesLeft equal to (notesLeft-dur16)

� Step 6: Add duration to the array that is to

contain durations of all harmonizing melody notes.

� Step 7: If notesLeft is greater than zero then goto

step 2

 If the note the harmonizing melody will play is

longer than the note it is to harmonize with then do the

following:

� Step 1: Set dur16 equal to the number of 16th

notes in the current note to harmonize with

� Step 2: While dur16 doesn't equal 8 or 4 and

dur16 is less than 16 set dur16 equal to dur16 plus

the number of 16
th
 notes in the next note to

harmonize with

� Step 3: If dur16 is less than or equal to 16 then set

the string duration equal to the string equivalent of

the duration described by dur16 and add duration

to the array that is to contain durations of all

melody notes

� Step 4: If dur16 is greater than 16 then undo all

actions performed in the above steps and have the

melody play a note that is shorter than the note it is

to harmonize with

 The generatePitches() function determines the

pitches of all notes in the harmonizing melody by

doing the following for each duration of the

harmonizing melody:

� Step 1: If the duration is a whole note or half note

or if the note the pitch must harmonize with is not

part of an arpeggio then set the next pitch to an

arpeggio of the chord it is to harmonize with.

� Step 2: Else consult the melody chromosome to

determine if the next pitch will be a note of a scale

or a note of an arpeggio of the the chord it is to

harmonize with and set the next pitch accordingly.

c. Defining a Style

 As the generator composes the song it defines the

genetic code's style. A style is defined by the

following ten evaluation criteria:

• Tempos Used (TM): an ArrayList of all tempos

used in the style.

• Tonality (TN): a string describing tonality of the

style as either major, minor, or ambiguous.

• Time Signatures Used (TS): an ArrayList of all

time signatures used in the style.

• Pitch Variation (PV): the relative standard

deviation of pitches in the melodies.

• Note Duration Variation (NDV): the relative

standard deviation of note durations in melodies.

• Rhythmic Complexity (RC): the relative standard

deviation of note durations in rhythm.

• Number of Parts (NI): the number of instruments

used in the style.

• Instruments Used (TI): an ArrayList containing all

instruments used in the style.

• Percent of Jazz Chords: (PJC) the percentage of

triads that have added pitches.

• Scales Used (SU): an ArrayList containing all

scales used in the style.

3. Determining a Genetic Code's Fitness

 Every style in the system contains a compareTo() function

that takes a style as a parameter and returns a value between

zero and one. A values of one is returned if the two styles

are identical and a value of zero is returned if the two styles

have nothing in common. A code's fitness is determined by

calling its style's compareTo() function, and the higher the

returned value, the higher the fitness.

 The compareTo() function calculates its total return value

(RV) using each of the evaluation criteria as follows:

 (1)

where X = the evaluation criteria of TM, TS, TI, and SU.

 (2)

where X = the evaluation criteria of PV, NDV, RC, and

PJC.

 (3)

 (4)

Finally, the total return value is calculated as:

 (5)

where X ranges across all evaluation criteria.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

529

4. Adding the Genetic Code to the Population

 Once a genetic code's fitness has been determined, the

genetic code is inserted into the population by the

population's offerMember() function. This function takes a

genetic code as a parameter and inserts it into the

population. If the population is already at maximum size

then offerMember() removes the oldest member of the

population before inserting the new genetic code.

B. Hypothesis

 Quantitatively, the performance of the program in

generating “better” compositions is easily measured by

tracking the average fitness of the population of compositions,

where this fitness is determined by user preference selections.

However, this does not address the qualitative aspect as judged

by a human listener. To address this, subjects were asked to

rate the initial composition generated by the program on a

scale from 1 to 10, and also to rate the evolved composition,

also on a scale from 1 to 10. It was hypothesized that human

listeners would rate the evolved composition more highly than

the initial composition. The following section explains how

both the quantitative and qualitative aspects of the program's

composing abilities were tested.

III. EXPERIMENTAL DESIGN

To test both the quantitative and qualitative aspects of

automated music composition, subjects were interviewed

about their musical preferences. These subjective preferences

were used to adjust program parameters so that the learning

portion of the program could evolve toward styles which the

user liked.

Ten evaluation criteria were used from which the program

learned. These were:

• Tempo (TM)

• Tonality (TN)

• Time Signature (TS)

• Number of Instruments (NI)

• Type of Instruments (TI)

• Pitch Variation (PV)

• Note Duration Variation (NDV)

• Rhythmic Complexity (RC)

• Scales Used (SU)

• Percent of Jazz Chords (PJC)

The first of these were asked of the subjects directly. For

tempo, subjects were asked if they preferred music that was

slow, medium or fast, or some combination of these. (The

program allows more than one tempo to be included in a

composition.) Next, subjects were asked about tonality. The

options for these are major, minor, or atonal (a combination of

major and minor keys). If subjects were unclear on the

meaning of these terms, they were phrased as generally happy,

sad, or a combination.

The remaining criteria were inferred from the subjects’

preferred musical genre. The mapping from musical genre to

criteria is shown in Table 1. As with tempo, the program

handles multiple values for time signature and type of

instrument.

Table 1: Musical Genre to Criteria Mapping
Genre: TS N

I

*

TI PV ND

V

RC SU

**

PJ

C

Blue-

grass/

Celtic
4/4

6/8 4

Banjo

Bass

Fiddle

Guitar

Mandolin

Piano .6 .6 .4 M .2

Blues
6/8

4/4

8/8 4

Bass

Guitar

Organ

Piano .5 .6 .5 P .7

Classical All A Any .75 .8 .6 M .8

Country/

Folk 4/4

6/8

3/4 4

Banjo

Bass

Fiddle

Guitar

Mandolin

Piano .5 .5 .4 P .05

Experi-

mental All A Any .85 .85 .85 M .9

Hard

Rock

4/4

6/8

8/8 4

Bass

Guitar

Organ

Piano .5 .5 .4 P .4

Indus-

trial All 4

Bass

Guitar .4 .8 .8 P .0

Jazz

All A

Banjo

Bass

Fiddle

Flute

Organ

Piano

Sax

Trumpet

Xylophone .75 .8 .85 M .95

Metal
All 4

Bass

Guitar .7 .8 .8 M .2

Pop

4/4

6/8

8/8 4

Bass

Guitar

Piano .4 .4 .4 P .2

Punk
2/2

4/4 4

Bass

Guitar .3 .1 .1 P .0

Rap
4/4

8/8 4

Bass

Fiddle

Guitar

Piano .4 .5 .6 M .7

Soft

Rock

4/4

6/8

8/8 4

Bass

Guitar

Organ

Piano .5 .5 .5 P .5

Swing/

Big

Band

4/4

6/8 8

Banjo

Bass

Fiddle

Flute

Organ

Piano

Sax

Trombone

Trumpet

Tuba

Xylophone .7 .7 .8 M .8

Waltz 3/4 A Any .5 .4 .3 M .5

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

530

After subjects provided their preference criteria, program

parameters were adjusted to reflect these choices. The initial

composition based on these parameters was saved as the

“before” sample, and the program was allowed to evolve until

a given fitness level, either 8.0 or 9.0 on a scale of 10.0, was

reached, and that composition was saved as the “after” sample.

Subjects were then asked to rate each sample according to how

much they liked it on a scale from 1 to 10. The fitness level

and associated learning curves measure the quantitative aspect

of the program’s performance, while the subject ratings

capture the qualitative aspect of the system.

IV. RESULTS

Ten subjects were interviewed and the program was run for

each one. In all trials, the algorithm converged to an

acceptable level. On average, the program rated its own fitness

level on “before” compositions at 5.06, while, on average,

subjects rated the initial compositions at 5.1.

The least number of generations required to converge to the

acceptable fitness level was 238 generations, while the most

was 2,650, with an average convergence of 1,012 generations.

On average, the program rated the fitness level of “after”

compositions at 8.5, while subjects rated their liking of these

compositions, on average, at 6.25.

Learning curves were typical of what one would expect

from a genetic algorithm. Figure 1 shows the average fitness

rating as calculated by the program across all subjects. From

an average starting point of rating compositions at

approximately 5.0, the algorithm shows a general trend of

increasing fitness with some variation, until it levels off or

converges at a level of approximately 8.5.

Figure 1: Average Fitness across All Trials

The correspondence between user ratings and system ratings

was tested for correlation. There was a slight negative

correlation between before ratings of users and the system (r=

-0.68) and little correlation between after ratings given by

users and by the system (r=0.49). Figure 2 shows these results

graphically.

User vs. System Ratings

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

System Ratings

U
s
e
r
R
a
ti
n
g
s

After Ratings

Before Ratings

Figure 2: User vs. System Ratings

Of most interest to this research, however, is the rating

given by human listeners of the compositions tailored to

evolve according to their preferences. Our hypothesis stated

that human listeners would rate the evolved composition more

highly than the initial composition.

As shown in Figure 3, more human subjects rated the

compositions higher after learning occurred than the opposite,

though three subjects did rate the composition higher before

learning. In Figure 3, those data points above the line of

equality are those that preferred the initial composition over

the learned composition, and vice versa. Note that subjects

whose ratings are identical to another subject’s ratings are

combined into one data point.

Figure 3: Before and After Ratings of Compositions

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

531

Figure 4: Frequency Distribution of the Data

The difference between “before” and “after” ratings was

also tested for statistical significance. Since the hypothesis

states that the expected difference is in one direction, the one-

tailed test for significance was used, and it was evaluated as a

paired t-test. Before and after data sets were also evaluated for

approximate normal distribution (see Figure 4), and were

found to meet this assumption. The difference between the two

sets of ratings was statistically significant at the 95% level (p <

0.05).

V. CONCLUSIONS AND FUTURE DIRECTIONS

This research has demonstrated that compositions evolved

from individual preference were rated by the program as closer

to the given evaluation criteria via its fitness function, but

more importantly, human listeners also rated the evolved

compositions as better, and this difference was statistically

significant. This study sets the ground work for additional

investigation into the area of artificial creativity and machine

learning in musical composition.

Correlation between user ratings of compositions and

system ratings, both before and after learning, showed little

correspondence. A possible reason for this is the method in

which genre was defined. Our research used an ad hoc

parameterization of different genres, relying on the knowledge

of the authors. Percanella and Restaino [11] have researched a

method of classifying musical genres based on fractal

dimensions, providing a more objective method of definition.

Future work may benefit from using the more formalized

definition of genre and testing this against user perception.

During the course of subject interviews, comments made by

listeners were recorded. Some of the areas of change suggested

were to allow the listener to express different levels of

importance for each of the criteria. That is, for one person, the

choice of instrumentation may be of higher importance, while

for another, the tonality (major, minor, or atonal) may be more

critical. This could easily be incorporated into the program.

Additional composition features that users suggested included

being able to express a preference for the key in which the

composition was written, the length of the composition, and

changes in tempo within the composition. Again, these are

changes that are easily made.

Since the results have demonstrated promise on a small

subject population, future work in the area will be directed at a

larger subject population, including changes to the program as

discussed above.

REFERENCES

[1] Cope, David. "Experiments in Musical Intelligence." Ucsc.edu.

University of California. Web. 07 June 2011.

http://artsites.ucsc.edu/faculty/cope/experiments.htm .

[2] Muscutt, Keith, 2007. "Composing with Algorithms: An Interview with

David Cope" Computer Music Journal 31/3 (Fall): 10-22.

[3] "How WolframTones Works." WolframTones: An Experiment in a New

Kind of Music. Wolfram Research. Web. 07 June 2011.

http://tones.wolfram.com/about/faqs/howitworks.html .

[4] G. Hoffman and G. Weinberg. 2010, “Gesture-based Human-Robot Jazz

Improvisation” IEEE International Conference on Robotics and

Automation (ICRA2010).

[5] R. Klinger and G. Rudolph. “Evolutionary Composition of Music with

Learned Melody Evaluation”, Proceedings of the 5th WSEAS

International Conference on Computational Intelligence, Man-Machine

Systems, and Cybernetics”, Venice, Italy, Nov. 20-22, 2006.

[6] M. Alfonseca, M. Cebrian, and A. Ortega. “Testing Genetic Algorithm

Recombination Strategies and the Normalized Compression Distance

for Computer-Generated Music, Proceedings of the 5th WSEAS

International Conference on Artificial Intelligence, Knowledge

Engineering and Databases, Madrid, Spain, Feb. 15-17, 2006, 53-58.

[7] T. Maddox and J. Otten. “Using an Evolutionary Algorithm to Generate

Four-Part 18th Century Harmony”, Proceedings of the 1st WSEAS

International Conference on Mathematics and Computers in Business

and Economics (MCBE ‘00), Montego Bay, Jamaica, 2000.

[8] A. Santos, B. Arcay, J. Dorado, J. Romero, and J. Rodriguez.

“Evolutionary Computation Systems for Musical Composition”,

Proceedings of the 1st WSEAS International Conference on

Mathematics and Computers in Business and Economics (MCBE ‘00),

Montego Bay, Jamaica, 2000.

[9] Goldberg, David E., Genetic Algorithms, Addison-Wesley Publishing,

1989.

[10] Adams, Ricci. "Ricci Adams' Musictheory.net." Musictheory.net. 2011.

5 June 2011 http://www.musictheory.net/.

[11] G. Percannella and R. Restaino. “Distribution-based Classification of

Musical Genre Using Fractal Dimension”, WSEAS Transactions on

Acoustics and Music, Issue 3, Volume 1, July 2004, 123-128.

Nathan Fortier received his BS in software engineering at Montana Tech,

Butte, MT, USA in 2011. He is currently a master’s student at Montana State

University, Bozeman, MT, USA in computer science.

 He has worked as teaching assistant at Montana Tech, Butte, MT, USA for

C programming and embedded systems. He has also assisted in programming

for the state Transferability Initiative and has revised the computer science

department website fo9r Montana Tech.

Michele Van Dyne received her BA in psychology in 1981 at the University

of Montana, Missoula MT, USA, her MS in computer science in 1985, again

from the University of Montana, and her PhD in electrical engineering at the

University of Kansas, Lawrence KS, USA in 2003.

 She was employed as a Senior Technical Programmer/Analyst for Allied-

Signal Aerospace in Kansas City, MO, USA from 1985-1989, then joined

Sprint Telecommunications in Overland Park, KS, USA as a Knowledge

Engineer from 1989-1990. In 1990 she started an applied research company

specializing in artificial intelligence, IntelliDyne, Inc., Kansas City, MO,

USA, where she acted as President from 1990-2006. In 2006, she joined

Montana Tech, Butte, MT, USA as an Assistant Professor in computer

science. She acted as Department Head for the computer science department

from 2008-2011, and is now an Associate Professor at that institution.

 Dr. Van Dyne is a member of IEEE, IEEE Computer Society, ACM, and

AAAI. She was the organizing member and president of ESKaMo, an expert

system interest group in the Kansas City area, and steering committee

member for Instructional Technology and Women in Technology interest

groups of the Silicon Prairie Technology Association.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

532

