

Abstract—The term replication in a distributed database refers to

the operation of copying and maintaining database objects in more

than one location. There are three types of replication in distributed

system that are snapshot, transactional and merge. A partial failure

may happen when one component in such system fails. This failure

may affect the proper operation of other components while at the

same time leaving yet other components totally unaffected. An

important goal in such systems design is to construct the system in a

way that it can automatically recover from partial failures without

seriously affecting the overall performance and continue to operate in

an acceptable way while repairs are being made. The technologies,

architectures, and methodologies traditionally used to develop

distributed applications exhibit a variety of limitations and drawbacks

when applied to large scale distributed settings (e.g., the Internet). In

particular, they fail in providing the desired degree of configurability,

scalability, and customizability. To address these issues, researchers

are investigating a variety of innovative approaches. The most

promising and intriguing ones are those based on the ability of

moving code across the nodes of a network, exploiting the notion of

mobile code, the agent toolkit can be chosen as a platform for the

replication. So, this paper introduced the topic of agent replication

for distributed database and examined the issues associated with

using agent replication in a multi-agent system as well as the main

issues of agent communication, read/write consistency and state

synchronization.

Keywords— Agent, Distributed Database, Fault tolerance,

Latency Time, P2P System, Replication

I. INTRODUCTION

HE goal of the human-computer interaction community is

to make powerful applications easy to use, while retaining

their full potential. Distributed database implies that a single

application should be able to operate transparently on data that

is spread across a variety of different database, managed by a

variety of different DBMSs, running on a variety of different

machines, supported by a variety of different operating

systems, and connected together by a variety of different

Manuscript received December 6, 2009: Revised version received

February 27, 2010. This work was supported in part by the University of

Computer Studies, Mandalay, Myanmar.

 May Mar Oo is with the University of Computer Studies, Mandalay, Ph.D

Candidate, (phone: + 095-09-2059795; e-mail: maymar80@gmail.com).

The’ The’ Soe was with University of Computer Studies, Mandalay, Ph.D

Candidate, (C/o phone: + 095-02-88723; e-mail: myintmo08@gmail.com).

Aye Thida is with the Research and Development Department, University

of Computer Studies, Mandalay, Myanmar. She is an Associate Professor

(phone: +095-02-88724; e-mail: ayethidar.royal@gmail.com).

communication networks-where the term transparently means

that the application operates from a logical point of view as if

the data were all managed by a single DBMS running on a

single machine [7]. The essential issue for distributed database

is the replication that increases the locality of reference and

fault tolerance i.e., if one of the machines fails, a copy of the

data is still available on another machine on the network.

Replication is a cost effective way to increase availability

and used for both performance and fault tolerant purposes

thereby introducing a constant trade-off between consistency

and efficiency. Replication is the most providing way for

travelling salespeople and roaming disconnected users and

enables mobile users with laptops to be updated with current

database information when they connect and to upload data to

a server. Data is generated and then replicated.

Building software system composed of mobile agent

introduces interesting new concern for software engineering

research. An agent is usually defined as an independent

software program that runs on behalf of a network user. It can

be characterized as having more or less intelligence and it has

the ability to learn. Mobile agents add to regular agents the

capability of travelling to multiple locations in the network, by

saving their state and restoring it in the new host. As they

travel, they work on behalf of the user, such as collecting

information or delivering requests. This mobility greatly

enhances the productivity of each computing element in the

network and creates a powerful computing environment [5].

System availability is improved by the replication of data

objects in a distributed database system. However, during

updates, the complexity of keeping replicas identical arises due

to failures of sites and race conditions among conflicting

transactions. Fault tolerance and reliability are key issues to be

addressed in the design and architecture of these systems. So,

we proposed fault tolerance replication system for distributed

database in P2P network by using mobile agent approach.

II. RELATED WORK

In previous work we proposed the replication system to be

used in P2P environment and we have to add the fault

tolerance mechanism. To implement such mechanism, the

agent is very flexible approach. Moreover there are many

articles that tried to implement the agent in distributed

environment and fault tolerance mechanisms. The author

presents the performance evaluation of the management agent

(MA) containing the adaptive tabu search (ATS) as its search

Fault Tolerance by Replication of Distributed

Database in P2P System using Agent Approach

May Mar Oo, The` The` Soe and Aye Thida

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

9

core in [1]. In article [2] they present a comparative analysis

for several multi-agents participating in Trading Agents based

Competition, Classic [3] is the work proposes a Metascheduler

for GRID platforms based on the Interaction Protocols of the

Multiagent Systems. These protocols use the paradigm of

economic models to define the coordination mechanisms in

agent communities. Let look at the article[4],in this work the

existing relations between the imprecise computation and the

fault tolerant control (FTC) are analyzed.

III. DISTRIBUTED DATABASE

A distributed database system consists of a collection of

sites, connected together via some kind of communication

network, in which, each site is a full database system site in its

own right, but the sites have agreed to work together so that a

user at any site can access data from anywhere in the network

exactly as if the data were all stored at the user’s can site. Each

site is a database system site in its own right. The distributed

database system can thus be regarded as a kind of partnership

among the individual local DBMS at the individual local sites;

a new software component at each site-logically an extension

functionality, and it is the combination of this new component

together distributed database management system.

It has sometimes been assumed that the physical distribution

of data is not the most significant issue. The proponents of this

view would therefore feel comfortable in labelling as a

distributed database two (related) databases that reside in the

same computer system. However, the physical distribution of

data is very important. It creates problems that are not

encountered when the databases reside in the same computer.

It simply implies that the communication between them is done

over a network instead of through shared memory, with the

network as the only shared resource. This fundamental rule

lead to 12 objectives, among these objectives data replication

supports a system a given account record, may be represented

by many distinct copies of the same record object, at many

different sites. It can near better performance and better

availability. A given replicated object is updated [6].

A. Problems of Distributed Systems

The main problems in distributed database system can be

categorized as;

1. Query processing

2. Catalog management

3. Update propagation

4. Recovery control

5. Concurrency control

(1) Query processing

The objective of minimizing network utilization implies that

the query optimization process itself need to be distributed, as

well as the query execution process.

(2) Catalog management

In a distributed system, the system catalog will include not

only the usual catalog data regarding base relvars, views,

authorizations, etc; but also all the necessary control

information to enable the system to provide the desired

location, fragmentation, and replication independence.

(3) Update Propagation

The basic problem with data replication is that an update to

any given logical object must be propagated to all stored

copies of that object. A difficulty that arises immediately is

that some site holding a copy of the object might be

unavailable (because of a site or network failure) at the time of

the update. The obvious strategy of propagating updates

immediately to all copies is thus probably unacceptable

because it implies that the update-and therefore the

transaction-will fail if any one of those copies is currently

unavailable.

(4) Recovery control

Recovery control in distributed systems is typically based on

the two-phase commit protocol. It is required in any

environment in which a single transaction can interact with

several autonomous resource managers.

(5) Concurrency control

Concurrency control in most distributed systems is based on

locking, just as it is in most non distributed systems. In a

distributed system, however, requests to test, set, and release

locks become messages (assuming that the object under

consideration is at a remote site) and message mean overhead.

B. Transparent Management of Distributed and Replicated

Data

Transparency refers to separation of the higher-level

semantics of a system from lower-level implementation issues.

 Fig. 1 A Typical Distributed Database System

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

10

A transparent system hides the implementation details from

users. The advantage of a fully transparent DBMS is the high

level of support that it provides for the development of

complex application. A system supports data replication if a

given stored relvar or, more generally, a given fragment of a

given stored relvar can be represented by many distinct copies

or replicas, stored at many distinct sites. Fully transparent

access means that the users can still pose the query as specified

in local, without paying attention to the fragmentation, location

or replication of data and let the system worry about resolving

these issues.

For performance, reliability and availability reasons, it is

usually desirable to be able to distribute data in a replicated

fashion across the machines on network. Such replication

helps performance since diverse and conflicting user

requirements can be more easily accommodate. Assuming that

data is replicated, the issue related to transparency that needs

to be addressed is whether the users should be aware of the

existence of copies or whether the system should handle the

management of copies and the user should act as if there is a

single copy of the data. On the other hand, doing so inevitably

results in the loss of some flexibility. It is not the system that

decides whether or not to have copies and how many copies to

have, but the user application. Any change in these decisions

because of various considerations definitely affects the user

application and therefore reduces data independence

considerably. Given these considerations, it is desirable that

replication transparency be provided as a standard feature of

DBMS. It is important that replication transparency refers only

to the existence of replicas, not to their actual location.

IV. REPLICATION

Replication is the process of copying data from a data store

or file system to multiple computers to synchronize the data.

Database replication is becoming more important role for

database applications. Replicated data are becoming more and

more of interest lately. Replication is a cost effective way to

increase availability and used for both performance and fault

tolerant purposes thereby introducing a constant tradeoff

between consistency and efficiency [12]. Active directory

provides multi-master replications of the directory between

domain controllers within a given domain. The replica of the

directory on cash domain controller is writable. This allows

updates to be applied to any replica of a given domain. The

replication service automatically copies the changes from a

given replica to all other replicas.

Replication is desirable for at least, two reasons: first, it can

mean better performance and second, it can also mean better

availability. When object is updated, all copies of that object

must be updated which called the update propagation problem.

The problem with data replication is that an update to any

given logical object must be propagated to all stored copies of

that object. Some site holding a copy of the object might be

unavailable at the time of update. All copies are probably

unacceptable. This problem works as primary copy scheme. It

does represent a violation of local autonomy objective because

a transaction might now fail. Primary copy of some object is

unavailable even if a local copy is available. All update

propagation must be completed [7].

In a totally isolated database system, individual systems are

DBMS or the way to communicate with them. In each systems,

the processing of user transactions that access multiple

databases is especially difficult since there is no control over

the execution individual DBMS and the limitations of client

server systems become evident in an Internet scale distributed

environment. Distributed Systems in replication offer an

alternative to traditional client/server systems. To provide that,

our proposed system is implemented as a distributed system in

replication for the performance and reliability of the system,

we use the nature of distributed and parallel DBMS. Our

purposed aims at allowing transparent access to distributed

database on P2P network based or replica. Replication is one

of the oldest and most important topics in the overall area of

distributed systems. It is a process of copying/moving data

between databases on the same or different servers.

A. Basic Concepts of Replication

Replication uses the following three servers [5].

 (1) Publisher

 (2) Distributor

 (3) Subscriber

The basic problem with data replication is that an update to

any given logical object must be propagated to all stored

copies of that object. A difficulty that arises immediately is

that some sites holding a copy of the object might be

unavailable (because of a site or network failure) at the time of

the update. The obvious strategy of propagating updates

immediately to all copies is thus probably unacceptable,

Fig.2 An example of replication

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

11

because it implies that the update and therefore the transaction

will fail if any one of those copies is currently unavailable. In a

sense, in fact, data is less available under this strategy than it

would be in the non-replicated case.

B. Three Types of Replication

There are three types of replication in distributed database

as follows:

(1) Snapshot Replication

(2) Transactional Replication

(3) Merge Replication

(1) Snapshot Replication

Snapshot replication [8] is the simplest form of replication

and it simply takes a "snapshot" of the data on one server and

moves that data to another server (or another database on the

same server). It distributes data exactly as it appears at a

specific moment in time and does not monitor for updates to

the data. It is the best used method of replicating data that

change infrequently or where the most up-to-date values are

not requirement.

When synchronization occurs, the entire snapshot is

generated and sent to the subscribers. After the initial

synchronization snapshot, replication can refresh data in

published tables periodically based on the schedule you

specify. Although snapshot replication is the easiest type to set

up and maintain, it requires copying all data each time a table

is refreshed.

(2) Transactional Replication

Transactional replication [8] involves copying data from the

publisher to the subscriber(s) once and then delivering

transactions to the subscriber(s) as they occur on the publisher.

It is also known as dynamic replication and typically used in

server-to-server environments. The application requires low

latency between the time changes are made at the publisher

and the changes arrive at the subscriber. An initial snapshot of

data is applied to subscriber, and when data modifications are

made at the publisher, the individual transactions are captured

and propagated to subscriber. By default, subscribers to

transactional publication should be treated as read only,

because changes are not propagated back to the publisher.

Transactional replication performance tuning and optimization

examined performance in transactional replications and based

on the results of tests conducted using a variety of hardware

configurations and replication environments [13].

(3) Merge Replication

Merge replication [8] is the process of distributing data from

publisher to subscriber, allowing the publisher and subscriber

to make update data while they are connected or disconnected,

and then merging the updates between sites when they are

connected. It is typically used in server-to-client environments

and appropriate where multiple subscribers might update the

same data at various times and propagate those changes to the

publisher and to other subscribers that need to receive data,

make changes offline, and later synchronize changes with the

publisher and other subscribers, each subscriber requires a

different partition of data, conflicts might occur and, when

they do, the users need the ability to detect and resolve them.

V. AGENTS

An agent is a computation that may hop from site to site

over the network [9]. We review the concepts of agents, agent

servers, suitcases, and briefings. A suitcase is a piece of data

that an agent carries with it as it moves from site to site. It

contains the long-term memory of the agent. It may include a

list of sites to visit, the tasks to perform at each site, and the

results of performing those tasks. A briefing is data that an

agent receives at each site, as it enters the site. It may include

advice for the agent (e.g. “too busy now, try this other site”),

and any site dependent data such as local file systems and

databases. An agent server, for a given site, is a program that

accepts code over the network, executes the code, and

provides it with a local briefing.

A hop instruction is used by agents to move from one site to

the next. This instruction has as parameters an agent server,

the code of an agent, and a suitcase. The agent and the suitcase

are sent to the agent server for execution. Finally, an agent is a

user-defined piece of code parameterized by a suitcase and a

briefing. All the data needs of the agents should be satisfied by

what it finds in either the suitcase or the briefing parameters.

At each site, the agent inspects the briefing and the suitcase to

decide what to do. After performing some tasks, it typically

executes a hop instruction to move to the next site. If an agent

has a user interface, it takes a snapshot of the interface, stores

it in the suitcase during the hop, and rebuilds the interface

from the snapshot at the destination.

Fig.3 Replication process

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

12

Agents in computer systems are often mobile. The ability of

migration provides mobile agents a means to overcome the

high latency or limited bandwidth problem of traditional

client-server interactions by moving their computations to

required resources or services. Migration also provides a

means to protect data. Agents may need to migrate to given

locations to view and process specific data. A distinction can

be made between migrations in which the execution state is

migrated along with the unit of computation or not. Systems

providing the former option are said to support strong

mobility, as opposed to systems that discard the execution

state across migration, and are hence said to provide weak

mobility. In systems supporting strong mobility, migration is

completely transparent to the migrated program, whereas with

weak mobility, extra programming is required in order to save

part of the execution state. Strong mobility requires that the

entire state of the agent, including its execution stack and

program counter, is saved before the agent is migrated to its

new location. Strong mobility is a complicated task to realize,

and typical implementations of this functionality in multi-agent

platforms provide platform specific solutions. As a

consequence, interoperability between heterogeneous multi-

agent systems is difficult, if not impossible, to realize. Many of

the multi-agent platforms support weak mobility.

Most of the agent systems are implemented on top of the

Java Virtual Machine (JVM), which provides with object

serialization basic mechanisms to implement weak mobility.

The JVM does not provide mechanisms to deal with the

execution state.

A. Java Aglets

The Java Aglets API (J-A API) [9], developed by IBM

Tokyo Research Laboratory in Japan, extends Java with

support for weak mobility. The context of an aglet provides a

set of basic services, e.g., retrieval of the list of aglets currently

contained in that context or creation of new aglets within the

context. Java Aglets provides two migration primitives:

dispatch is the primitive that performs code shipping of stand-

alone code (the code segment of the aglet) to the context

specified as parameter. The mechanism is asynchronous and

immediate. The symmetrical primitive retract performs code

fetching of standalone code, and is used to force an aglet to

come back to the context where retract is executed, with a

synchronous, immediate mechanism. In both cases, the aglet is

re-executed from scratch after migration, although it retains

the value of its object attributes which are used to provide an

initial state for its computation. The attribute values may

contain references to resources, which are always managed by

copy. Finally, being based on Java, the Aglets API supports

Java mechanisms as well.

B. Advantages of Mobile Agents

Mobile agents introduce some advantages to the usual

programming models:

• the construction of economic high quality and high

performance applications. Applications using mobile agents

use the network transparently, taking full advantage of the

local resources. The data processing is done at the source

rather than remotely fetched.

• the efficient and economic use of low-bandwidth, high-

latency, error prone communications. The agent network uses

a store and forward mechanism to transfer agents between

nodes. This mechanism is enhanced with queuing and

persistent checkpoints allowing mobile agents to use

communications of mobile devices without degradation in

reliability and response.

• the use of low-cost portable personal communication

devices. Mobile devices are one of the areas of growth in the

computer industry. Everything from laptops to palmtops,

cellular phones, and electronic books will access the Internet

services to deliver user tasks. Nonetheless these devices will

have unreliable low-bandwidth, high-latency network

connections provided by telephone lines or even wireless.

Mobile agents will be the ideal to accomplish the tasks

performed by these devices.

• the enhance of secure communications on public networks.

As they travel, mobile agents carry with them user credentials.

These are authenticated during execution in every point in the

network. To enhance security, agents and their data travel

along the network fully encrypted.

• the alternative to the client/server paradigm. With mobile

agents the request/response architecture of the client/server

paradigm is avoided, because the flow of control moves across

the network. Every node becomes a server and the agent

moves from location to location to find the services it needs at

each point of its execution. The complicated issue of

exponential scaling of servers and connections required

between multiple servers becomes a simple capability issue.

The relationship between servers and users is now coded in

each agent, instead of being scattered along clients and

servers. There is also the advantage of the hold time for

connections being reduced to the time required to move the

agent in or out of the host. As the agent carries its own

credentials, the connection is only a move operation,

abolishing authentication and spoofing. The agent moves only

once, no requests flow across the connection. This allows

optimization at several levels.

• the software distribution on demand. The wide use of code

on demand systems such as Java Applets, Java servlets and

Active X has opened the door to an installation alternative:

software distribution on demand, which can transport code and

install packages automatically. This kind of distribution is a

Fig.4 The Scenario for Agent transaction

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

13

potential advantage for every mobile code system, therefore to

mobile agents.

• Asynchronous tasks. Agents can be used to perform a set

of asynchronous tasks in the network. The client part of the

application can be transferred from the device to the network.

Once the transfer is done, the device can be disconnected and

reconnected when the result is available. This is very useful in

mobile devices where it is almost impossible to maintain a

connection for days, weeks or longer. It is important that the

agent’s system is fault-tolerant, carrying his work

independently of communication and host failures. It must also

be aware of the exactly-once semantic, not performing a task

more than once, even if it was interrupted by a failure. Some

kind of check-pointing must be maintained.

C. A Problem - Specific Fault - Tolerance Mechanism for

Asynchronous, Distributed Systems

The theory on fault-tolerant mechanism for distributed

systems is based on different kind of networks, such as LAN,

WAN. Since these networks are providing various services

over the network, it makes communications between the users

entrusted. So, the algorithm, which provides reliable services

and scalability of the resources, is needed to be designed. In

fact, scalability is achieved by a fully decentralized algorithm,

in which the dynamically available resources are managed

through a membership protocol [10]. On other side, fault

tolerance is assured in meaning of that the loss of up to all but

one resource will not affect the quality of the solution. There

are some approaches, such as synchronous or asynchronous,

work sharing, and information sharing mechanisms.

Synchronous design underlying that all processes will wait

each other to complete, and not to wait in the asynchronous

algorithm. Work sharing technique allows monitoring all

processes and assigning any available slots, so these processes

may work in parallel. Information sharing mechanism based on

storing all information about all known sharing solutions and

its decision is the best known solution for this kind of problem.

The internet connected computers can implement such

algorithm to give all resources for distributed systems, such as

[10]: scalability, dynamic availability, unreliability,

communication characteristics, heterogeneity, and lack of

centralized control [10]. They describe dynamic design which

was chosen by algorithm designers. As usual dynamic methods

provide better performance and consistency, and all processes

update data with better solutions for future reference and faster

decision making result. However, to make more reliable some

extensions were invented, such as a group membership

protocol to allow dynamic variation in the number and

components of resources and a fault tolerance mechanism. The

group membership protocol is for collecting and updating

information about which resources participate in the

computation at any given time [10].

 This works really simple. When new process or computer

comes to the assigned group, it sends request to join the group

to known server, which controls this group and knows if

anyone from this group is present. If not, the group is

initialized, and on other hand if group is active, the server just

simply joins this member to this group. On other side when

process lives the group by any causes, such as self termination

or even failure membership server is aware of these kind

processes. As a result, the system always knows who is where

and what status of the systems’ components are. Moreover, the

server is able to log all activities of all members, and make

sure that process is not in timeout, due to some inactivity

period of it. The fault-tolerant mechanism does not capture

failures of computers and restore their data, but rather focuses

on detecting missing results [10]. This can be obtained by

getting placed problem on the particular place as a node in the

tree, and by calculating code for each location in the tree. As a

result, each node can be identified by unique code.

D. Fault-tolerance replicating by agents

Replication of services leads to increase level of

complication of the system. The transparent agent replication

is the technique in which the replicates of agents appear and

act as one entity thus avoiding an increase in system

complexity and minimizing additional system loads. Another

point is inter-agent communication, read/write consistency,

resource locking, resource synthesis and state synchronization

[10]. Multi-agent systems (MASs) appropriate solution for

development difficult, distributed systems, but they are still

vulnerable to any kinds of faults that any distributed system

may have. The modular nature of a MAS gives it a certain

level of inherent fault tolerance, however the non-deterministic

nature of the agents, the dynamic environment, the inter

connectedness of the agents and the lack of any central control

point make it impossible to foresee possible fault states and

make fault handling behaviour unpredictable[10]. Since that,

entire system may crash just because only one agent had a

small error. The authors made their assumptions based on the

open environment system, where agents are not reliable and

might not be fault-tolerant. There are four essential

characteristics of a multi-agent system: a MAS is composed of

autonomous software agents, a MAS has no single point of

control, a MAS interacts with a dynamic environment, and the

agents within a MAS are social (agents communicate and

interact with each other and may form relationships) [10].

Moreover, there exist various fault types, which can bring

wide system crash. These faults can come from program

defects, sudden changes, processor and communication fault,

as well as emerging actions, which are not predicted. In

addition, there are many techniques to have replication agents,

and they either agent centric or system-centric. The major

difference between them is that system-centric is more

complex structure, but it can catch system-wide faults. The

mixture of these two types of agents is classified as a

Dependable Mobile Agent System. However, both of the

techniques uses agent replication aspects, and the redundant

replicates and any proxies are external to original agent, using

a system centric approach, but individual agents must have the

capability to utilize replication [10].

Agent replication is the act of creating one or more

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

14

duplicates of one or more agents in a multi-agent system [10].

Each of these agents may perform the same task as the original

agent. Duplicate agents form replicate group and each member

is named as replicates. As soon as a replicate group is formed

and it is viewable by all members of the MAS, there are

several ways that agents can interact with it:

• An agent can send requests to each replicate in turn until it

receives an appropriate reply.

• An agent can send requests to all replicates and select one,

or synthesize the replies that it receives.

• An agent can pick one of the replicates based on particular

criteria (speed, reliability, etc.) and interact only with that

agent [10].

 The transparent replication uses proxy to communicate

between replicas and clients. So, proxies provide two

important functions: they make the replicate group appear to

be a single entity and they control execution and state

management of a replicate group [10]. In details, proxy is

providing communication between replicates and other agents

in the MAS [10]. In this case, proxy becomes single point of

failure, which requires backups of itself and if one proxy goes

down another and another can replace main proxy's

functionalities. This brings another overhead for this solution,

but it pay off by improving reliability of the system. Another

proxy to exchange data between replicas, and this proxy make

sure that all members receive equal data. There are some

downsides of this part such as it becomes single point of

failure solution. Also, it may cause time delay between data

received and data backed up to the replicates. The other role

that proxies can fill is management of the replicate group.

Through various replicate group management policies, some

of the replication issues can be dealt with. Three replication

management policies are identified: hot-standby, cold-standby,

and active [10]. Depending on policy system besides which

proxy will start after current working proxy goes down. As

well as proxies may improve performance management of the

replicate group [10].

VI. LATENCY TIME

This section describes latency time in replication. In a

computer system, latency is often used to mean any delay or

waiting that increases real or perceived response time beyond

the response time desired. Latency is the delay that occurs

after a send operation is executed before data starts to arrive at

the destination computer [11]. Specific contributors to

computer latency include mismatches in data speed between

the microprocessor and input/output devices and inadequate

data buffers. Within a computer, latency can be removed or

"hidden" by such techniques as perfecting (anticipating the

need for data input requests) and multithreading, or using

parallelism across multiple execution threads.

 The latency assumption seems to be that data should be

transmitted instantly between one point and another (that is,

with no delay at all). The contributors to network latency

include:

Propagation: This is simply the time it takes for a packet to

travel between one place and another at the speed of light.

Transmission: The medium itself (whether optical fiber,

wireless, or some other) introduces some delay. The size of the

packet introduces delay in a round trip since a larger packet

will take longer to receive and return than a short one.

Router and other processing: Each gateway node takes time

to examine and possibly change the header in a packet.

Other computer and storage delays: Within networks at each

end of the journey, a packet may be subject to storage and hard

disk access delays at intermediate devices such as switches and

bridges.

In our proposed system, we can compute the latency time by

the following equation:

LT = Rbt - Sat (1)

where,

LT = Latency time between different machines

Rbt = Receiving time at destination point

Sat = Sending time at source point

As mention, we compute and compare the latency time for

the three types of operations on transactional replication.

VII. OVERVIEW OF PROPOSED SYSTEM

In this section, we present the overview of the proposed

system. Before describing the proposed system, there are some

assumptions. This system is only for homogeneous databases.

Different types of representative environments for replication

are LAN, P2P systems, Grids and so on. Among them, this

proposed system uses P2P system. P2P system provides a

decentralized approach to solve classical problems in

replication and caching. They offer many advantages over

traditional centralized approaches: e.g., organic scaling, no

costly infrastructure, and fault tolerance. P2P systems need to

deal with data location, data integration, data querying, and

data consistency issues.

 Replication in P2P system is a key effectiveness of

Task Shell

Task Shell

Task Shell

Task Shell
(external communication)

Replication Manager

(replication group management)

Replication Policy

(replication group consistency)

reply buffer
handling of

duplicates

Agent

Task
(execution control)

replication group

-sender ID

-Serial number
-message contetnt

Message

Remote Task

(group proxy)

discard

reply

Fig.5 Replication management using Agent

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

15

distributed system in that can provide enhanced performance,

high availability and fault tolerance. It can provide all

transactions such as insert, update and delete with data

synchronization. Synchronization refers to the propagation of

data changes between publisher and subscriber. Therefore,

synchronization is the crucial role for replication. There are

three types of replication such as snapshot, transactional and

merge.

 Among them, this system proposed the transactional

replication. Transactional replication allows data modifications

to be propagated incrementally between different locations in a

distributed environment. It is the most efficient and flexible

synchronization model in terms of response time and

customizability.

 We choose the transactional replication because it can

transfer only the changed data (instead of sending the

completed data every time) to the subscriber with minimal

latency time than others (such as snapshot and merge

replication). In this transactional replication, data alteration

and custom processing can be easily implemented using

custom replication stored procedures, while transferring the

data.

Firstly, users need to choose whether they update the data or

enquire the replica data from remote site. If they want to read

the data, they can read the data that they desired via the proxy.

If they want to update the data, data may be updated and then

they may also be propagated by the replica agent. The agent

may also be replicated for fault tolerance purpose. The commit

will be performed by the selected coordinator. The coordinator

also maintains the states of each replica and it can rollback to

previous state if any fault occurs. Figure 6 shows the

architecture of the system.

VIII. EXPERIMENTAL RESULTS

In this section, we present and compare the latency time of

insert, update and delete operations for previous transactional

replication system and our new fault tolerance replication

system.

Figure 7 shows comparison of the latency time for inserted

records. The horizontal axis represented file size in megabytes.

The vertical axis represented latency time in milliseconds

when transferring data from one machine to another. In

previous system, latency time is absolutely depending on the

file size. The bigger the file sizes, the higher the latency time,

but in new system it also tried to cover the fault tolerance

purpose, latency is a little greater.

The evaluation performance of updated records depending

to their file size and the latency time is described in Figure 8.

According to the above experimental results, the latency time

is gradually increased when 1MB of file size is reached 1,500

milliseconds to 7 MB of file size is reached 18,500

milliseconds. The more the file size, the more the latency time

is.

Coordinator
S0

S2 S3S1

S0
S1
S2

S3

transaction log

RA

RA RA

RA

Commit

Commit

C
o
m

m
it

Fig.6 Overall Architecture of the system

Fig.7 Latency time for inserted records

Fig.8 Latency time for updated records

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

16

Similarly, the horizontal axis represented measurement of

file size in megabytes as shown in Figure 9. The vertical axis

represented latency time when transferring data from one

machine to another. Latency time is absolutely depending on

the file size. The bigger the file sizes, the higher the latency

time.

As mentioned above, the latency time of three operations for

both systems are slightly difference. In previous system when

transferring file size of 1MB, Insert operation takes 2,000

milliseconds, Update operation takes 1,500 milliseconds and

Delete operation takes 1,000 milliseconds but in new system

they are increase proportionally. Although we can see the more

file size, the more latency time, it is not clearly difference

latencies among them. Therefore, we can show the overall

average time is nearly the same according to our experimental

results.

IX. CONCLUSION

In previous paper, we present the transactional replication

with latency time. But P2P network is a dynamic self-

organization network, in which peer can freely join or leave,

so there will lost a lot of important data when some important

nodes fail, and there exists load imbalance of node in the P2P

network. So, we added the previous system with some

mechanism that support for fault tolerance replication. At that

point, we used the Mobile agent to control the transactions.

The proposed system also computes latency time of update,

delete and insert operations depend on the file sizes. The

bigger the file sizes, the higher the latency time. According to

the experimental results the average file sizes of three

transactions are nearly the same. There is a little difference in

latency when transferring data from one machine to another.

So, this proposed system can transfer data between publisher

and subscriber with minimal latency. This system is suitable

for distributed system when distributing data in a replicated

fashion across the machine on the network with optimal

results. It also improves the performance, availability and

reliability for distributed system. It can supplement disaster-

recovery plans by duplicating the data from a local database

server to remote database server.

ACKNOWLEDGMENT

First of all,we would like to thank our supervisor Associate

Professor Dr.Aye Thida,University of Computer Studies

Mandalay,Myanmar for accepting us into the research and

guiding us along the way with patience,offering bright

suggestions and sound advice.We also thankful to Assistant

Lecturer U Thein Than Thwin,University of Computer

Studies,Mandalay,Myanmar for overall support throughtout

the period of the study.Finally,we also thank all my friends for

their motivating discussion about research and help.

REFERENCES

[1] J. Kluabwang, D. Puangdownreong, S. Sujitjorn, Performance

Assessment of Search Management Agent under Asymmetrical

Problems and Control Design Applications, School of Electrical

Engineering, Institute of Engineering Suranaree University of

Technology, WSEAS Transactions on Computers,ISSN: 1109-2750,

Issue 4, Volume 8, April 2009.

[2] A. Rios-Bolivar,L. Parraguez, F. Hidrobo, M. Heraoui, J. Anato, F.

Rivas, An Imprecise Computation Framework for Fault Tolerant Control

Design,WSEAS Transactions on Computers, ISSN: 1109-2750 ,Issue 7,

Volume 8, July 2009.

[3] D. Mancas, S. Udristoiu, Ecaterina - Irina Manole, B. Lapadat, A

Comparison of Multi-Agents Competing for Trading Agents

Competition,WSEAS Transactions on Computers, ISSN: 1109-2750,

Issue 12, Volume 7, December 2008.

[4] J. Aguilar, R. umoza, Cemisid, A Multiagent Grid Metascheduler,

Facultad de Ingeniería, Universidad de los Andes, Mérida, Venezuela,

WSEAS Transactions on Computers,ISSN:1109-2750,Issue 8, Volume

8, August 2009.

[5] H. Paulino, A Mobile Agent Systems’ Overview, Departamento de

Inform´atica, Faculdade de Ciˆencias e Tecnologia, Universidade Nova

de lisboa, February, 2002.

[6] C. J. Date, An Introduction to Database Systems 7th edition, May 2000.

[7] Principles of Distributed Database Systems, second edition, Prentice

Hall, Upper Saddle River, New Jersey 07458.

[8] http://en.wikipedia.org/wiki/Distributed_ data- base

[9] A.I. Wang,A.A.Hanssen,B.S.Nymoen,Design Principles for a Mobile

Multi-Agent Architecture for Cooperative Software Engineering , Dept.

of Computer and Information Science, Norwegian University of Science

and Technology (NTNU), N-7491 Trondheim, Norway.

[10] Y. Gershteyn,Fault Tolerance in Distributed Systems, Department of

Computer Science, Rochester Institute of Technology, Rochester, NY,

USA, February 5, 2003.

[11] G. Coulouris, J. Dollimore and T. Kindberg, Distributed systems

concepts and design, Third Edition.

[12] V.Martins, E. Pacitti and P. Valduriez, Survey of data replication in P2P

systems, 2006.

[13] B. Newman, X. Schildwachter and G. Yvkoff, Transactional replication

performance tuning and optimization, 2001.

May Mar Oo,Ph.D Candidate,University Of Computer

Studies,Mandalay,Myanmar.Native town is Mandalay,Myanmar and Date Of

Birth is November 20,1980. B.C.Sc degree is hold in 2000,B.C.Sc(Hons:)

degree is hold in 2001 and M.C.Sc degree is hold in 2002 at University Of

Computer Studies,Mandalay,Myanmar.Her major field is Computer Science.

 She worked as Tutor at Mandalay University,Myanmar in 2005 and Hpa-

an University,Myanmar in 2009.Currently,she works as Assistant Lecture at

University Of Computer Studies,Mandalay,Myanmar.She accepted the

journal of NAUN Conference in December 8, 2009.

The’ The’ Soe,Ph.D Candiate,University Of Computer

Studies,Mandalay,Myanmar.Native town is Lashio,Myanmar and Date Of

Birth is December 7,1979. B.C.Sc degree is hold in 2007,B.C.Sc(Hons:)

Fig.9 Latency time for deleted records

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

17

degree is hold in 2008 and M.C.Sc degree is hold in 2009 at University Of

Computer Studies,Mandalay,Myanmar.Her major field is Computer Science.

 She worked as Tutor at Mandalay University in 2008 and She works as

Assistant Lecture at University Of Computer Studies,Mandalay,Myanmar.She

accepted the journal of NAUN Conference in December 8, 2009.

Aye Thida, Ph.D, Associate Professor, University Of Computer

Studies,Mandalay,Myanmar.Native town is Monywar, Myanmar and Date Of

Birth is April 7,1972. D.C.Sc degree is hold in 2000,M.I.Sc degree is hold in

2001 and Ph.D degree is hold in 2004 at University Of Computer

Studies,Yangon,Myanmar.Her major field is Computer Science.

 She worked as Tutor at Mandalay University,Myanmar in 2002 and she

also worked as Headmistress at Loikaw University,Myanmar in

2007.Currently she works as Associate Professor at University Of Computer

Studies,Mandalay,Myanmar.She accepted the journal of NAUN Conference

in December 8, 2009.

Fault Tolerance by Replication of Distributed Database in p2p system

using Agent Approach.Ms.Oo,Ms. Soe and Dr. Thida.They were researchers

with University of Computer Studies,Mandalay,Myanmar.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

18

