
 

 

 

Abstract— In this paper we propose a computational efficient 

approach for image segmentation based on texture analysis, a 2D 

discrete cosine transform (DCT) is utilized to extract texture features 

in each image block. We first split the input image into MxN blocks, 

calculate the distances between neighbor blocks by a set of largest 

energy signatures from DCT for each block. Then we merge blocks 

with smallest distances to form larger regions. The process will 

repeat until we got desired number of regions. Experimental results 

show that our proposed method outperforms the existing image 

segmentation method, especially on efficiency aspect. 

 

Keywords— image segmentation, texture analysis, split and 

merge, 2D discrete cosine transform.  

 

I. INTRODUCTION 

N the framework of digital image engineering, the 

middle layer, image analysis has the objective of extracting 

information from an image via image segmentation, object 

representation and description, feature measurement, and even 

some higher level tasks such as object classification. Image 

segmentation is the first step and also one of the most critical 

tasks of image analysis, which has been extensively studied 

[1-4] for a few decades due to its applications in computer 

vision such as: 

 Medical imaging (locate tumour). 

 Object detection in satellite image. 

 Face/fingerprint recognition. 

 Traffic monitoring. 

 Online image search engine.  

 

While a great number of methods have been proposed in 

publications trying to handle image segmentation properly, it's 

still a complicated, unwell solved problem according to some 

specific view or requirement, such as for general images with 

no prior knowledge. Image segmentation responsible for 

extracting semantic foreground objects correctly from a given 

image, the performance of the subsequent image analysis 

procedures like retrieval will strongly dependent on the 

quality of the segmentation. The common image segmentation 

algorithms are either boundary-based or region-based, which 

can vary from k-means clustering algorithm to thresholding 

 
This work was supported in part by the Research Committee of University 

of Macau under the Grant: RG056/08-09S/PCM/FST.  

C.-M. Pun and H.-M. Zhu are with the Department of Computer and 

Information Science, University of Macau, Macau S.A.R., China. (e-mail: 

{cmpun, ma86560}@umac.mo). 

procedures, to heuristic region growing processes, and to the 

sophisticated hierarchical methods. In recent years, algorithms 

based on graph theory have drawn many attentions. Both tree-

structured segmentation [5-11] and spectral clustering [12-17] 

commonly represent an image to be segmented as a graph. 

The nodes correspond to the image pixels, and the edges 

represent the relations between pixels with a weight indicates 

the (dis)-similarity between two pixels. The best known 

graph-based algorithm, normalized cut[16, 17], can detect 

object boundaries precisely. However, over-segmented 

problem will occur if the boundaries are ill-defined, and this 

approach is computationally expensive, it has been proved to 

be NP-hard. 

In our proposed approach, a 2D discrete cosine transform 

(DCT) is applied to extract texture features of an image. 

Texture segmentation is an important task in many 

applications, or it can be combined with other low-level 

features segmentation to improve the performance. In our 

previous work, we have adopted 2D discrete wavelet 

transform (DWT) as an alternative texture analysis tool for 

image segmentation[18], which is shown to be efficient. Due 

to the character that the cosine transform can also represent 

the texture information, and more important is that it can 

achieve a high computational efficiency even compared to 

DWT based approaches, we adopt DCT in our image 

segmentation system to demonstrate that our implementation 

greatly improve the efficiency, while achieves a reasonable 

accuracy of segmented result.  

The rest of the paper is organized as follows. In Section 

II, we give a review on cosine transform on which our 

segmentation approach is based. In Section III, our textural 

segmentation algorithm will be described in detail. 

Experimental results are presented in Section IV. and 

Conclusions are given in Section V. 

.  

II. 2D DISCRETE COSINE TRANSFORM 

Discrete Cosine Transform (DCT) is a Fourier-related 

transform similar to the discrete Fourier transform (DFT), but 

using only real numbers to orderly express finitely data points 

in terms of a sum of cosine functions oscillating at different 

frequencies. DCT is equivalent to DFT of roughly twice the 

length, operating on real data with even symmetry, where in 

some variants the input and/or output data are shifted by half a 

sample. There are few types of DCT variants such as DCT-I, 

DCT-II, DCTIII-VIII and the most common one is the type 

Image Segmentation Using Discrete Cosine 

Texture Feature 

Chi-Man Pun and Hong-Min Zhu 

I 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

19



 

 

DCT-II. Its definition for an input image A and output image 

B is 

 

10

10

,
2

)12(
cos

2

)12(
cos

1

0

1

0






 









Nq

Mp

N

qn

M

pm
AB mn

N

n

M

m

qppq




  
 










11,/2

0,/1

MpM

pM
p

       








11,/2

0,/1

MqN

qN
q

 
 

where M and N are the row and column size of A, 

respectively. If one applies the DCT to real data, the result is 

also real. The DCT tends to concentrate information, making 

it useful for image compression applications.  

. 

III. PROPOSED IMAGE SEGMENTATION 

The procedure involved in the proposed segmentation 

algorithm contains two main steps: block splitting and region 

merging. Block splitting process shown in Figure 2 is to split 

the input image into MxN blocks of small size, and apply 

DCT to calculate the features for each block which are used 

for distance calculation. The procedure shown in Figure 3 is to 

merge blocks to form a specified number of regions based on 

texture similarity between neighbor blocks.  

 

 MxN blocks 

splitting

2D discrete cosine 

transform

Coefficient 

selection

 input image

Block Bi

N
ex

t 
b

lo
ck

Calculate Energy 

distance between 

neighbor blocks

 MxN energies

MxN distances

 

Figure 2 MxN block splitting process 

 

 

 

A. Image splitting and distance calculation 

 

We didn't include color feature in our algorithm, so the 

input image will be converted to a gray scale version in 

advance of any further process in case if it's a true color 

image. Also the input image will be resized to 2nx2n to 

convenience the splitting process.  

Image splitting and distance calculation algorithm split 

the input image into MxN blocks, and calculate the distance 

between each block and its upper/left neighbors.  The number 

of blocks depends on the block size which is specified as a 

parameter. The algorithm is given as follows. 

 

Algorithm I – Image Splitting and Distance Calculation 

 

Input: image X, blocks size S0, number of coefficients C0 

Step 1: calculate the number of blocks MxN=size(X)/S0 

Step 2: apply DCT to calculate the energy feature for each of 

MxN blocks, which is the sum of C0 largest coefficients 

(exclude the upper-left one). 

Step 3: calculate distance between neighbor blocks 

For each block Bi, and its upper/left neighbor Bj 

 , | |jidist i j E E      (1) 

Output: MxN blocks with distances 

 

Where Ei, Ej are energy of block i, j respectively.  

 

 

B. Region merging 

 

After the distances have been calculated between all 

neighbor blocks, region merging procedure will follow to 

form a specified number of regions. Here we use the notation 

region to indicate the image segment which contains multiple 

blocks. The algorithm is described as follows: 

 

Algorithm II – Region Merging 

 

Input: MxN blocks R0 with distances D0, minimal region size 

N0, number of output regions Nr 

Step 1: let R1=R0, if minSize (R0)<N0, then R1={ R1 | size(R1)< 

N0, R1
R0} which are regions with size < N0. 

Step 2: find union region R = {R2 U R3 | distance (R2, R3) = 

min (D0)} 

Step 3: delete distance between Ri, Rj and their neighbors. D0 

(Ri, Rj)=[], where RiR or RjR 

Step 4: Region merging. Label(R) =new label L 

Step 5: find blocks along common edges between R and its 

neighbor region. 

for each block Bi in R 

classify Bi’s 4 neighbors Bj to regions Rn if 

Label(Bj)~=L 

Step 6: calculate average distance between R and its neighbor 

regions 

 
1

1
,Rn ( , )

m

k

dist R dist i j
m 

   (2) 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

20



 

 

Step 7: if size (R0)>Nr, go to step 1. 

Output: segmented image with Nr regions. 

 

The first two steps find two neighbor regions with 

minimal distance. In our intuitive experience, objects that we 

are interested are always not with small size compared to 

image size, to avoid isolated blocks appear as the final 

regions, we specify a parameter to indicate the minimal region 

size (the number of blocks should be in a region). So we tend 

to firstly merge those regions with size less than the minimal 

size. After such two regions found, we update the labels of 

blocks in these two regions to be the same, and destroy the 

distance relationships between these two regions and their 

neighbor regions which will be updated in Step 5 and step 6. 

We scan blocks in the new merged region to check their 

neighbor blocks, and classify all such blocks to corresponding 

common edges between regions based on their labels. So the 

distance between the merged region and its neighbor can be 

calculated by (2) as the mean of distances between block pairs 

along the common edge. The process above continues until we 

get required number of regions. 

COMPARISON WITH THE ADAPTIVE TREE-STRUCTURED 

WAVELET TRANSFORM FOR FEATURE EXTRACTION 

The development of our texture segmentation is 

motivated from Chang and Kuo’s work, in their research they 

propose a multiresolution approach based on a tree-structured 

wavelet transform for texture analysis and classification to 

overcome the difficulty that the traditional pyramid-type 

wavelet transform cannot well represent the a texture with 

significant information often appears in the middle frequency 

channels. We adopt this technology in our segmentation 

algorithm according to its excellent efficiency and 

performance. 

Figure 3 shows an example of a decomposition tree with 

decomposition structure encoding, and the feature vector size 

is 16. “114” means it’s the diagonal coefficient at 3rd level, 

while its 1st and 2nd level parent nodes are approximation 

coefficients. The decomposition structure for each sub-

image’s decomposition will be preserved for comparison, 

which will be described in detail in section 3. 

 

  

              2 

 

 

 

 

3 

         12 

 

13     14 

41     42 

 

 

43     44 

   112 

113 114 

 

Figure 3 Decomposition structure example 

  

The process to decompose a (sub-) image is shown below. 

Each decomposition is followed by log energy calculation for 

each coefficient, and the sub image with maximal log energy 

will be passed to next decomposition until we get a specified 

number of features.  

 

Algorithm III – Feature Extraction by Adaptive Tree-

structured Wavelet Transform 

 

Input: image X, feature vector size fvsize 

Step 1: initialize f=[X, logEnergy(X)]  

Step 2: recursively decompose X 

While size(f) < fvsize 

subX= Sub image in f with max log energy 

[cA,cH,cV,cD]=dwt2 decomposition of subX 

f = f + [subX/2, logEnergy(cA)] //cH, cV, cD 

calculate decomposition structure 

Step 3: Normalize log energies by corresponding sub image 

size. 

Output: X’s features of size fvsize, decompose structure 

 

The procedure involved in the proposed segmentation 

algorithm contains two main steps: block splitting and region 

merging. Block splitting process shown in Figure 4 is to split 

the input image into MxN blocks of small size, and apply 

adaptive tree-structured wavelet transform to calculate the 

features for each block which are used for distance 

calculation. The procedure shown in Figure 5 is to merge 

blocks to form a specified number of regions based on texture 

similarity between neighbor blocks.  

 

 MxN blocks 

splitting

Tree-structured 

wavelet transform

Calculate 

Log energy

 input image

Block Bi

N
ex

t 
b

lo
ck

Calculate Energy 

distance between 

neighbor blocks

 MxN energies with 

decomposition structures

MxN distances

 

Figure 4 MxN block splitting process 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

21



 

 

All regions’ 

size<S0?

MxN blocks with distances

Find two regions 

with minimal 

distance

 Find regions 

with size<S0

No

Yes

Distance deletion

Union regions R

Update blocks’ 

labels in R

Classify Bi’s 

neighbor blocks Block Bi in R

Next Bi

Update distance 

between R and 

neighbor region

If
 r

eg
io

n
s>

th
re

sh
o
ld

Segmented image  

Figure 5 Region merging process 

 

IV. EXPERIMENTAL RESULTS 

There are several parameters that can affect the 

performance and efficiency of the algorithm. So firstly we 

adjust the parameters to select the value that make the result to 

be the best. 

 

(a) (b)

(c) (d)  
 
Figure 6 Image segmented into 5 regions with minimal region size of 15 

blocks and initial bock size of 8x8. The numbers of DCT coefficients for 

energy calculation are: a) 10 with 1.39s. b) 20 with 1.35s. c) 30 with 1.45s. 

d) 40 with 1.35s. 

 

As our first experiment, we concern on the number of 

DCT coefficients select for energy measurement. Step 2 in 

Algorithm showed how to calculate the energy of each block. 

According to the block size for splitting process, the number 

of largest DCT coefficients varies. We set the other 

parameters properly as we will demonstrate in following 

examples: the initial block size is 8x8 and the minimal region 

size is 15 blocks. As the block has totally 64 pixels and the 

DCT coefficient will be with the same size, we test selection 

with 10, 20, 30 and 40 largest DCT coefficients respectively 

for comparison. Figure 6 shows the segmentation results. We 

can see that figure 6(c) get the most reasonable segment which 

can roughly detect the primary boundaries in the Lena image. 

The preferable number of DCT coefficients is nearly 50 

percent of the total. 

Those regions with only a few blocks may cause 

confusion as the minimal region size should no less than 15 

blocks. According to the algorithm, we notice that once there 

is a neighboring region with size less than 15 blocks (even 

contains 13, 14 blocks for example) and the distance is 

smaller than those regions of a single block, it will be merged 

in advance. So the precise definition to the region size should 

be like: regions with small size will be merged before any two 

neighboring regions with both sizes greater than the region 

size threshold. 

 

(a) (b)

(c) (d)
 

 

Figure 7 Image segmented into 5 regions with minimal region size of 15 

blocks, 50% DCT coefficients are selected while use blocks of size a) 4x4 

with 18.83s. b) 8x8 with 1.42s. c) 16x16 with 0.23s. d) 32x32 with 0.064s.  

 

In image splitting and distance calculation process, input 

image will be splitted into MxN blocks where M and N 

depends on the specified block size. With large blocks, the 

following merging process will be quite efficient; however 

regions in the final segmented image can’t achieve smooth 

boundaries. On the other hand, region merging with too small 

blocks will have efficiency problem. We adjust the block size 

to be a reasonable value 8x8 that the boundaries can be 

smoothly and efficiently segmented, there will be 32x32 

blocks for the lena image of size 256x256. Figure 7 shows the 

segmentation results of different block size, (a) can achieve 

most smooth and accurate boundaries but it’s computationally 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

22



 

 

expensive, (b) is the reasonable one on both performance and 

efficiency. (c)-(d) with larger block size and can’t detect a 

boundary precisely. 

 

 

DCT:12.91s DCT:11.27s DCT:15.12s

DWT:19.77s DWT:18.26s DWT:20.29s

N-CUT:28.72s N-CUT:29.75s N-CUT:29.39s  

Figure 8 Result of different image segmentation approaches. We adopt 

the best parameters for our texture segmentation and DWT based 

approach. First row: our DCT based segment. Second: DWT based 

segment. Third row: Normalized cut approach. 5 regions are segmented 

in all the experiments, and the time cost is shown under each example. 

 

In image retrieval applications, we typically try to search 

for images contain similar objects with the sample image, and 

the number of interested objects is always not too many. 

Figure 8 shows the comparison among three different image 

segmentation approaches: our DCT based texture 

segmentation; adaptive tree-structured 2D discrete wavelet 

transform (DWT) based texture segmentation; and the most 

well know graph segmentation algorithm -- normalized cut. 5 

regions are segmented in all experiments and parameters are 

selected properly for both DCT and DWT based approaches, 

the sizes of the images are 512x512 compared to Lena image. 

From the third row in Figure 8 we can see that N-cut can get 

segmentation with more smooth and precise boundaries while 

it also has over segmentation problems. Moreover, the second 

and the third rows show that the DWT based approach greatly 

improves the efficiency compared to N-cut while can obtain a 

reasonable segmentation output, which has also been 

demonstrated in our previous work, and even that the image is 

resized to 160x160 in N-cut approach. We can also conclude 

from the first and the second row that the DCT based 

approach outperforms the DWT one on both efficiency and 

accuracy aspect. DCT segmentation achieves 30% faster 

averagely than DWT, while the segmented boundaries are also 

more precise. 

There are several parameters that can affect the 

performance and efficiency of the DWT image segmentation 

algorithm. So firstly we adjust the parameters to select the 

value that make the result to be the best. 

 

 

(a) (b) 

(d) (e) 

(c) 

 
Figure 9 Image segmented into 5 regions with minimal region size of 25 

blocks. a)4x4 with 30.25s. b) 8x8 with 3.09s. c) 16x16 with 5.67s. d) 32x32 

with 1.48s. e) 64x64 with 0.45s 

 

(a) (b)  

Figure 10 Segment high resolution image (1024x1024) by using a) 

128x128 blocks of size 8x8, with 434.48s. b) 32x32 blocks of size 32x32, 

with 29.58s. 

 

In image splitting and distance calculation process, input 

image will be splitted into MxN blocks where M and N 

depends on the specified block size. With large blocks, the 

following merging process will be quite efficient as there is 

less number of blocks; however regions in the final segmented 

image can’t achieve smooth boundaries. And the feature 

vector size is also depends on the block size, large block 

(greater than 8x8) will be decomposed by structured wavelet 

transform for multiple times to get more features, which cause 

a high possibility that decomposition structures between two 

neighbor blocks are different and thus both blocks need to be 

re-decomposed based on each other’s structure so that 

distance between can be calculated by the mean. On the other 

hand, there will be more blocks if the block tends to be small. 

More merge iterations are performed, the distance between the 

merged region and its neighbor should be updated in each 

iteration which is computational expensive.  

For our first experiment on the lena image of size 

256x256, we adopt different block sizes to compare the 

accuracy and efficiency, with other parameters set properly. 

Figure 9 shows the segmentation results, (a) can achieve most 

smooth boundaries but it’s computationally expensive in 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

23



 

 

region merging process, (b) is the reasonable one on both 

performance and efficiency where the most significant 

boundaries can be roughly detected. (c)-(e) with larger block 

size and can’t detect a smooth boundary precisely. So it’s 

reasonable to split an image of size 256x256 into 32x32 

blocks with each block of size 8x8. 

In case if image are of different resolutions, we keep the 

number of blocks fixed, while the block size proportional to 

the image size. Figure 10(a) shows the segment result using 

8x8 blocks, which is quite inefficient because of the overload 

merging process, and the over segment is serious while the 

significant boundary of follower can not be detected. The 

result in (b) is much preferable even that multilevel 

decomposition is performed on each block. 

Those regions with only a few blocks may cause 

confusion as the minimal region size should no less than 25 

blocks. According to the algorithm, however, we notice that 

once there is a neighboring region with size less than 25 

blocks (even contains 23, 24 blocks for example) and the 

distance is smaller than those regions of a single block, it will 

be merged in advance. So the precise definition to the “region 

size” should be like: regions with small size will be merged 

before any two neighboring regions with both sizes greater 

than the region size threshold. 

 

 

(a) (b) (c) 

(d) (e) (f) 
 

Figure 11 Image segmented into 5 regions, use 8x8 block size and 

different minimal region size. a) 5 blocks. b) 10 blocks. c) 15 blocks. d) 25 

blocks. e) 35 blocks. f) 50 blocks 

 

Another adjustable parameter is the minimal region size 

which indicates that in the region merging process, regions 

consist of less than a specified number of blocks are tends to 

be merged first. In most cases, an object presented in an image 

that we are interest has a large size. Figure 11 gives the 

corresponding results according to different minimal region 

sizes. Since the computation complexity only depends on the 

block size which was discussed above, here we don’t explore 

it. Comparing region boundary accuracies in (a)-(f), we prefer 

the segmentation regions with minimal size of 25 blocks since 

it can detect the most significant boundaries which is not too 

much rugged and there is less over-segment. 

 

(a) (b)

(c) (d)  

Figure 12 Compare with normalized cut algorithm according to 

efficiency. We adopt the best parameters for our texture segmentation. a) 

N-cut 5 regions with 38.13s. b) N-cut 10 regions with 37.77s. c) Texture 

segmentation 5 regions with 3.36s. d) Texture segmentation 10 regions 

with 3.52s 

. Figure 12 shows the comparison between our wavelet 

texture segmentation and the most well know graph 

segmentation algorithm--normalized cut, images are 

segmented into 5 and 10 regions respectively. Results in (a) 

and (b) show that N-cut can get segmentation with more 

smooth and precise boundaries. However, comparing with (c) 

and (d) which are the results of texture segmentation, N-cut 

segments more regions on the background and also has over 

segmentation problem on Lena image. The texture 

segmentation can separate the hat from the background which 

N-cut cannot. Another attractive achievement we get is the 

great efficiency improvement, our proposed algorithm takes 

11 times average less time than N-cut. Besides the lena image, 

Figure 12 presents the segmentation using our wavelet texture 

based solution and normalized cut on 4 different images, with 

5 regions segmented.  The first row are the results of our 

solution, the minimal region size is 25 blocks as well and the 

block size is proportional to the image size, as described in the 

first experiment. The second row shows all edges detected by 

N-cut, and edges that form the required number of regions are 

highlighted, as shown in the third row. The same as for lena 

image, boundaries of segmented regions in these images using 

our solution are less smooth than N-cut results but roughly 

define the regions locations. However, from the second and 

the third row we can see that N-cut regards some of the 

significant boundaries as in lower priority so that they are not 

highlighted, such as the left side of the camera man’s body 

and the back of the baby head. 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

24



 

 

babycamMan lake wall  
 
Figure 13 segment result of 4 different images (camera man, baby, 

mountain/lake, and a wall). Three rows are segment of wavelet texture, 

edges of N-cut, and segment of N-cut. 
 

Table 1 summarizes the time cost of segmentations in 

Figure 13. The eigenvector calculation in N-cut is the most 

compute consuming process, and images are resized to 

160x160 in advance since it can not even handle the image of 

size 256x256. While the number of splitted blocks is fixed 

(32x32), our texture segmentation on 256x256 images 

achieves an efficiency of 8 times faster on average compared 

to N-cut. For the high resolution baby image, multilevel 

decomposition is performed for each block and a high 

probability of re-decompositions are required, we can also 

conclude that our approach outperforms N-cut in the 

consideration of efficiency aspect. 

 

Image Image size N-cut 

Wavelet texture 

 Block 

size 

camMa

n 

256x256 30.98s 3.45s 8x8 

baby 1024x1024 33.16s 25.58

s 

32x32 

lake 256x256 28.03s 3.51s 8x8 

wall 256x256 25.33s 3.50s 8x8 

 
Table 1 comparison of efficiency between N-cut and texture 

segmentation. 

 

 

V. CONCLUSION 

We proposed a new method for image segmentation in 

this paper which applies 2D discrete cosine transform for 

texture analysis. The algorithm involves two stages: Image 

Splitting and Distance Calculation, and Region Merging. 

Proper parameter values are verified through testing in our 

experiments. We also showed that our proposed method 

outperforms the other two existing image segmentation 

methods especially on efficiency aspect, while the segment 

with reasonable accuracy can also be achieved. Future work 

may focus on integrate other features such as shape and/or 

color features in the proposed image segmentation for better 

performance.  

 

ACKNOWLEDGMENTS 

The authors would like to thank the referees for their valuable 

comments. This work was supported in part by the Research 

Committee of the University of Macau. 

 

REFERENCES 

[1] N. R. Pal, and S. K. Pal, “A review on image segmentation 

techniques,” Pattern Recognit., vol. 26, no. 9, pp. 1277-

1294, 1993. 

[2] J. S. Suri, K. Liu, L. Reden et al., “A review on MR vascular 

image processing algorithms: Acquisition and prefiltering: Part I,” 

IEEE Trans. Inform. Technol. Biomed., vol. 6, no. 2, pp. 324-

337, 2002. 

[3] J. S. Suri, K. Liu, S. Singh et al., “Shape recovery algorithms 

using level sets in 2-D/3-D medical imagery: A state-of-the-art 

review,” IEEE Trans. Inf. Technol. Biomed., vol. 6, no. 1, pp. 

8-28, 2002. 

[4] H. Trichili, M. S. Bouhlel, and F. Kammoun, “A review and 

evaluation of medical image segmentation using methods of 

optimal filtering,” J. Test. Eval., vol. 31, no. 5, pp. 398-

404, 2003. 

[5] P. Felzenszwalb, and D. Huttenlocher, “Image segmentation 

using local variation,” Proc. IEEE Conf. Computer Vision and 

Pattern Recognition, pp. 98-104, 1998. 

[6] P. Felzenszwalb, and D. Huttenlocher, “Efficient graph-based 

image segmentation ” Int. J. Comput. Vis., vol. 59, no. 2, pp. 

167-181, 2004. 

[7] Y. Haxhimusa, and W. Kropatsch, “Segmentation graph 

hierarchies,” Proc. Structural, Syntactic, and Statistical Pattern 

Recognition, vol. 3138 LNCS, pp. 343-351, Aug. 2004. 

[8] Y. Haxhimusa, A. Ion, W. Kropatsch et al., “Evaluating 

minimum spanning tree based segmentation algorithms,” Proc. 

CAIP, vol. 3691, LNCS, pp. 579-586, 2005. 

[9] A. Falcão, J. Stolfi, and R. Lotufo, “The image foresting 

transform: Theory, algorithms, and applications,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 19-29, Jan. 

2004. 

[10] A. Falcão, P. Felipe, and A. Paulo, “Image segmentation by tree 

pruning,” Proc. 17th Brazilian Symp. Computer Graphics and 

Image Processing, pp. 65-71, 2004. 

[11] J. Ding, R. Ma, S. Chen et al., “A fast directed tree based 

neighborhood clustering for image segmentation,” Proc. 13th Int. 

Conf. Neural Information Processing, Part II, vol. 4233, 

LNCS, pp. 369-378, 2006. 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

25



 

 

[12] R. Zabih, and V. Kolmogorov, “Spatially coherent clustering 

using graph cuts,” Proc. IEEE Conf. Computer Vision and Pattern 

Recognition, vol. 2, pp. 437-444, 2004. 

[13] Y. Y. Boykov, and M.-P. Jolly, “Interactive graph cuts for 

optimal boundary and region segmentation of objects in N-D 

images,” Proc. IEEE Int. Conf. Computer Vision, vol. 1, pp. 

105-112, 2001. 

[14] Y. N. Andrew, M. Jordan, and Y.Weiss, “On spectral clustering: 

Analysis and an algorithm,” Proc. Adv. Neural Information 

Processing Systems, vol. 14, pp. 849-856, 2002. 

[15] Y.Weiss, “Segmentation using eigenvectors:Aunifying view,” 

Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 975-982, 

1999. 

[16] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” 

Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 

731-737, 1997. 

[17] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 

888-905, Aug. 2000. 

[18] C.-M. Pun, and H.-M. Zhu, “Image Segmentation 

Using Adaptive Tree-structured Wavelet Transform,” 

Proceedings of the 2009 Sixth International 

Conference on Computer Graphics, Imaging and 

Visualization, pp. 290-294, Aug. 2009. 

 
 
Chi-Man Pun received the B.Sc. and M.Sc. degrees from the University of 

Macau in 1995 and 1998 respectively, and Ph.D. degree in Computer Science 

and Engineering from the Chinese University of Hong Kong in 2002. He 

currently is an associate professor at the Department of Computer and 

Information Science of the University of Macau. His research interests include 

Content-Based Image Indexing and Retrieval, Digital Watermarking, Pattern 

Recognition, and Computer Vision. 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 4, 2010

26




