
Fast algorithms for preemptive scheduling of jobs with release times on a single
processor to minimize the number of late jobs

Nodari Vakhania∗

Abstract— We have n jobs with release times and due-dates
to be scheduled preemptively on a single-machine that can handle
at most one job at a time. Our objective is to minimize the number
of late jobs, ones completed after their due-dates. This problem is
known to be solvable in time O(n3 logn). Here we present two
polynomial-time algorithms with a superior running time. The
first algorithm solves optimally in time O(n2) the special case
of the problem when job processing times and due-dates are tied
so that for each pair of jobs i, j with di > dj , pi ≥ pj . This
particular setting has real-life applications. The second algorithm
runs in time O(n logn) and works for the general version of the
problem. As we show, there are strong cases when the algorithm
finds an optimal solution.

Keywords–scheduling single processor, preemption, release
date, due date, late job, algorithm

1 Introduction
Scheduling problems arise in various practical circum-
stances. Examples of such problems are job shop prob-
lems in industry, scheduling of information and computa-
tional processes, traffic scheduling and servicing of cargo
trains, ships, airplanes. There are scheduling problems of
diverse types and different complexities. Saying generally,
one deals with two initial notions: job (or task) and ma-
chine (or processor). A job is a part of the whole work to
be done, a machine is the means for the performance of a
job. Each job j has its processing time pj , i.e. it needs this
prescribed time on a machine, and a machine cannot handle
more than one job at a time. The due date dj is the desir-
able completion time for job j, and the release time rj is
the time moment when job j becomes available (it cannot
be processed before).

Consider the following basic scheduling problem. Jobs
from J = {1, 2, . . . , n} have to be assigned to or scheduled
on a single machine when each j ∈ J becomes available at
an integer release time rj and has an integer due date dj .
Job j needs an integer pj on the machine. A schedule as-
signs each job j time intervals with the total length of pj
starting no earlier than at time rj so that there is no inter-
section between intervals of different jobs, i.e., the machine
may handle at most one job at a time. In this way we allow
job preemptions splitting jobs into parts. A job is late (on

∗State University of Morelos, Mexico. Inst. of Computational Math.,
Tbilisi, Georgia. E-mail: nodari@uaem.mx. Partially supported by
CONACyT grant 48433

time, respectively) if it (its latest scheduled part) is com-
pleted after (at or before, respectively) its due date. Our
objective is to minimize the number of late jobs. Due to
this objective function, we may assume that every job may
potentially be completed by its due date, i.e., rj + p ≤ dj ,
for each j (then we say that job release times and due dates
are agreeable).

The general problem described above is commonly ab-
breviated as 1/pmtn, rj/

∑
Uj (Uj is a 0-1 function tak-

ing value 1 iff job j is late). It is known to be solvable in
polynomial time. In particular, Lawler [5] and Baptiste [1]
have suggested dynamic programming algorithms with the
time complexity of O(n5) and O(n4), respectively. Re-
cently Vakhania [11] has improved the time complexity
to O(n3 log n). The non-preemptive version of the above
problem 1/rj/

∑
Uj is known to be strongly NP-hard. The

version with equal-length jobs 1/pmtn, pj = p, rj/
∑
Uj

can be solved on-line in time O(n log n) Vakhania [9] and
[10]. See also Lawler [6] for an off-line dynamic program-
ming algorithm with the same time complexity. This algo-
rithm solves a more general problem with job weights, a
special case of 1/pmtn, rj/

∑
wjUj in which the jobs can

be ordered so that r1 ≤ r2 ≤ ... ≤ rn, p1 ≤ p2 ≤ . . . ≤ pn
and w1 ≥ w2 ≥ . . . ≥ wn. Both preemptive and non-
preemptive versions can be solved relatively easily in time
O(n log n) if either the release times or due-dates of all
jobs are equal (Moore [8]).

For multiprocessor case, if jobs have release times and
arbitrary processing times, already scheduling on 2 iden-
tical processors with preemptions P2/pmtn, rj/

∑
Uj

is NP-hard Du et al. [4]. The weighted preemp-
tive version even without release times P/pmtn, pj =
p/

∑
wjUj is also NP-hard, and its non-preemptive ver-

sion P/pj = p/
∑
wjUj is surprisingly polynomial

Brucker & Kravchenko [3]. Without weights for the prob-
lem P/pj = p, rj/

∑
Uj and its preemptive version,

there exist dynamic programming algorithms in whose time
complexity expressionm appears in the power of a polyno-
mial of n (see, for example, Lawler [7], Baptiste et. al [2]).

In this paper we deal first with a special case of the
single-machine version 1/pmtn, rj/

∑
Uj when job pro-

cessing times and due-dates are tied in the following way.
For each pair of jobs i, j with di > dj , pi ≥ pj ; for
di = dj , pi and pj have no further restriction. Our model
is motivated by some practical applications when the man-

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

79



ufacturer prefers to finish shorter jobs ahead longer jobs
in order to provide the customer with the maximal amount
of the completed jobs ASAP. Then the manufacturer sets
the due-dates so that shorter jobs have smaller due-dates.
The algorithm we suggest has a superb time complexity of
O(n2) compared to the earlier mentioned algorithms for
the general single-machine version, which makes it more
appropriate for the above type of applications.

We also present a fast O(n log n) time algorithm for
the general version of the problem. We study the general
properties of the schedules generated by that algorithm and
formulate three different cases when the generated solution
is optimal.

In the next section we describe our O(n2) algorithm
for the case with tied parameters. First we give its descrip-
tion, then we prove its soundness and time complexity, and
finally we show why it does not work in the general case.
The following sections are devoted to the general version of
our problem. In section 3 we describe some useful struc-
tural properties of the problem. In Section 4 we present
our O(n log n) algorithm and formulate the first two cases
when it generates an optimal schedule. In Section 4 we
introduce some additional concepts and formulate our third
stronger case when the algorithm still constructs an optimal
solution.

2 The algorithm for the version of
the problem with tied parameters

In this section we present the algorithm and its correct-
ness proof for the version of our problem with tied param-
eters when for each couple of jobs i and j, di > dj yields
pi ≥ pj . First, we give the following general observation.
Due to the nature of our objective function, if a job is late
then it can be scheduled arbitrarily late without affecting
our objective function. Suppose S is a feasible schedule
with all its jobs being included on-time, and we can as-
sert that we have included the maximal possible number of
jobs in it. Then we can append all the omitted jobs in an
arbitrary feasible fashion at the end of S, in linear time. Be-
cause of this, we shall take care only on on time scheduling
of jobs. Thus we shall exclusively deal with the schedules
in which all the jobs are scheduled on time; among all such
schedules, we shall look for one containing the maximal
possible number of jobs, i.e., an optimal one.

2.1 The description

First we give a brief description of our algorithm. Our first
step is to renumber jobs in J in a non-decreasing order of
their due-dates. After this preprocessing with the cost of
O(n log n) the jobs in J are ordered so that d1 ≤ d2 ≤
. . . ≤ dn. According to our assumption, this yields p1 ≤
p2 ≤ . . . ≤ pn. Iteratively, we shall process the jobs in

this order trying to schedule each next incoming job i, i =
1, 2, . . . , n, at its release time. If this conflict with some
already scheduled job(s) occurs then i might be split and
scheduled within the available idle time intervals in case it
can be completed by time di. Otherwise i is omitted. We
give some more details below.

We will have n basic iterations, i = 1, 2, . . . , n, so that
we try to schedule job i at iteration i. We use a doubly
linked list L to keep the track of the already occupied time
intervals on the machine. Each element of this list keeps
two parameters which are left and right limits of the corre-
sponding interval. The elements will be organized so that
the right limit of the interval represented by an element of
the list is strictly less than the left time interval represented
by the next element(s) of the list.

Now we describe procedure SCAN(i) which is the
main body of our algorithm used at each iteration i.
SCAN(i) either includes job i updating the current list L
or establishes that i cannot be included, in which case i is
omitted. Initially on iteration 1 SCAN(1) includes job 1
within the interval [r1, r1 + p1] and adds our first element
to L representing the time (execution) interval of job 1.

Suppose for i ≥ 2 the time interval [ri, ri + pi] is idle
by iteration i. Then job i is scheduled within that interval
on iteration i. Either a new element is added to L or one or
two elements from L might be converted into one element
with the modified limits representing the time intervals of
at least two jobs including job i (so the corresponding time
intervals are merged). A new element will be added to L if
either ri+pi is strictly less than the left-limit of the first el-
ement of L (in this case the new element representing time
interval of i will be inserted as the first one in L) or ri is
strictly more than the right limit of the last element of L
(in this case the new element will be inserted as the last
one in L). Otherwise, if there are two successive elements
in L such that ri is strictly more than the left limit of the
first of these elements, and ri + pi is strictly less than the
left-limit of the second element, then the new element rep-
resenting time interval of iwill be inserted in between these
two elements. Otherwise, if the equality is reached in one
or both of the above strict inequalities then the correspond-
ing (two or three) time intervals are merged. The resultant
time interval will be represented by a single new element
of L substituting the above one or two elements. The left
and right limits of the new interval are determined in the
obvious way.

If none of the above cases occur then the time inter-
val [ri, ri + pi] is not idle by iteration i, i.e., it intersects
with some time interval(s) already represented in L in more
than one point. In this case job i might be included or may
not. SCAN(i) scans all occupied time intervals from time
moment ri searching for the earliest idle time moment t
such that t + pi ≤ di. If there exists no such t then job
i is omitted; otherwise, if i can be completely scheduled

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

80



from the moment t (no intersection with any other occu-
pied interval occurs) then it is scheduled within the interval
[t, t + pi]. Otherwise, the above verification is repeated;
i.e., the next earliest idle time moment t is looked for such
that t+ p∗i ≤ di, where p∗i is the length of the yet unsched-
uled portion of job i. Similar steps are carried out till either
job i is feasibly included or it cannot be feasibly included
as above and hence it is omitted. In case of success (i is
feasibly included) all the corresponding time intervals are
merged in the straightforward way into a single time inter-
val now also representing the execution interval of job i, the
corresponding elements of L being replaced by a new sin-
gle element with the above determined left and right limits.

This completes the description of the procedure
SCAN(i). The overall algorithm is now as follows:

ALGORITHM MAIN
Step 1.
Reorder jobs in J so that d1 ≤ d2 ≤ . . . ≤ dn
Step 2.
FOR i = 1 to n DO SCAN(i).

2.2 The correctness and time complexity
Theorem 1 The algorithm MAIN produces an optimal
schedule in time O(n2).

Proof. As to the time complexity, Step 1 which is sorting,
takes time O(n log n). We have n iterations on Step 2, on
each of which SCAN(i) is called. It remains to see the
time complexity of this procedure. If the next incoming
job i can be included without intersecting with any of the
intervals in L then it is included in a constant time and the
update of L with the new execution interval (that of job
i) will take time O(n) as clearly, there are no more than
n intervals in L. In general, while inserting the next in-
coming job i, we may need to skip at most n − 1 time
intervals from L. All the skipped time intervals are to be
merged in a single time interval (unified by the portions of
the newly included job i). Hence we will spend time O(n)
for the inclusion of each i and update ofL on each iteration.
Clearly, we will spend the same amount of time whenever
i cannot be included. Hence the overall time complexity is
O(n log n) +O(n)O(n) = O(n2).

We now switch to the soundness part. According to
our renumbering of jobs on Step 1, the shortest jobs will
be included ahead longer ones on Step 2. The algorithm
is clearly optimal if SCAN(i) has succeeded to include
every next incoming job i. Otherwise, let i be the first in-
coming job that could not have been included. Then due
to our assumption that job release times and due-dates are
agreeable, the feasible interval (ri, di) of i must intersect
with some interval(s) from L representing the execution in-
tervals of one or more already assigned jobs. Let us denote
this set of jobs by I(i). From our construction, the due-
date of every j ∈ I(i) is no more than di. Hence, j cannot

be moved (feasibly) out of the feasible interval of i, and
it follows that either job i or one of the j-s is to be omit-
ted in any feasible schedule. Suppose we omit any subset
of jobs from I(i). Then we claim that we may include no
more than ∣I(i)∣ (yet unscheduled) jobs instead. Indeed, if
we remove some j ∈ I(i) including instead some yet un-
scheduled job l, then l will again be scheduled within the
feasible interval of i, whereas it will take no less space than
was taken by job j, as pl ≥ pj . Jobs j and l might be re-
placed by a corresponding job sets and a similar reasoning
can be applied to these job sets. It follows that there is no
benefit in moving or omitting one of the already assigned
jobs. And since the corresponding set together with job i is
not feasible, job i is to be omitted. We reiterate the whole
reasoning for every next incoming job that cannot be feasi-
bly included completing in this way the proof. ⊓⊔

2.3 Why Algorithm MAIN is not optimal for
the general version

It is not difficult to see that our algorithm not necessarily
will find an optimal solution if applied for the instances
with at least three jobs i, j and k with the following prop-
erty: di < dj and di < dk whereas pi > pj and pi > pk.
It is clear that the algorithm will include job i ahead jobs
j and k, whereas it may happen that none of the latter two
jobs might be further included. Indeed, consider a prob-
lem instance with just these three jobs defined as follows:
ri = 1, rj = 0, rk = 2, pi = 10, pj = pk = 4, di = 11,
dk = dj = 12. Thus jobs are ordered so that i = 1, j = 2
and k = 3. On the first iteration job i is included into the
interval [1, 11). On the second iteration, the first portion of
job j is inserted into the interval [0, 1); however, its second
portion of the length 3 does not fit into the interval [11, 12).
So job k cannot be completed by its due-date 12 and hence
is omitted. On the third iteration, job k is similarly omitted.
There are two late jobs j and k in the resultant schedule,
whereas there exists a feasible schedule with just one late
job i in which jobs j and i are scheduled in the intervals
[0, 4) and [4, 8), respectively.

In the next section we present a better algorithm for the
general setting.

3 Some basic properties of the gen-
eral version of the problem

In this section we give some useful structural properties
of the general version of our problem 1/pmtn, rj/

∑
Uj .

Note that our earlier observation for the version with tied
parameters also holds: any late job can arbitrarily be ap-
pended to a schedule that contains maximal possible num-
ber of on-time scheduled jobs. In this way we easily obtain
an optimal schedule from the former schedule. Again, there
will be no late job in any schedule we shall be dealing with.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

81



We denote by ∣S∣ the number of jobs (completed on time)
in a schedule S, and by ∣∣S∣∣ the completion time of the lat-
est completed job (the makespan) in S. We will use S for
both, a schedule and the corresponding set of jobs.

The (preemptive) ED-heuristic is a common algorithm
for obtaining a feasible schedule rapidly in O(n log n)
time: Iteratively, among all released jobs by the current
scheduling time t, ED-heuristic schedules a job with the
smallest due-date ties being broken by selecting a shortest
job (further ties are broken arbitrarily). If during the exe-
cution of the current job j another job i with di < dj , or
with di = dj but with a smaller early completion time is
released (i.e., job i if immediately scheduled will be com-
pleted earlier than job j), j is interrupted and i is scheduled.
We call such a job selected by ED-heuristic at the current
scheduling time t the incoming job of time t and denote it
by i(t).

Initially, t = min{rj ∣j ∈ J}. If no incoming job
occurs while the currently scheduled job is running then
(the current portion of) the latter job completes without any
(further) interruption. In general, a scheduling time t is ei-
ther the release time of the next incoming job or/and the
completion time of the latest scheduled job so far. In the
latter case either an earlier released job becomes the new
incoming job or the next portion of an earlier interrupted
job resumes or the new incoming job is released just at the
moment when the latest scheduled job completes. Observe
that t is the release time of the next incoming job whenever
it is preceded by gap (an idle time interval on the machine).
We denote by t+ (t−, respectively) the next (the previous,
respectively) to t scheduling time, and by St the schedule
constructed to time t. In general, we write t ≻ t′ if t is
a scheduling time occurred after scheduling time t′ in our
algorithm. As we will see later t+ < t is possible, in gen-
eral, we may have t < t′ for t ≻ t′: this may happen as
some already scheduled job can be removed from St and a
shorter job scheduled instead.

At any scheduling time t the set of the already sched-
uled jobs can be divided into the ones which are completed
by time t and the ones which were interrupted and are not
completed by time t. We denote the latter set of jobs by Ut,
and denote by u+ the residue of u ∈ Ut; that is, the part of
u yet unprocessed by time t. Note that a new uncompleted
job arises only when the incoming job interrupts it. For the
auxiliary checking purposes we may “complete virtually”
jobs in Ut after time t creating respectively the virtual part
in St that starts after time t.

We stress here that the virtual part has only an aux-
iliary purpose: given that St is feasible all its jobs being
completed on time, we wish to know if all the jobs from
St together with job i can also fit on time on the machine.
We shall refer to the part of St before time t as its real part
(the partial schedule generated so far). From now on, when
referring to an ED-schedule S we will mean its both real
and virtual parts; however, the makespan ∣∣S∣∣ will concern

only the real part of S. Below we describe how we sched-
ule residues without any interruption in the virtual part.

Recall that if i(t) is more urgent than the currently run-
ning job j then i(t) interrupts j, and j+ is non-empty. In
general, we may schedule the residues of jobs in Ut ap-
plying a dislodged ED-heuristic. Since all jobs up to time
t are scheduled by ED-heuristic, each i(t) has a due-date,
no greater than that of any job from Ut. This implies that
up to time t, the jobs from Ut are scheduled by the non-
increasing order of their due dates. Each newly included
job in Ut has a due date no greater than that of all earlier
included ones. Hence, ED-heuristic will schedule residues
of jobs from Ut in the order, reverse to the order in which
the completed parts before time t were scheduled.

Conserving this order for scheduling residues after
time t, we may schedule them as late as possible, without
making them late, as follows. The earliest arisen uncom-
pleted job is scheduled so that it is completed exactly at
its due date. Each newly arisen uncompleted job u has a
due date, no greater than that of all earlier arisen uncom-
pleted jobs with already “scheduled” residues. Let � > t
be the starting time of the latest scheduled residue so far.
If du ≥ � then we add u+ so that it completes at time
� ; otherwise, we add u+ so that it completes at time du.
As St was feasible, no overlapping between the residues
may occur and each residue will start no earlier than at
time t. However, some residue may start before time t+ pi
(i = i(t)).

It may happen of course that among all (yet uncom-
pleted) jobs released by time t, job u ∈ Ut has the smallest
due date. Then u is the lastly arisen uncompleted job and
u+ is the earliest started residue in St. We schedule job u
at time t and update the virtual part for St

+

by removing
the already scheduled part of u+. Note that since u+ was
the earliest scheduled residue, no new gap in between the
remained residues will occur. If u is no more interrupted
and hence completely scheduled, we let Ut+ := Ut ∖ {u}.
Otherwise, u is interrupted once again, u+ is updated re-
spectively, t+ being the release time of the next incoming
job.

Suppose job j completes at time t and Ut = ∅. Then
the next incoming job (released no earlier than at time t)
starts new block. Each St is naturally divided into the
blocks: at scheduling time t+ a new block is initiated if
[t, t+) is a gap (we assume to have a zero-length gap at
time t between two blocks if the next incoming job is re-
leased right at time t). By scheduling time t, we denote the
current block byBt. IfBt is not newly initiated then either
i(t) interrupts the currently running job or a job from Ut is
resumed or an earlier released job that did not become an
incoming job now becomes i(t).

Let S = St, and let S(−k), k ∈ S (S(+l), l ∕∈ S,
respectively) be the ED-schedule generated for the job set
S ∖ {k} (S ∪ {l}, respectively) the virtual part being gen-
erated by the dislodged ED-heuristic as above. We may

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

82



generalize these notations straightforwardly substituting k
and l by job sets.

We will say that the incoming job i can be perfectly
scheduled at time t if St(+i) is a feasible schedule in which
all jobs are completed on time. We may observe that i can
be perfectly scheduled only if the latest arisen residue (the
first one from the virtual part) starts at or after time t + pi
in St(+i) (as otherwise the overlapping will occur). Let us
call a job set feasible if there exists a feasible schedule in
which all the jobs from this set are scheduled on time. The
following observation is easily verified:

Observation 2 If i(t) cannot be perfectly scheduled then
the job set S ∪ {i} is not feasible.

It follows that if i = i(t) cannot be perfectly scheduled
then either i is late in St(+i) or/and it overlaps with the
virtual part. Iteratively at each scheduling time t we start
job i(t) at time t if it can be perfectly scheduled. The real
part of the resultant schedule St

+

= St(+i) now extends
up to time t+. We need the following definitions.

We will say that the incoming job i is disregarded
(omitted, respectively) if it is discarded at time t and is
never again considered for the inclusion (discarded at time
t but can later again be considered for the inclusion, respec-
tively). An omitted job at time t is placed into our current
reserve list Lt.

We say that St cannot be enlarged if there exists no
feasible set with ∣St∣+ 1 jobs from St ∪ Lt ∪ {i(t)}. This
means that i(t) cannot be scheduled on time even by re-
moving any subset of already scheduled jobs from St and
including at least the same amount of jobs from Lt instead.

�, a subset of jobs in St, is said to give an admissi-
ble choice at time t if the job set St ∖ � ∪ {i} is feasible.
When � is a single-element set, a job giving an admissible
choice will be referred to as an admissible job. We shall re-
fer to the earliest scheduling time t on which k ∈ St gives
an admissible choice as the check-in time of k, denoted by
�(k).

We will say that job set Λ ⊂ {Lt ∪ i(t)} can be freely
returned to St if the job set St ∪ Λ is feasible. To enlarge
St, at least 2 jobs from St must be omitted and at most one
less jobs from Lt must be freely returned, together with job
i(t).

4 Description of EED-Algorithm
In this section we introduce the following extension of ED-
heuristic, EED-Algorithm for short: At each scheduling
time t, include i(t) from time t till the next scheduling
time if i(t) can be perfectly scheduled; otherwise, omit i(t).
Note that EED-Algorithm has the same time complexity of
O(n log n) as ED-heuristic (as the checking whether the
next incoming job can be perfectly scheduled takes a con-
stant tame). The schedule constructed by EED-Algorithm

is clearly optimal if each incoming job is perfectly sched-
uled. Due to Observation 3, EED-Algorithm remains op-
timal if a single incoming job, that could not have been
perfectly scheduled, was omitted:

Observation 3 The schedule obtained by EED-Algorithm
is optimal if while its construction a single incoming job
that could not have been perfectly scheduled (and hence
omitted) has occurred.

There are other less trivial cases when EED-Algorithm
gives an optimal solution. We formulate one in this section,
and the other case is dealt with in the following section.

Let us call a set of jobs with an admissible choice a
minimal admissible set if no its proper subset gives an ad-
missible choice.

Lemma 4 Suppose ∣�∣ ≥ 2 is a minimal admissible set at
time t. Then the total processing time of any proper subset
of � which does not contain the job of � scheduled earliest
in St, is less than pi, i = i(t).

Proof. Let j be the job of � scheduled latest in St.
The left-shift in St(−j), caused by the removal of j must
be less than pi, as otherwise j would give an admissible
choice. We claim that pj < pi. Indeed, if pj ≥ pi, because
of the above remark, there must arise a new gap after the
removal of j in St(−j). But then the removal of any other
job of � can cause the left-shift, which contradicts the fact
that � is minimal and ∣�∣ ≥ 2. Hence for ∣�∣ = 2 the
proposition is true. For ∣�∣ > 2 consider the next to j job
k ∈ �, scheduled latest in St. Quite analogously, if pj +
pk ≥ pi, there would arise new gap(s) in St(−j−k) before
other jobs of �, which contradicts the minimality of �. If
∣�∣ = 3, we are done; otherwise we continue similarly until
we come to the job, neighboring the earliest scheduled job
of � in St. ⊓⊔

Theorem 5 The incoming job i = i(t) can be disregarded
if there exists no job with an admissible choice in St.

Proof. We have to omit at least two jobs from St, say k
and l, to schedule i on time. In general, Suppose �, ∣�∣ ≥ 2
is a minimal admissible set of jobs at time t and k is the job
of � scheduled earliest in St. It will suffice to show that
any schedule Si which contains job i (and does not contain
jobs of �) is dominated by Si(−i+�′), where �′ = �∖{k}.
We use following observations to show this claim. Any job
released within the time intervals, occupied by jobs of �′ in
Si(−i+�′) will be also released within the time interval(s),
liberated by job i. Moreover, by Lemma 4, the total length
of the former time intervals is no more than that of the latter
time interval(s). The above two observations together with
the fact that ∣Si(−i + �′)∣ ≥ ∣Si∣ imply that Si(−i + �′)
dominates Si, and the proof is complete. ⊓⊔

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

83



5 A deeper study of EED-Algorithm

In this section we derive a stronger case when EED-
Algorithm remains optimal. If the incoming job i(�) can-
not be perfectly scheduled at time � then we have to omit
either job i(�) or some already scheduled job(s) at time � .
A selection of this type depends on job benefits defined in
this section. Let k be a job from S� with an admissible
choice at time � , � = t(k) being the activation time of k.
Let t > � be a scheduling time such that the interval [�, t] is
fromBt. At time t, the set of all time intervals occupied by
k in S� will be referred as the (potential) liberated space
by k (because of preemptions, we may have more than one
such an interval from the real or the virtual part of S� ). We
denote the above set of intervals by ℐk (note that an inter-
val from ℐk can be either from the real or the virtual part of
S� ). If we omit k at time t, the liberated space by k might
be used by other jobs of S� , job i(t) and by the incom-
ing jobs from time � to time t released before or within an
interval from ℐk.

Different jobs may liberate different amount of useful
space for scheduling other jobs. The benefit or the profit
of job k at time t ≥ � (written profitt(k)) depends on
the processing time of k and the release time of the incom-
ing jobs between times � and t which can make the use
of intervals from ℐk. In general, profitt(k) ≤ pk. The
strict inequality will hold if not all intervals from ℐk can
be beneficially used. Intuitively, this means that there will
occur gaps representing remained unfilled space (within or
behind the intervals from ℐk) after the removal of k.

Assume that i = i(t) cannot be perfectly scheduled at
time t. We can distinguish two kinds of jobs from St with
an admissible choice. The jobs of the first kind are more
urgent than job i. Recall from the previous section that (1)
either i is late, or (2) i is not late but it overlaps with the
virtual part of S, or (3) i is late and it also overlaps with
the virtual part of S. Consider first the case when i is late,
i.e., there occurs either case (1) or case (3). There must
be at least one job in St which is at least as urgent as i
and is completed by time t (in particular, the latest sched-
uled job in St has this property). As job release times and
due dates are consecutive, i must have been released be-
fore time t, hence it is delayed by some already scheduled
job(s). For j ∈ St, the left-shift at time t is the difference
∣∣St(+i)∣∣ − ∣∣St(−j + i)∣∣. Let j be the latest scheduled
job (job portion) in Bt with dj ≥ di. We call any job from
Bt scheduled after job j a category I job; if there exists no
such j in Bt, all jobs from Bt are category I jobs. Clearly,
the left-shift corresponding to each category I job k is at
most pk; it will be at least min{pi, pk} if k is started no
earlier than at time ri. Job i cannot be immediately sched-
uled within the liberated space by k if k is completed by
time ri. In this case, the jobs which were scheduled after k
might be successively left-shifted, and job i might also be
left-shifted. By the ED-rule, all the above jobs will be less

urgent than job k.
Since each category I job is more urgent than i(t), it

can have no residue at time t. If we omit the real part of
any other job from Bt (one, scheduled before all category
I jobs), neither job i nor any category I job can be left-
shifted. Therefore, a job from Bt which is not a category I
job can give an admissible choice only if there exists at least
one such job with a non-negative residue, whereas i over-
laps with the virtual part of St in St(+i) (we call this inter-
section the conflict interval at time t). In this case, either of
the above cases (2) or (3) should occur. Let e be the earliest
scheduled job in Bt with a non-empty residue. We call job
e and all jobs scheduled between e and the first category I
job the category II jobs. It follows that any k ∈ St with a
non-empty residue is a category II job. All jobs scheduled
after such k in real part of St are at least as urgent as k and
hence cannot be scheduled within the liberated space by k.
Only (a part of) the residue of a job scheduled before k can
be scheduled within the liberated space by k. The follow-
ing observation, which develops Observation 3, is evident:

Observation 6 Only jobs of categories I or II may give an
admissible choice at time t. A job which removal causes
no left-shift (any category II job) may give an admissible
choice only if the conflict interval at time t is non-empty.

If a category I job k is omitted at its activation time � ,
then other category I jobs and job i(�) might be left-shifted
in S� (−k+i(�)); if there remains unused by the above jobs
liberated space by k, a residue of a category II job might
also be scheduled within this space. A category I job or a
residue of a category II job might be scheduled within the
liberated space by k, whereas other category I jobs might
be scheduled within the intervals released by earlier left-
shifted category I jobs. In other words, the category I jobs
scheduled after k in S� will be successively left-shifted,
which may cause the rise of new gaps behind the intervals
from ℐk. If ∣ℐk∣ = � then job k was interrupted � − 1

times. It follows from ED-heuristic that none of the jobs
from the real part of S� can be scheduled within the first
�− 1 intervals. Hence only the latest interval from ℐk may
provide the successive left-shift of the jobs of S� . If k is a
category II job then none of the intervals from ℐk can yield
such a left-shift. The gaps induced by the intervals from
ℐk can further be filled out by the incoming job i(�) and
successive incoming jobs.

We distinguish two types of newly arisen gaps in
S� (−k + i(�)): the gaps within intervals from ℐk, and the
gaps behind an interval from ℐk arisen because of the suc-
cessive left-shift. As we have already noted, only the latest
interval from ℐk, for a category I job k, may produce a gap
of the second type. We call a gap of either of the above two
types a pending gap of k. A pending gap of a category I
job might either be from the real part of S� (a real pending
gap of k) or it might also be from its virtual part (a virtual
pending gap of k). A virtual pending gap of k will arise if

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

84



the ED-rule has “moved” the residue of a category II job to
the real part in S� (−k + i(�)), hence the former busy in-
terval from the virtual part of S� becomes idle. Obviously,
if k is a category II job (in cases (2) and (3)), it may only
have a virtual gap. Such a gap will be from a former busy
interval in the virtual part of S� , occupied either by job k
or by some other category II job j. For the latter case, job
j is moved to the liberated space by the real part of k.

A pending gap of k might or might not be potentially
used by the future incoming jobs, depending on the release
times of these jobs. If within a pending gap of k the in-
coming job i(t), t > � , can be scheduled then we will say
that this gap can be (partially or completely) recuperated at
time t. If by time t all pending gaps of k can be completely
recuperated then the profit of k will reach its maximal value
pk at time t and the set of pending gaps of k will become
empty. In general, the set of pending gaps of k at time t
is formed by all pending gaps of k of time � which could
not have been recuperated by time t (if a pending gap of k
of time � can be partially recuperated then it is reduced re-
spectively). We denote the set of pending gaps of k at time
t by pgt(k), and will use ∣pgt(k)∣ for the summary length
of gaps from pgt(k).

Filling jobs. We call a filling job of k any job which
can be scheduled within a gap from pg� (k). We denote by
Ft(k) the set of filling jobs of k at time t. Observe that
any filling job of k is an incoming job i(t′), � ≤ t′ ≤
t. The next proposition immediately follows from the ED-
rule and from the fact that job release times and deadlines
are consecutive:

Proposition 7 If the incoming job i(t) cannot be perfectly
scheduled at time t then it is a filling job of at least one job
in Bt.

At time � , we define the initial active subinterval of
an interval I ∈ ℐk as a (longest) non-idle interval in
S� (−k + i(�)) within I . As we have already observed,
if k is a category I job and I is the latest interval from ℐk,
then either some other category I job or the residue of a cat-
egory II job or the incoming job of time t′, � ⪯ t′ ⪯ t, can
be scheduled within I; if I is not the latest interval from ℐk
or k is a category II job and I is from the real part of S� ,
then either the residue of a category II job or the incoming
job of time t′ can be scheduled within I; if I is from the vir-
tual part of St then either the residue of a category II job,
or the incoming job of time t′ might be scheduled within I .
The active subinterval of I at time t > � is defined as for
time � , the contribution of the incoming jobs from time �+

being taken into account.
The active liberated space of I at time t ≥ � , alst(I)

is the union of all active subintervals of I at time t. We
will denote by ∣alst(I)∣ the summary length of all active
subintervals of I at time t. Note that 0 ≤ ∣alst(I)∣ ≤ ∣I∣.

Let I ′ be the latest interval from ℐk for a category I
job k. The initial pending liberated space by I ′, pls� (I ′),

is the set of all pending gaps arisen after I ′ before time �
in S� (−k + i(�)) (the pending gap(s) arisen within I ′ are
not counted). If k is a category II job, let I ′ be the interval
from ℐk from the virtual part of S� . If k is omitted, some
other residues might be scheduled within I ′, and there may
arise virtual gaps within the intervals occupied by the above
residues in S� , between time � and I ′; i.e., there may occur
successive right-shift of these residues (similarly as there
occur successive left-shift in the real part for a category I
job). Analogously as for the category I jobs, pls� (I ′) is
defined as the set of all these new virtual pending gaps. For
both, category I and II jobs, the pending liberated space by
I ′ at time t > � is defined analogously as for active subin-
tervals, the contribution of the incoming jobs from time �+

being similarly taken into account.
For any interval from ℐk, different from I ′, ∣plst(I)∣ =

0.
It follow that for any I ∈ ℐk, ∣plst(I)∣ ≤ ∣pls� (I)∣ and

∣plst(I)∣ ≤ ∣alst(I)∣, ∣plst(I)∣ being the overall length of
all gaps from plst(I). From now on, for notational simplic-
ity, when this will cause no confusion, we may use alst(I)

and plst(I) for ∣alst(I)∣ and ∣plst(I)∣.
The profit by interval I at time t ≥ � is profitt(I) =

alst(I) − plst(I). Note that 0 ≤ profitt(I) ≤ ∣I∣;
profitt(I) > 0 holds for at least one I ∈ ℐk as k
gives an admissible choice. The profit by job k at time
t, profitt(k) =

∑
I∈ℐk

profitt(I). Note again that 0 <

profitt(k) ≤ pk. For the notation simplicity, we may use
profit(k) for profit� (k).

We can look at profitt(k) as a sum constituted of two
summands, the initial part profit(k) calculated at time � ,
and the excrescence. To the initial part category I jobs from
S� and job i(�) contribute. To the excrescence, the filling
jobs of k, which are incoming jobs from time �+ up to
time t, contribute. The profit of k from time � to time t
is increased by the total length of all recuperated pending
gaps from time � up to time t. Later in Section ??? we will
see that a filling job of k might be omitted at time t > �
so that the corresponding liberated space is not completely
used by the other jobs. In this case the profit of k will
decrease by the total length of the newly arisen pending
gaps of k. We can give a recurrent definition of the profit
as profitt(k) = profitt−(k) + (∣pgt−(k)∣ − ∣pgt(k)∣).
The difference ∣pgt−(k)∣−∣pgt(k)∣ is positive if a gap from
pgt−(k) can be recuperated; it is negative if a new pending
gap of job k arises at time t (observe that both cases cannot
occur simultaneously). If i(t) is not a filling job of k and
no job is omitted at time t, profitt(k) = profitt−(k); if
pgt(k) = ∅ then profitt(k) = pk.

We will use profit−(k) for the latest updated value of
profit of job k, initially, profit−(k) = profit(k). We
call k a pending job at time t if ∣pgt(k)∣ > 0, equiva-
lently, profitt(k) < pk. Job k is saturated at time t if
profitt(k) = pk, i.e., the profit of k cannot further in-

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

85



crease.

The next proposition immediately follows from the
facts that no job will be released within a block which is
completed and that no job will be omitted from this block:

Observation 8 If Bt completes at time t then the profit of
none of the jobs will be altered from time t+.

Because of Observation 8, from now on, we assume
without loss of generality that each job inLt is an incoming
job arrived after the starting time of Bt.

The following fact straightforwardly follows from the
profit definition:

Fact 9 Suppose k and k′ are jobs from St with an admis-
sible choice such that profitt(k) ≥ profitt(k

′). Then if
l ∈ Lt cannot be freely returned to St(−k) neither it can
be freely returned to St(−k′).

Let us say that job profits are stable if for any pair
of jobs k and l with the activation time � , profit� (k) ≤
profit� (l) implies profitt(k) ≤ profitt(l), for each
t > � .

Assume from now on that job profits are stable. We
already know that whenever the incoming job i = i(t)
(t > � ) cannot be perfectly scheduled, either job i or one of
the jobs from St must be omitted. If i is omitted St cannot
be enlarged as j cannot be freely returned, since we will
get again an infeasible set as at time � . In general, j can-
not be freely returned unless one of the jobs which gave an
admissible choice at time � is omitted at time t. Assume
s is such a job. We have profit� (s) ≤ profit� (j). As
job profits are stable, profitt(s) ≤ profitt(j), and j can-
not be freely returned, by Fact 9. Consider any subsequent
scheduling time at which the corresponding incoming job
cannot be perfectly scheduled and hence a new job is omit-
ted. Due to the similar arguments as above, none of the
earlier omitted jobs can be freely returned. This holds for
all subsequent scheduling times as well.

Lemma 10 Suppose job profits are stable, t is any schedul-
ing time in the MED-Algorithm and O is any set of jobs
from St. Then there exists no set of jobs L ⊂ Lt with
∣L∣ ≥ ∣O∣, such that the job set St ∖ {O} ∪ {L} is feasible.

Proof. For each job j ∈ O, for only some l ∈ Lt the
job set St ∖ {j} ∪ {l} can be feasible. In particular, j
had to give an admissible choice at the scheduling time
� when l was included into the reserve list. We have
profit� (j) ≤ profit� (l), and since job profits are stable,
profitt(j) ≤ profitt(l). Then it is straightforward to ver-
ify, from the definition of the profit, that in the ED-schedule
St(−j + l), neither we will obtain a new gap within which
a job from Lt can be scheduled, nor we will have any left-
shift. We apply the same reasoning to all jobs of O succes-
sively, updating each time the current schedule according to

the above accomplished interchanging. The resultant ED-
schedule, as well as all intermediate ones have the claimed
property, and the lemma follows. ⊓⊔

If we apply Lemma 10 at the latest scheduling time in
MED-Algorithm, we obtain the following result:

Theorem 11 The MED-Algorithm is optimal if job profits
are stable.

Acknowledgements

This work was Partially supported by CONACyT grant
48433.

References:

[1] P. Baptiste. ”An O(n4) algorithm for preemptive
scheduling of a single machine to minimize the num-
ber of late jobs”. Operations Research Letters 24,
175-180 (1999)

[2] P. Baptiste, P.Brucker, S. Knust and V. Timkovsky.
“Ten notes on equal-processing-time scheduling”.
4OR 2, 111-127 (2004)

[3] P.Brucker and S.A. Kravchenko. ”Preemption can
make parallel machine scheduling problems hard”.
OSM Reihe P, Helf 211, Universität Usnabrück
(1999)

[4] J.Du, J.Y. Leung and C.S. Wong. ”Minimizing the
number of late jobs with release time constraint”.
Journal of Combinatorial Mathematics and Combi-
natorial Computing 11, 97-107 (1992)

[5] E.L. Lawler. ”A dynamic programming algorithm for
preemptive scheduling of a single machine to mini-
mize the number of late jobs”. Annals of Operations
Research 26, 125-133 (1990)

[6] E.L. Lawler. ”Knapsack-like scheduling problems,
the Moore-Hodgson algorithm and the tower of sets
property”. Mathematical Computer Modelling 20, 91-
106 (1994)

[7] E.L. Lawler. “Efficient implementation of dynamic
programming algorithms for sequencing problems”.
Report BW106/79 Math. Centre, Amsterdam (1979)

[8] J.M. Moore. ”An n job, one machine sequencing
algorithm for minimizing the number of late jobs.”
Management Science 15, 102-109 (1968)

[9] N.Vakhania. “A fast algorithm for the preemptive
scheduling of equal-length jobs on a single proces-
sor”. Proc. 2nd WSEAS Conf. on Computer Engineer-
ing and Applications, p.158-161 (2008)

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

86



[10] N.Vakhania. “Fast algorithms for preemptive schedul-
ing of equal-length jobs on a single and identical pro-
cessors to minimize the number of late jobs”. Int. J.
of Mathematics and Computers in Simulation 1, p.95-
100 (2008)

[11] N. Vakhania. “Scheduling jobs with release times pre-
emptively on a single machine to minimize the num-
ber of late jobs”. Operations Research Letters 37,
405-410, 2009.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 4, 2010

87




