
 

 

  

Abstract— The algorithm presented in this paper solves the 

minimum flow problem for a special parametric bipartite network. 

The algorithm does not work directly in the original network but in 

the parametric residual network and finds a particular state of the 

residual network from which the minimum flow and the maximum 

cut for any of the parameter values are obtained. The approach 

implements a round-robin algorithm looping over a list of nodes until 

an entire pass ends without any change of the flow. 

 

Keywords— Balancing algorithm, Bipartite network, Minimum 

flow, Parametric flow.  

I. INTRODUCTION 

HE maximum flow problem is a fundamental problem in 

graph algorithms and optimization. Efficient algorithms for 

computing maximum flows are important not only because they 

are applied directly to the analysis of traffic or communication 

networks, but are often employed in the sub-problems of other 

network problems. Continuous improvements to algorithms have 

permanently been made by researchers for solving several 

classes of problems. Fundamental algorithms for network flow, 

including methods for maximum flow problem, were designed 

and efficient algorithms exist to solve different instances of this 

problem [1]. 

A natural generalization of the maximum flow problem is 

obtained by making the capacities of certain arcs functions of a 

single parameter. This problem is known as the parametric 

maximum flow problem. For the parametric maximum flow 

problem with linear capacity functions of a parameter λ  

Hamacher and Foulds [10] investigated an augmenting paths 

approach for determining in each iteration an improvement of 

the flow defined on the whole interval of the parameter. For 

the same problem, Ruhe [17], [18] proposed a “piece-by-

piece” approach assuming that the maximum flow is known for 

a given value of the parameter and computing the maximum 

flow to be added to the current flow in order to preserve the 

maximally of the flow for greater parameter values and the 

maximum value of the parameter for which the computed flow 

is maximal. Gallo, Grigoriadis, and Tarjan [9] considered a 

special case of the parametric maximum flow problem in 
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which the capacities of the arcs leaving the source are non-

decreasing and the arcs entering the sink are non-increasing 

functions of the parameter while the capacities of all other arcs 

are constant. Although this type of parameterization appears to 

be quite specialized, Gallo et. al. [9] have pointed out that this 

parametric problem has many applications, in multiprocessor 

scheduling with release times and deadlines, integer 

programming problems, computing subgraph density and 

network vulnerability and partitioning a data base between fast 

and slow memory. For the same problem Ahuja et. al. [2], [3] 

proposed a parametric bipartite algorithm which finds all 

maximum flows for a given number of increasing values of the 

parameter. Recently Zhang, Tarjan et al. [20], [21], [22] 

proposed a balancing approach for the parametric maximum 

flow problem on bipartite networks. They refer to two 

algorithms, one of which uses two-arc augmenting paths and 

the other of which balances a star at each step, where a star is 

the subgraph induced by the set of arcs incident on a single 

vertex. The claimed main advantage of these algorithms is to 

be very simple as compared to other parametric maximum-

flow algorithms. 

Although it has its own applications, the minimum flow 

problem was not dealt so often as the maximum flow problem. 

Ciurea et.al. [4]-[8] investigated the non-parametric minimum 

flow problem. The parametric minimum flow problem has not 

been investigated so far by other authors. The parametric 

minimum flow problem is extension of the classical minimum 

flow problem in which the lower bounds of certain arcs are 

functions of a parameter λ . The parametric minimum flow 

problem is to compute all minimum flows for every possible 

value of the parameter. The minimum flow value function in a 

parametric network is a continuous piecewise linear function 

of the parameter. Each linear segment of the minimum flow 

value function between two breakpoints, kλ  and 1λ +k , 

corresponds to a cut that remains a maximum cut for any 

1λλλ +≤< kk . The approach of the parametric minimum flow 

problem presented in this article refers to the minimum flow 

problem in a network with linear lower bound functions of a 

single parameter λ . 

Further on, this paper is organized as follows: Section II 

contains the basic network flow terminology and some results 

used in the rest of the paper. More specialized terminology is 

developed in later sections. Section III deals with the 

parametric minimum flow problem, i.e. the minimum flow 
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problem in a parametric network with linear lower bound 

functions. Section IV presents a balancing algorithm for the 

minimum flow problem in a special parametric bipartite 

network. Section V describes the steps performed by the 

former algorithm in a parametric bipartite network with lower 

bounds of the arcs leaving the source being non-increasing and 

the arcs entering the sink non-decreasing linear functions of a 

parameter while the capacities of all other arcs being constant. 

In the presentation to follow, some familiarity with flow 

algorithms is assumed and many details are omitted, since they 

are straightforward modifications of known results. The 

notions and results presented in Section II and Section III are 

taken from [1], [2], [4]-[8].  

II. TERMINOLOGY AND PRELIMINARIES 

A. Definitions and Notation 

Given a capacitated network ),,,,,( tsuANG ℓ= , let 

Nn =  and Am = . The upper bound function and the 

lower bound function are two nonnegative functions, ),( jiu  

and ),( jiℓ  associated with each arc  Ajj ∈),( . The network 

has two special nodes: a source node s  and a sink node t . A 

flow is a function 
+ℜ→Af :  satisfying the next conditions: 
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for some 0≥v , where v  is referred to as the value of the 

flow f . Any flow on a directed network satisfying the flow 

bound constraints:  

 

Ajijiujifji ∈∀≤≤ ),(),(),(),(ℓ        (1.b) 

 

for every arc Aji ∈),(  is referred to as a feasible flow. A cut is 

a partition of the node set N  into two subsets S  and 

SNT −= , represented using the notation ],[ TS . 

Alternatively, a cut can be defined as the set of arcs whose 

endpoints belong to different subsets S  and T . A cut is 

nontrivial if both S  and T  are nonempty. An arc ),( ji  with 

Si∈  and Tj∈  is referred to as a forward arc of the cut 

while an arc ),( ji  with Ti∈  and Sj∈  as a backward arc 

of the cut. Let ),( TS  denote the set of forward arcs in the cut 

and let ),( ST  denote the set of backward arcs. A cut ],[ TS  is 

a s-t cut if Ss∈  and Tt∈ . 

A network ),,,,,( tsuANG ℓ=  is called bipartite if its 

node set N  can be partitioned into two subsets 
1

N  and 
2

N  

such that all arcs have one endpoint in 
1

N  and the other in 

2N . Let || 11 Nn =  and || 22 Nn = . A bipartite network is 

often represented using the notation 

),,,,,( 21 tsuANNG ℓ∪= . Let source s  and sink t  be 

two distinguished nodes in the bipartite network, considering 

that 
2

Ns∈  and 
1

Nt∈ .  

B. The Minimum Flow Problem 

The minimum flow problem is to determine a flow f̂  for 

which v  is minimized. By convention, if the arc Aji ∈),(  

and the arc Aij ∉),( , the arc ),( ij  is added to the set of arcs 

A  by setting 0=),( ijℓ  and 0=),( iju . Let f  be a feasible 

solution for the minimum flow problem. Supposing that an arc 

Aji ∈),(  carries ),( jif  units of flow, the existing flow can 

be decreased either by pulling ),(),( jijif ℓ−  units of flow 

from j  to i  over the arc ),( ji  or by pushing ),(),( ijfiju −  

units of flow from j  to i  along the arc ),( ij .  

The residual capacity ),(ˆ jir  of any arc Aji ∈),( , with 

respect to a given flow f , is given by: 

 

),(),(),(),(),(ˆ jijifijfijujir ℓ−+−= .     (2) 

 

Based on these ideas, for a network ),,,,,( tsuANG ℓ=  and 

a feasible solution f , the network denoted by 

)ˆ,()(ˆ ANfG = , where Â  is the set of residual arcs 

corresponding to the feasible solution f , consisting only of 

arcs ),( ji  with 0>),(ˆ jir  is referred to as the residual 

network with respect to the given flow f  for the minimum 

flow problem. From residual capacities, a flow can be 

determined using the following expression: 

 

}0),,(),(),(ˆmax{),(),( ijijujirjijif ℓℓ +−+= .  (3) 

 

The capacity of a ts −  cut ],[ˆ TSc  is defined, for the 

minimum flow problem, as the sum of the lower bounds of the 

forward arcs minus the sum of the upper bounds of the 

backward arcs:  

),(),(],[ˆ STuTSTSc −= ℓ .           (4) 

 

The s-t cut with the greatest capacity value among all s-t cuts 

is referred to as a maximum cut, ]ˆ,ˆ[ TS . 

Theorem 1 (Min-Flow Max-Cut Theorem): If there is a 

feasible flow in the network, the value of the minimum flow 

from a source s to a sink t in a capacitated network with 

nonnegative lower bounds equals the capacity of the 

maximum ts −  cut. 
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In the residual network )ˆ,()(ˆ ANfG =  the distance 

function, ℵ→Nd :ˆ  is a function from the set of nodes to the 

nonnegative integers. A distance function is said to be valid if 

it satisfies the following conditions: 

 

0)(ˆ =sd  and  1)(ˆ)(ˆ +≤ idjd , Aji ˆ),( ∈∀ .     (5) 

 

The value )(ˆ id  is referred to as the distance label of node i . 

The distance labels are said to be exact if for each node i , 

)(ˆ id  equals the length of the shortest path from node s  to 

node i  in the residual network )(ˆ fG .  

Definition 1: An arc ),( ji  in the residual network )(ˆ fG  is 

referred to as admissible if it satisfies the condition: 

1)(ˆ)(ˆ += idjd ; otherwise it is inadmissible. A directed path 

from the source node s  to the sink node t  in the residual 

network )(ˆ fG  is called admissible directed path if it only 

consists of admissible arcs; otherwise it is inadmissible. 

Definition 2: A directed path )(ˆ iP , from the source node s  

to a node i  ( ti ≠ ) in the residual network )(ˆ fG , consisting 

only of admissible arcs is called partly admissible directed 

path.  

Statement 1: An admissible directed path from the source 

node s  to the sink node t  in the residual network )(ˆ fG  is a 

shortest decreasing directed path.  

Statement 2: 

(a) If the distance labels are valid, the distance label )(ˆ id  

is a lower bound on the length of the shortest directed path 

from node s  to node i  in the residual network.  

(b) If ntd ≥)(ˆ , the residual network contains no directed 

path from the source node s  to the sink node t .  
Theorem 2 (Decreasing Path Theorem): A flow f  is a 

minimum flow if and only if the residual network )(ˆ fG  

contains no directed path from the source node to the sink 

node.  

Definition 3: For the minimum flow problem, a preflow is a 

function 
+ℜ→Af :  satisfying the next conditions:  

},{,),(),(
),(|),(|

tsNiallforijfjif
AijjAjij

−∈≤− ∑∑
∈∈

0   (6.a) 

 

Ajijiujifji ∈∀≤≤ ),(),(),(),(ℓ        (6.b) 

 

Definition 4: The deficit of each node Ni∈  is defined as: 

 

∑∑
∈∈

−=
AijjAjij

ijfjifie
),(|),(|

),(),()(ˆ ,         (7) 

thus, for the minimum flow problem, for any preflow f , 

0)(ˆ ≤ie , },{ tsNi −∈ . 

A node },{\ tsNi∈  is said to be active if 0)(ˆ <ie and 

balanced if 0)(ˆ =ie . A preflow f  for which 0)(ˆ =ie , 

},{ tsNi −∈  is a flow. Consequently, a flow is a particular 

case of preflow. 

There are three approaches for solving minimum flow 

problem: 

- using decreasing directed path algorithms from source 

node s  to sink node t  in residual network )(ˆ fG ; 

- using preflow-pull algorithms starting from sink node t  in 

residual network )(ˆ fG ; 

- using augmenting directed path algorithms from sink node 

t  to source node s  or using preflow-push algorithms starting 

from sink node t  in residual network )(
~

fG , where )(
~

fG  is 

the residual network defined for the maximum flow. 

III. FLOWS IN PARAMETRIC NETWORKS 

For the parametric flow problem, the lower bound and 

upper bound functions as well as the flow functions on any of 

the arcs ),( ji  are piecewise linear functions defined on an 

interval ],0[ Λ . On the set of all piecewise linear functions 

λ)(f  an ordering cannot be defined for the entire interval 

],0[ Λ  since two piecewise linear functions are not necessarily 

comparable. Therefore a partitioning kJ  of the interval of the 

parameter ],0[ Λ  into disjoints subintervals 

],[... Λ0
1

=KJJ ∪∪  with φ=qp JJ ∩ , qp ≠∀  must be 

defined so that on each of the subintervals kJ  an ordering to 

be defined as:  

 

λ)(λ)( 21 ff ≤  for kJ  ⇔  λ)(λ)( 21 ff ≤ ,  kJ∈∀ λ .   (8) 

 

For the parametric minimum flow problem a network 

),,,λ)(,,(λ)( tsuANG ℓ=  is considered, where the lower 

bound function )λ;,( jiℓ  of each arc Aji ∈),( is a linear 

function of a single, non-negative, real parameter, λ :  

 

),(λ),()λ;,( 0 jijiji £⋅−= ℓℓ .          (9) 

 

The real valued function, ),( ji£  associated with each arc, 

Aji ∈),(  is referred to as the parametric part of the lower 

bound of the arc ),( ji . The non-negative value ),(0 jiℓ  is the 

lower bound of the arc ),( ji  for 0=λ : ),();,( jiji
0

0 ℓℓ =  

and ),(),( jiuji ≤≤
0

0 ℓ . The parameter λ  takes values in 
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the interval ],0[ Λ  where Λ  is chosen so that: 

),()λ;,( jiuji ≤≤ ℓ0 , ],[λ;)( Λ∈∀∈∀ 0 Aji, . Therefore the 

parametric part of the lower bounds, ),( ji£  satisfy the 

constraints: Λ≤≤Λ− /),(),(/)),(),( jijijiuji
00

£( ℓℓ , 

.),( Aji ∈∀ . 

The parametric minimum flow problem, (PMinF) is to 

compute all minimum flows for every possible value of  

],[λ Λ∈ 0 : 

 

][0,) Λ∈λλ( allforvimizemin       (10) 

with  
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),(;,);,( λλ jiujifji ≤)(≤ℓ Aji ∈∀ ),( .   (11.b) 

 

This problem looks like a classic minimal flow problem 

with the decisive difference that the variables )λ;,( jif  of 

this problem are piecewise linear functions instead of real 

numbers and that the lower bounds )λ;,( jiℓ  are linear 

functions instead of constants. 

Let Ajijiff ∈= ),()),λ;,(()λ( ……  be a vector of flow functions 

defined on the interval ][ Λ0, . Supposing that an arc 

Aji ∈),(  carries a flow )λ;,( jif , the existing flow can be 

reduced either by pulling the flow )λ;,()λ;,( jijif ℓ−  from 

node j  to node i  over the arc ),( ji  or by pushing the flow 

)λ;,(),( ijfiju −  from j  to i  along the arc ),( ij . These 

flows are computed as differences between piecewise linear 

functions of λ . The parametric residual capacity )λ;,(ˆ jir  of 

any arc Aji ∈),( , with respect to a given flow λ)(f , is given 

by: 

 

)λ;,()λ;,()λ;,(),()λ;,(ˆ jijifijfijujir ℓ−+−= .  (12) 

 

For a network ),,),λ(,,()λ( tsuANG ℓ=  and a feasible 

solution λ)(f , the network denoted by )ˆ,ˆ()λ,(ˆ ANfG = , 

with NN =ˆ  and Â  being the set of arcs consisting only of 

arcs with 0>)λ;,(ˆ jir  for at least a subinterval of ][ Λ0, , is 

referred to as the parametric residual network with respect to 

the given flow λ)(f  for the parametric minimum flow 

problem. From the parametric residual capacities )λ;,(ˆ jir , 

the flow can be determined using the following expression: 

 

}),λ;,(),()λ;,(̂{)λ;,()λ;,( 0ijijujirjijif ℓℓ +−+= max .  (13) 

 

Definition 5: A parametric cut partitioning ][ kk JS ;  is a 

finite set of cuts ],[ kk TS , Kk ,,1…=  together with a 

partitioning kJ  of the interval of the parameter ],0[ Λ  into 

disjoints subintervals so that ],[... Λ01 =KJJ ∪∪  and 

φ=qp JJ ∩ , qp ≠∀ . The capacity of a parametric ts −  cut 

partitioning for the minimum flow problem is a piecewise 

linear function ][ˆ kk JSc ;  defined for all λ  of every 

subinterval kJ∈λ , Kk ,,1…= : 

 

∑∑
∈∈

−=
),(),(),(),(

),()λ;,(][ˆ
kkkk STjiTSji

kk jiujiJSc ℓ ; .     (14) 

 

A parametric ts −  cut for which the subintervals of the 

parameter values kĴ  assure that every ts −  cut is a maximum 

cut ]ˆˆ[ kk TS ;  for all kĴλ∈  is referred to as a parametric 

maximum ts −  cut, ]ˆˆ[ kk JS ;  for the whole interval of the 

parameter values, ],[ Λ0 . Thus a parametric maximum cut  

]ˆˆ[ kk JS ;  is a set of maximum cuts ]ˆˆ[ kk TS ;  and 

]ˆˆ[ˆ]ˆˆ[ˆ kkkk TScJSc ;; =  for all λ  of every subinterval kĴ , 

Kk ,,1…= . 

Theorem 3 (Parametric Min-Flow Max-Cut Theorem): If 

there is a feasible flow in the parametric network, the value 

function of the parametric minimum flow from a source s  to a 
sink t  in a capacitated network with parametric lower bounds 
equals the capacity of the parametric maximum ts −  cut.  

Proof: From the non-parametric Min-Flow Max-Cut 

Theorem (Theorem 1) results that for any of the parameter 

values 
∗λ , the value of the non-parametric minimum flow 

with respect to fixed lower bounds )λ;,( ∗jiℓ , 

Ajijiff ∈
∗∗ = ),()),λ;,(()λ( ……  equals the capacity of the 

maximum ts −  cut: 
∗∗ = ]ˆ,ˆ[ˆ)λ(ˆ TScv . From the definition of 

the subintervals of the parameter values kĴ  for the parametric 

maximum ts −  cut results that if kĴλ ∈∗
 then the maximum 

ts −  cut 
∗]ˆ,ˆ[ TS  remains a maximum cut ]ˆ,ˆ[ kk TS  for the 

entire subinterval kĴ . Hence, for every subinterval kĴ  holds 

that ]ˆ,ˆ[ˆ)λ(ˆ kk TScv = , for all kJ∈λ  and since 

]ˆˆ[ˆ]ˆˆ[ˆ kkkk TScJSc ;; =  for all λ  of every subinterval kĴ , 

Kk ,,1…=  results that the value function of the parametric 

minimum flow from the source node s  to the sink node t  

equals the capacity of the parametric maximum ts −  cut: 

]ˆˆ[ˆλˆ
kk JScv ;)( = , Kk ,,1…=  for all ],0[λ Λ∈ .              ■ 
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The subintervals:  

 

AjiforjirjiI ˆ),(})λ;,(ˆ|λ{),(ˆ ∈>= 0      (15) 

 

describe subintervals of ],0[ Λ , ][),(ˆ Λ0,⊆jiI  where a 

decreasing of flow along an arc ),( ji  in )λ,(ˆ fG  is possible, 

based on )λ(f . If an arc ),( ji  doesn’t belong to )λ,(ˆ fG  

then φ=:),(̂ jiI  is set.  

Definition 6: A conditional decreasing directed path )λ(P̂  

in )λ,(ˆ fG  is a directed path P̂  from the source node s  to 

the sink node t  such that: φ≠=
∈

),(ˆ)ˆ(ˆ
ˆ),(

jiIPI
Pji

∩ .  

Definition 7: The parametric residual capacity of a 

conditional decreasing directed path )λ(P̂  in )λ,(ˆ fG  is the 

inner envelope of the parametric residual capacities, )λ;,(ˆ jir  

of all arcs composing the conditional decreasing directed path 

for all )ˆ(ˆλ PI∈ : 

 

}λ)(ˆ),(|)λ;,(ˆ{)λ,ˆ(ˆ
)ˆ(ˆλ

PjijirPr
PI

∈=
∈
min .      (16) 

 

Theorem 4 (Conditional Decreasing Path Theorem): A flow 

)λ(f  is a parametric minimum flow if and only if the 

parametric residual network )λ,(ˆ fG  contains no conditional 

decreasing directed path from the source node to the sink 

node.  

Proof: If )λ(f  is a parametric minimum flow then there 

does not exist any ][0,λ Λ∈∗
 so that a decreasing directed 

path )λ(ˆ ∗P  from the source node to the sink node in the non-

parametric residual network ),λ(ˆ fG ∗
 can be found, otherwise 

)λ( ∗f  would not be a minimum flow. Thus, if )λ(f  is a 

parametric minimum flow then the parametric residual network 

)λ,(ˆ fG  contains no conditional decreasing directed path 

from the source node to the sink node.  

Mutually, suppose that no conditional decreasing directed 

path exists in )λ,(ˆ fG  and yet )λ(f  is not a parametric 

minimum flow, i.e. there exists ],0[λ Λ∈∗
 such that 

)λ(ˆ)λ( ∗∗ > vv  where )λ( ∗v  is the value of the flow )λ( ∗f . 

Consequently, Ajijiff ∈
∗∗ = ),())λ;,(()λ( ……  is therefore a 

feasible but not minimum flow with respect to the fixed lower 

bounds )λ;,( ∗jiℓ . Hence, by the decreasing path theorem for 

non-parametric flows, there exists a directed path 
∗P̂  in 

),λ(ˆ fG ∗
 with respect to )λ( ∗f . The definition of  )λ,(ˆ fG  

yields that 
∗P̂  is also a conditional decreasing directed path 

)λ(P̂  in )λ,(ˆ fG  with }λ{)ˆ(ˆ ∗=PI  which contradicts the 

non-existence of a conditional decreasing directed path. Thus, 

if no conditional decreasing directed path from the source 

node to the sink node exists in the parametric residual network 

)λ,(ˆ fG  then )λ(f  is a parametric minimum flow.              ■ 

IV. MINIMUM FLOW BALANCING ALGORITHM FOR A 

MONOTONE PARAMETRIC BIPARTITE NETWORK 

For the parametric maximum flow problem, Zhang, Tarjan 

et al. [20], [21], [22] proposed a balancing approach for the 

parametric maximum flow problem on bipartite networks. 

They refer to two algorithms, one of which uses arc balancing 

and the other of which balances a star at each step, where a 

star is the subgraph induced by the set of arcs incident on a 

single vertex. The claimed main advantage of these algorithms 

is to be very simple as compared to other parametric 

maximum-flow algorithms. Gallo et. al. [9] showed that if the 

parameterized bounds are linear functions of λ , the maximum 

flow value function of λ  is a piecewise linear function with no 

more than 2−n  breakpoints.  

The balancing algorithm for the minimum flow in a 

parametric bipartite network decreases the flow over simple 

decreasing directed path in a special parametric bipartite 

network with linear lower bound functions of the parameter for 

all the arcs leaving the source or entering the sink while all 

other arcs having constant lower bounds. For the parametric 

minimum flow problem a flow is referred to as λ -balanced if 

there is no simple decreasing directed path from the source 

node to the sink node in the parametric residual network. 

A. Monotone Parametric Bipartite Network  

The monotone parametric bipartite network for the 

minimum flow problem is a special kind of parametric 

bipartite network with the source connected to all nodes 

1Ni∈  with φ=)},{( si  and all nodes 2Nj∈  connected to 

the sink with φ=)},{( jt . The lower bounds of the arcs out of 

the source are non-increasing functions of a parameter λ  and 

the lower bounds of the arcs into the sink are non-decreasing 

functions of λ , the lower bounds of the remaining arcs being 

constant. In the following, the parametric lower bounds are 

linear functions of a parameter λ  taking values in the interval 

],0[ Λ , that is:  

 

),(λ),()λ;,( 0 is£isis ⋅−= ℓℓ   with   

),(),(0 isis£ 0

1
ℓ

Λ
≤≤ , Ais ∈∀ ),( ,      (17) 

 

),(λ),()λ;,( 0 tj£tjtj ⋅−= ℓℓ   with   
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0),()),(),( ≤≤−
Λ

tj£tjutj0(
1
ℓ , Atj ∈∀ ),( .  (18) 

 

B. Balancing Algorithm 

For a feasible flow )λ(f , if for an arc out of the source, 

),( is  holds that )λ;,()λ;,( isisf ℓ≥  ],0[λ Λ∈∀  then the 

flow can be decreased along the arc ),( is  for the entire 

interval of the parameter. Let a step k  of flow decreasing be 

considered starting with a feasible flow )λ(kf . For every arc 

),( is  the value 
k

iλ  is defined to be the maximum value of λ  

for which λ);,(λ);,( isisfk ℓ= , i.e. }0λ);,(ˆ|λ{:λ == isrk

i max . 

Equivalently, for every arc ),( tj , the value 
k

jλ  is defined to 

be the minimum value of λ  such that λ);,(λ);,( tjtjf k ℓ= , 

i.e. }0λ);,(ˆ|λ{:λ == tjrk

j min . Actually for a certain value 

k

iλ  the flow can be decreased along the arc ),( is  only for the 

parameter values ],λ(λ Λ∈ i  since the lower bounds of the 

arcs out of the source are non-increasing functions of λ . 

Similarly, for a value 
k

jλ  defined for an arc entering the sink 

the flow can be decreased along the arc ),( tj  only for the 

parameter values )λ,0[λ j∈  since the lower bounds of the 

arcs into the sink are non-decreasing functions of λ . 

Consequently the flow can be decreased along a conditional 

decreasing directed path including the arcs ),( is  and ),( tj  as 

long as φ≠Λ],λ()λ,0[ k

i

k

j ∩ , i.e. the flow is always pulled 

along a directed path containing arcs ),( ji  out of a node i  

with a smaller lambda value and ending in a node j  with a 

greater lambda value, 
k

j

k

i λλ < . This situation is illustrated in 

Fig. 1. According to the general definition a flow )λ(f  is said 

to be λ -balanced if there is no decreasing path avoiding the 

source s  from a node i  to a node j  with ji λλ < .  

The idea is that a λ -balanced flow is a minimum flow 

which, to the extent possible, equalizes the flows on the arcs 

out of the source s , where equalization is with respect to λ -

values. For the monotone parametric bipartite network in 

discussion, a flow is referred to as λ -balanced if there is no 

decreasing directed path, or even an arc with positive residual 

capacity, from a node i  with lower lambda value to a node j  

with higher lambda value. After a step of decreasing of flow 

along a directed path containing an arc ),( ji , the new 

subinterval available for flow decreasing reduces to φ  if not 

constrained by the residual capacity of the arc ),( ji . 

 

C. Decreasing the Flow along Simple Directed Paths in 

Residual Network 

The algorithm works in the parametric residual network, 

)ˆ,()λ,(ˆ ANfG = .  

Definition 8: A directed path ),,,(ˆ tjisP=  with 

}{tN −∈
1

i  and }{sN −∈
2

j  in )ˆ,()λ,(ˆ ANfG =  is 

referred to as a simple residual path if one of the following 

two cases holds: 

a)   0>< ),(ˆλλ jirandji   for  )λ,λ(λ ji∈  

b)   0>> ),(ˆλλ ijrandji   for  )λ,λ(λ ij∈ . 

Let 
k

iλ  and 
k

jλ  denote the lambda values at the beginning of a k  

step of decreasing, respectively 
1λ +k

i , 
1λ +k

j  the corresponding values 

at the end of the decreasing step over a simple residual path, 

),,,(ˆ tjisP=  in the parametric residual network )λ,(ˆ kfG .  

For the case when 
k

j

k

i λλ < , assuming not being constrained 

by the residual capacity of the arc ),( ji , a pull of a flow from 

t  to s  will reduce the subinterval available for decreasing to 

φ , i.e. 
∗++ == λλλ 11 k

j

k

i , which is illustrated in Fig 2.  
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Fig. 2 Decreasing the flow over a Simple Residual Path with 
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Fig. 1 Lower bound functions for arcs ),( is  and ),( tj  in G(λ) 
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The maximum value )λ,ˆ(*ˆ ∗Pr  of the piecewise linear 

residual capacity function for which the two new lambda 

values become equal after the pull is computed as: 

);,(ˆ);,(ˆ)λ,ˆ(*ˆ λλ ∗∗∗ == tjrisrPr . Otherwise, the 

decreasing of flow will make the two new lambda values 
11 λ,λ ++ k

j
k
i  come closer to each other. These new values are 

computed as solutions of the following equations: 

),(ˆ)λ;,(ˆ 1 jirisr k

i =+
 and ),(ˆ)λ;,(ˆ 1 jirtjr k

j =+
. For this case, 

after the pull of flow, the residual capacity of the arc ),( ji  will 

become zero for all the vales of the parameter: )λ,λ(λ 11 ++∈ k

j

k

i . 

Hence, a pull of flow equal to )λ,ˆ(ˆ Pr  is performed from the sink 

node t  to the source node s  through the directed path )λ(P̂  in 

)λ,(ˆ kfG . 

For the second case, when 
k

j

k

i λλ > , a pull of )λ,ˆ(*ˆ rPr  

flow is performed from the source node s  to the sink node t  

through the reversed directed path )λ(ˆrP  in )λ,(ˆ kfG  for the 

two lambda values to become equal.  If the residual capacity of the 

arc ),( ij  in )λ,(ˆ kfG  restricts the pull of the flow by being 

smaller then the maximum value of the piecewise linear 

residual capacity )λ,ˆ(*ˆ ∗
rPr , i.e. )λ,ˆ(*ˆ)λ;,(ˆ ∗< rPrijr  for 

)λ,λ(λ k

i

k

j∈ , then the two new lambda values 
11 λ,λ ++ k

j

k

i  

come closer to each other being computed as solutions of the 

following equations: ),(ˆ)λ;,()λ;,( 1 ijrisis k

i

k

i +=+
ℓℓ  and 

),(ˆ)λ;,()λ;,( 1 ijrtjtj k

j

k

j +=+
ℓℓ . Thus, for every arc 

Aji ˆ),( ∈ : 

 

a)   If 
k

j

k

i λλ < , a pull of )λ,ˆ(ˆ Pr  flow from the sink node t  

to the source node s  through the directed path )λ(P̂  in 

)λ,(ˆ kfG  is performed; 

 

b)   If 
k

j

k

i λλ > , a pull of )λ,(ˆ rPr
⌣

 flow from the source node 

s  to the sink node t  through the reversed directed path )λ(ˆrP  in 

)λ,(ˆ kfG  is performed.  

For the lambda values at the end of a decreasing step holds 

that: 

 

a)   if 
k

j

k

i λλ < , then  
k

j

k

j

k

i

k

i λλλλ 11 <≤< ++
 and  

b)   if 
k

j

k

i λλ > , then  
k

j

k

j

k

i

k

i λλλλ 11 >≥> ++
.  

 

After each step of decreasing the flow either the residual 

capacity of the arc ),( ji  becomes zero or the two new lambda 

values become equals. A single operation will never reverse 

the order of the two lambda values even though the order 

could be reversed in the future by other operations. The flow 

to be pulled, )λ,ˆ(ˆ Pr  along the directed path 

),,,(λ)(ˆ tjisP =  and )λ,ˆ(ˆ rPr  along the reversed directed 

path ),,,(λ)(ˆ sijtPr =  are computed as follows:  

 

],[λλ

)λ,[λλ

)λ,(λλ

]λ,(λλ

]λ[0,λ

0

λ);,(ˆ

)λ;,(ˆ

λ);,(ˆ

0

:)λ,ˆ(ˆ
1

11

1

Λ∈

∈

∈

∈

∈














=
+

++

+

k

j

k

j

k

j

k

j

k

i

k

i

k

i

k

i

for

for

for

for

for

tjr

jir

isr

Pr ,     (19) 

 

],[λλ

)λ,[λλ

)λ,(λλ

]λ,(λλ

]λ[0,λ

0

)λ;,(-λ);,(

)λ;,(ˆ

)λ;,(-λ);,(

0

:)λ,ˆ(ˆ
1

11

1

Λ∈

∈

∈

∈

∈














=
+

++

+

k

i

k

i

k

i

k

i

k

j

k

j

k

j

k

j

k

i

k

j

r

for

for

for

for

for

isis

ijr

tjtj

Pr

ℓℓ

ℓℓ

 (20) 

 

D. Balancing Algorithm for the Monotone Parametric 

Bipartite Network (BMPB) 

The first phase of finding a parametric minimum flow 

consists in establishing a feasible flow in a non-parametric 

network ),,,',,(' tsuANG ℓ=  which is obtained from the initial 

network ),,,λ)(,,(λ)( tsuANG ℓ=  by modifying the 

parametric lower bounds as follows: 

 

}][0,λ|)λ;,({),(' Λ∈= ismaxis ℓℓ ,  

i.e. ),(),(' isis
0
ℓℓ =              (21) 

and  

 

}][0,λ|)λ;,({),(' Λ∈= tjmaxtj ℓℓ , 

i.e. ),(),(),(' tj£tjtj ⋅−= Λ
0
ℓℓ .         (22) 

 

The second phase consists in finding the parametric 

minimum flow and the complete set of maximum cuts for the 

entire interval of the parameter values, i.e. the parametric 

maximum cut. The algorithm maintains a set L  of nodes 

}{2 sNj −∈  whose last examination resulted in a change in 

the flow. Initially }{: 2 sNL −=  and during a pass over L  if 

an examination of a node j  results in sufficiently small flow 

change or no flow change, j  is dropped from L . When L  

becomes empty it is reset to }{: 2 sNL −= . If an entire pass 

over }{: 2 sNL −=  results in no flow change the computation 
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is complete and a parametric minimum flow λ)(f̂  is obtained. 

From the lambda values, jλ  the maximum cut of the original 

network ),,,λ)(,,(λ)( tsuANG ℓ=  under any λ  value is 

derived in a single linear scan of the nodes. 

 
(1) Programme BMPB; 

(2) Begin 

(3) find an initial feasible flow f in G; 

(4) 

compute the parametric residual 

network ),(λ fĜ ; 

(5) for i:=1 to n1 do λi=0; 

(6) for j:=1 to n2 do λj=Λ;  

(7) L0:=Ø; 

(8) for j:=1 to n2 do add node j to L0; 

(9) L:=L0; 

(10) while L≠Ø do 

(11) begin 

(12) B:=0; 

(13) remove the first node j from L; 

(14) 
select the first arc (i,j) 

adjacent to node j with i≠t; 

(15) repeat 

(16) C:=0; 

(17) if (( 0),( >jir̂ )and(λi<λj)) then  

(18) begin 

(19) pull λ),(Pr ˆˆ  over )()(λ tj,i,s,P =ˆ ; 

(20) update λi and λj; 

(21) update ),(λ fĜ ; 

(22) B:=1; 

(23) end 

(24) else if(( 0),( >ijr̂ )and(λi>λj))then 

(25) begin 

(26) pull λ),(
r
Pr ˆˆ  over )(λ s,i,j,tP

r
=)(ˆ ; 

(27) update λi and λj; 

(28) update ),(λ fĜ ; 

(29) B:=1; 

(30) end; 

(31) 
if (i,j) is not the last arc 

adjacent to j then  

(32) begin 

(33) 
select the next arc (i,j) 

adjacent to node j with i≠t; 

(34) C:=1; 

(35) end; 

(36) until(C=0); 

(37) if (B=1) then add node j to L; 

(38) if ((L=Ø)and(B=1)) then L:=L0; 

(39) end; 

(40) End. 

 

Theorem 5: If there is a feasible flow in the network 

),,,λ)(,,(λ)( tsuANG ℓ= , the BMPB algorithm computes 

correctly a parametric minimum flow. 

Proof: When the algorithm terminates, there is no arc with 

positive residual capacity in the parametric residual network, 

from any node i  with lower lambda value to any node j  with 

higher lambda value. For any of the parameter values 

],0(λ Λ∈k  the nodes in },{ tsN −  are partitioned according 

to their lambda values in two disjoints sets kS  and kT . Let kS  

be the set of nodes },{ tsNi −∈  with ki λλ < , 

}λλ|{: kik iS <=  and }λλ|{: kjk jT ≥=  which means that 

the two sets generates the ts −  cut ], kk TS[ . For every arc 

), kk TSji (),( ∈  the residual capacity of the arc 0)λ;,(ˆ =jir  

since ji λλ < , i.e. 0)λ;,()λ;,( =− jijif ℓ . Equivalently for 

every arc )kk STij ,(),( ∈  the residual capacity of the arc 

0)λ;,(ˆ =ijr  since ji λλ < , i.e. 0)λ;,(),( =− ijfiju . 

Consequently the flow can not be decreased over the ts −  cut 

], kk TS[  since the residual capacity of any of the simple 

directed paths from the source node to the sink node 

0)λ,ˆ(ˆ =Pr  and the residual capacity of any of the simple 

reversed directed paths from the sink node to the source node 

0)λ,ˆ(ˆ =rPr . Hence for all lambda values the flow 

Ajijiff ∈= ),()),λ;,(()λ( ……  is a parametric minimum flow.      ■ 

E. Deriving the Parametric Maximum Cut 

Using the residual network )ˆλ,(ˆ fG  with the parametric 

minimum flow given by the balancing algorithm, a maximum 

cut of the parametric network ),,),λ(,,()λ( tsuANG ℓ=  
under any λ  value is derived in a single linear scan of the 

nodes. The set of nodes N  is partitioned in two disjoint 

subsets [ kS , kT ] as follows: 

 

}λλ|{}λλ|{}{ kjkik jisS <<= ∪∪  and kk SNT −= . (23) 

 

The complete procedure for getting the parametric maximum 

cut is summarized as follows: 

 
(1) procedure max-cut; 

(2) begin 

(3) N:=N-{s,t}; 

(4) λ1:=min{λi | i∈N} 
(5) S1:={s}; 

(6) J1:=[0,λ1]; 

(7) N1:={i∈N | λi=λ1} 
(8) N:=N-N1;  

(9) k:=1; 

(10) repeat  

(11) λk:=min{λi | i∈N} 
(12) Sk:= Sk-1∪Nk-1; 
(13) Jk:=(λk-1,λk]; 

(14) Nk:={i∈N | λi=λk} 
(15) N:=N-Nk; 

(16) k:=k+1; 

(17) until(N=Ø); 

(18) Sk:= Sk-1∪Nk-1; 
(19) Jk:=(λk-1,Λ]; 

(20) end; 
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F. Complexity Issues 

The approach implements a round-robin algorithm which 

consists in looping over a fixed list of nodes and performing a 

decrease over each simple each simple residual path until an 

entire pass over the list results no decreasing. It is easy to 

construct examples on which this algorithm runs forever. 

Therefore, a suitable stopping condition can be introduced. 

It suffices to stop the algorithm from iterating when nodes 

joined by a simple decreasing directed path have λ -values 

close enough that a simple post processing phase will complete 

the computation. For instance, nodes i and j  joined by a 

residual decreasing directed path have λ -values close enough, 

ε≤− |λλ| ij .  

Theorem 6: The ε -approximation of the BMPB algorithm 
has the complexity of ))/log(( 21 εΛ⋅nnO . 

Proof: The flow is decreased over an arc ),( ji  in )λ,(ˆ fG  

with positive residual capacity only if ji λλ <+ ε . Pulling 

flow over all arcs ),( ji  entering in the same node j  results in 

each of the iterations in jλ -values dropping by a factor, given 

by the parametric part of the lower bounds of the 

parameterized arcs in the simple decreasing directed path 

containing node j . The number of iterations of the main loop 

is ))(log(RO , where R  is the ratio between the initial 

difference between λ -values, Λ  and the minimum possible 

difference between λ -values, e.g. ε/: Λ=R . The algorithm 

stops when a pass over the arcs, taking )( 21 nnO ⋅  time, ends 

without any change of the flow. Thus, the algorithm stops after 

))/(log( εΛO  passes over the arcs, taking )(
21

nnO ⋅  time 

per pass, for a total time of ))/log(( εΛ⋅
21

nnO .                  ■ 

Although this algorithm is not competitive with other 

algorithms, it has the advantage of being extremely simple and 

intuitive. 

For the purpose of finding the parametric maximum cut and 

the minimum flow value function a single scan of the nodes 

N  in the increasing order of their associated λ -values gives 

all maximum cuts as monotone increasing step set-function kS  

of λ  and the kλ -values, at which the sizes of the maximum 

cut partitions change, i.e. the partitioning kJ  of the interval of 

the parameter, [0,Λ]. Sorting the nodes by their associated 

lambda value takes ))log(( nnO  time. All minimum flow 

value functions of the original network can be calculated in 

)(mO  time, where m is the number of arcs, if the arcs are also 

scanned along with the scanning of the nodes to get the 

capacities of the max-cuts. Since the maximum cuts are nested, 

each arc is scanned twice – once when one of its ends changes 

membership from kT  partition to kS  partition and the second 

time when the other end changes its membership. Let kX  

denote the set of nodes which change membership from kT  to 

1+kS  while passing from ],[ kk JS  partition to ],[ 11 ++ kk JS  

partition. Since kkk XSS ∪=+1  and kkk XTT \1 =+ , follows 

that: 

== ++++ ),(),(),(
1111 kkkkkk TXTSTS ∪ ),(\),(),( kkkkkk XSTXTS

1+∪  

and 

== ++++ ),(),(),( kkkkkk XTSTST
1111

∪ ),(\),(),( kkkkkk SXXTST
1+∪ . 

Thus, the recursive relation for computing the capacity of 

the parametric maximum cut is: 

=−= ∑∑
++++ ∈∈

++
)ˆ,ˆ(),()ˆ,ˆ(),(

),()λ;,(]ˆˆ[ˆ

1111

11
 ;

kkkk STjiTSji

kk jiujiJSc ℓ  

+−= ∑∑
∈∈ )ˆ,ˆ(),()ˆ,ˆ(),(

),()λ;,(
kkkk STjiTSji

jiujiℓ −∑
+∈ )ˆ,(),(

)λ;,(
1kk TXji

jiℓ  

=+−− ∑∑∑
∈∈∈ + )ˆ,(),(),ˆ(),(),ˆ(),(

),()λ;,(),(
kkkkkk SXjiXSjiXTji

jiujijiu ℓ

1

 

+









−−= ∑∑

∈∈ )ˆ,(),(),ˆ(),(

),()λ;,(]ˆˆ[ˆ
kkkk SXjiXSji

kk jiujiJSc ℓ ;  











−+ ∑∑

++ ∈∈ ),ˆ(),()ˆ,(),(

),()λ;,(
kkkk XTjiTXji

jiuji
11

ℓ . 

V. EXAMPLE 

The algorithm is illustrated on the network presented in Fig. 3. 

The feasible flow in the network is illustrated in Fig. 4. and the 

parametric residual network for the initial feasible flow 0f  

with the parameter λ  taking values in the interval [0,1] is 

presented in Fig. 5. In any of the parametric residual network 

representations, for every arc ),( ji , the parametric residual 

capacity 0)λ;,(ˆ >jir  is indicated only for the values of the 

parameter ]λ,λ[λ ji∈ . 
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Fig. 4 The feasible flow f0  in network )λ(G  
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Fig. 3 The bipartite network )λ(G  
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Iteration 1: From the list }5,4{=L , node 4 is removed and 

the first adjacent arc )4,1(  is selected. Since 41 λλ <  and 

0λ);4,1(ˆ >r , the simple residual path ),4,1,( ts  is found. 

Computing the value for )λ;,,,(*ˆ ∗tsr 41 , 

)λ;,4(ˆ)λ;1,(ˆ)λ;,4,1,(*ˆ ∗∗∗ == trsrtsr , results that 

2/1λ =∗
 and 3)λ;,4,1,(ˆ =∗tsr . 

 

Since )λ;4,1(ˆ)λ;,4,1,(*ˆ rtsr >∗
 a pull of  )λ,ˆ(ˆ Pr  

flow, indicated in table 1, is performed along the residual 

directed path ),4,1,(ˆ tsP =  from the sink node to the 

source node. The new lambda values, 3/1λ 1 =  and 

4/3λ 4 =  are computed as )λ;4,1(ˆ)λ;1,(ˆ 11 rsr =  and 

)λ;4,1(ˆ)λ;,4(ˆ 44 rtr =  respectively. The updated residual 

network is indicated in Fig. 6. 

 

Since the arc )4,1(  is not the last arc adjacent to node 4, 

the next arc is selected: arc )4,2( . Since 0)λ;4,2(ˆ =r  the 

algorithm does not iterates for this arc and the next arc is 

selected. 

Iteration 2: For the arc )4,3( , 43 λλ <  and 0λ);4,3(ˆ >r , 

the simple residual path ),4,3,( ts  is found for which the 

values for )λ;,4(ˆ)λ;3,(ˆ)λ;,4,3,(*ˆ ∗∗∗ == trsrtsr  are 

computed, resulting in 7/2λ =∗
 and 7/13)λ;,4,3,(ˆ =∗tsr . 

The value for )λ;4,1(ˆ)λ;,4,3,(*ˆ rtsr >∗
 and therefore a 

pull of )λ,ˆ(ˆ Pr  flow, indicated in table 1 is performed along 

the residual directed path ),4,3,(ˆ tsP =  from the sink node to 

the source node. 

 

The new lambda values, 0λ3=  and 2/1λ4=  are computed 

and the updated residual network is indicated in Fig. 7. At this 

stage of the algorithm there are no more arcs adjacent to node 

4 and therefore node 4 is added to the list L. 

 
Iteration 3: Node 5 is removed from the list and the first 

adjacent arc )5,1(  is selected. Since 51 λλ <  but 

0λ);5,1(ˆ =r , the algorithm selects the next arc. 
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Fig. 9 The updated parametric residual network after the forth iteration 
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Fig. 8 The updated parametric residual network after the third iteration 
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Fig. 7 The updated parametric residual network after the second iteration 

 
 

i  j 

4 

2 

5 

)( λj;i,r̂  

2 

1 3 

s 
2λ 

λi λi λ1=1/3 

λ5=1 λ3=0 

λ2=0 

λ4=3/4 

6λ-2 

1+3λ 

3-4λ 

7-6λ 

2 

1 

1 

1 

2 3 

1 

t 

 
Fig. 6 The updated parametric residual network after the first iteration 
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Fig. 5 The parametric residual network )0λ,(ˆ fG  
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For the arc )5,2( , the simple residual path ),5,2,( ts  is 

found and a pull of )λ,ˆ(ˆ Pr  flow, with )λ,ˆ(ˆ Pr  indicated in 

Table 1, is performed from the sink node to the source node. 

The new lambda values are: 2/1λ 2 =  and 1λ 5 = . The 

updated residual network is presented in Fig. 8. 

 
Iteration 4: In the residual network in figure 4.b, the 

algorithm selects the last simple residual path ),5,3,(ˆ tsP =  

with the residual capacity indicated in table 1. Node 5 is added 

to the list L, then the two nodes are removed consecutively 

and all arcs are investigated without finding any simple 

residual paths. The updated residual network )λ,(ˆ fG  after 

the last iteration in Fig. 9 has no simple residual paths and 

initial network with the parametric minimum flow is presented 

in Fig. 10. 

In order of deriving maximum cuts and minimum flow value 

functions of the original parametric network, the nodes in 

},{ tsN −  are sorted by their associated lambda value in an 

increasing order as presented in Fig. 11.  

 
 

 
In Fig. 12, the maximum cuts for the original network are 

presented. For every subinterval kJ of [0,Λ] resulting from the 

kλ -values, at which the sizes of the maximum cut partitions 

change, the parametric minimum flow value function equals the 

capacity of the maximum cut, ]ˆˆ[ˆ)λ(ˆ kk JScv  ;= . 

 

 
 

 

 
 

Table I  The four iterations of the BMPB algorithm  
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Fig. 12 The original parametric network with the nodes },{ tsN −  sorted in the increasing order of their associated λ values.  

(The maximum cuts and the flow values for every arc are indicated) 

 

 
Fig. 11 Nodes in },{ tsN −  sorted by their associated lambda 

values in an increasing order 
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Fig. 10 The initial network with the parametric minimum flow 
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The piecewise linear minimum flow value function for the 

monotone parametric bipartite network with breakpoints for all 

λk values computed by the balancing algorithm is presented in 

Fig. 13 
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Fig. 13 The piecewise minimum flow value function for the 

parametric bipartite network in Fig. 3 
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