
 

 

  
Abstract— In this paper, we define Intrusion Confinement through 
isolation to address such security issue, its importance and finally 
present an isolation protocol. Security has emerged as the biggest 
threat to information systems. System protection mechanisms such as 
access controls can be fooled by authorized but malicious users, 
masqueraders, and trespassers.  As a result, serious damage can be 
caused either because many intrusions are never detected or because 
the average detection latency is too long.   
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I. INTRODUCTION 

NTRUSION detection is a type of security management 
system for computer and networks.  An ID gathers and 

analyzes information from various areas within a computer or 
a network to identify possible security breaches, which 
includes both intrusion (attack from outside the organization) 
and misuse (attack from within the organization)[1].The latter 
case includes seemingly authorized users, such as 
masqueraders operating under another user’s identification 
(ID) and password, or outside attackers who successfully 
gained systems access but eluded detection of the method of 
entry.  The methodology of intrusion can be roughly classed as 
being either based on statistical profile or known patterns of 
attacks, called signatures or another classification, the 
anomaly-based. In Anomaly-based, system detects computer 
intrusion and misuse by monitoring system activity and 
classifying it as either normal or anomalous.   
 In this paper we solely concentrate in the Statistical profile-
based system. In the following section we define further the 
Statistical profile-based system, Intrusion confinement thru 
isolation and the importance. We also present an isolation 
protocol in the file system. 
Importance of intrusion confinement : 
 Statistical profile-based system compare relevant data by 
statistical or other methods to representative profiles of 
normal, expected activity on the system or network [2]. 
Deviations indicate suspicious behavior. In these systems, 
there are stringent requirements on not only reporting an 
intrusion accurately (this is necessary because abnormal 
behavior is not always an intrusion) but also detecting as many 
intrusions as possible (usually, not all intrusions can be 
detected. Based on the assumption the more significant the 

 
 
 

deviation, the larger the possibility that the behavior of a user 
is an intrusion, in order to ensure a high degree of intrusion 
reporting, significant anomaly is required to raise a warning. 
Moreover, when the anomaly of an intrusion is accumulated, 
detecting it can still cause a long latency even if it is 
characterized by significant anomaly. As a result, substantial 
damage can be caused by an intruder within the latency.  
 

II. SUSPICIOUS BEHAVIOR 

Suspicious behavior is the behavior that may have already 
caused some damage, or may cause some damage later on, but 
was not reported as an intrusion when it happened. Suspicious 
behavior emerges in several situations:  

 
(1) In statistical profile-based detection:  
 (a) in order to get a high degree of soundness of 
intrusion reporting, some intrusions characterized by 
gradual deviations may stay undetected. The 
corresponding behaviors can be reported as suspicious. 
 (b) For a detection with a long latency, the 
corresponding behavior can be reported as suspicious in 
the middle of the latency.  
 (c) Legitimate behavior can be reported as suspicious 
if it is sufficiently unlike the corresponding profile.  
 
(2) In signature-based detection, partial matching of a 
signature can trigger a report of suspicious behavior.  

III. RELATED STUDIES 

 

A.  Motivation 

 
Photo organizer. Consider an application that scans 

specified directories for image files and generates photo 
album les that are written to the same directories. It also 
generates thumbnail pictures from these files (for creating 
index files) and has the ability to modify/resize these files. 
Similar applications that modify images and other media such 
as audio files are available as freeware on the Internet, e.g., 
the picture pages [14] package. Safe execution of such 
applications poses two challenges for sandboxing approaches.  
Policy selection: Users have to anticipate the resource access 
requirements of a program prior to its execution, which is 
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often difficult. To overcome this problem, some sandboxing 
approaches allow changes to policies through runtime 
prompts to the user: when the sandboxed application violates 
the initially specified policy, the user is informed and queried 
whether he/she wants to permit this access. Unfortunately, 
such repeated prompts lead to .click-fatigue,. as a result of 
which the user simply grants (or refuses) all subsequent 
prompts without reviewing them. 
fi policy granularity: Users need to develop policies that 

permit an application to access the resources that it needs, 
while ensuring that these resources are not corrupted or 
deleted. For the photo organizer example, such a policy would 
have to permit .legitimate. changes to image files, as needed 
for resizing images or including previews, while disallowing 
other changes. Development of a policy that can capture such 
legitimate transformations is likely to be hard. Even if such 
policies can be expressed, enforcement of such policies is 
likely to be inefficient, if not impossible [18].  
Due to these difficulties, sandboxing policies tend to be 

conservative and often disallow a large class of useful 
programs such as the picture pages program. In contrast, our 
proposed approach will permit execution of programs as long 
as they don't make system changes other than file 
modification operations. Most applications observe this 
constraint, and hence they can be run safely using isolation. 
Moreover, users need not develop safety policies ahead of 
time. Finally, they have the opportunity to examine the system 
state resulting due to the execution of the untrusted program, 
and then decide whether to .keep. or .rollback. These changes. 
They can use standard system utilities such as find and Diff, 
as well as arbitrary helper applications such as image viewers, 
to examine the system state. 
Software installation. Users are all too familiar with 

poorly packaged software that crashes during its installation, 
or simply does not function correctly. Even worse, the new 
package may .break. other applications installed on the 
system. In all these cases, the users are faced with the 
daunting task of rolling back the installation. 
If the package made use of standard package 
Management utilities, this rollback is usually not 

burdensome. However, if the package came as a self-installing 
executable or as a source package, rollbacks are almost 
always very difficult. The package may install its files into 
standard directories such as /usr/local/bin and /lib. It may also 
modify system configuration files such as /etc/passwd, 
/etc/mime.types or user profile files such as ./.bashrc. 
Identifying the exact set of files that were modified is 
cumbersome. It is also prone to errors as the user does not 
know the directories where the package installed files, and 
hence has to search the entire file system. This may result in 
identifying many files that may have been modified by 
applications other than the installer. Even if the modified files 
are identified correctly, rollback is still a hard problem: it is 
possible only if the user had backed up modified files, but 
unfortunately, the user did not know ahead of time which files 
would be modified by the installation.  

Using our isolation approach, all of the above problems 
can be tackled easily. Users simply install the package in 
isolation. Within this isolation environment, users can then 
try out the package. They can also examine the files modified 
by the package, and see if it includes security-critical files, or 
files that may be used by other packages. (System 
configuration databases, such as the Red hat Package 
Manager database, can help in identifying files used by other 
packages.) If so, they can examine these files to identify the 
changes made. Alternatively, they can try out the applications 
that depend on these modified files to ensure that they are not 
broken. If the users are convinced, after making all these 
checks, that the new package has been installed correctly and 
is functioning properly, they can commit the installation. 
Otherwise they can discard the installation at this point, 

the file system state will be as if the installation never took 
place. 
The idea that a network should support concurrent 

operation for multiple protocols is not new in the Internet. 
TCP slows down its data generation when it encounters a 
packet loss. This property is one of the keys to Internet 
scalability. 
However, a protocol can disrupt TCP by not slowing down 

in response to losses: as TCP sources slow down this TCP 
unfriendly protocol will saturate the network. To prevent this, 
non-TCP protocols are expected equip a TCP-friendly feature 
[16, 23]; the data generation rate must depend on the packet 
loss rate as TCP does. This property aims to provide a 
network where multiple protocols can coexist. 
This congestion control feature exists at layer 4 because 

the narrow waist of the Internet is layer 3. That is, there exist 
multiple layer-4 protocols such as TCP and UDP but most of 
them use a single layer 3 protocol, IP. Meanwhile, in sensor 
nets, there exist multiple layer 3 protocols while most systems 
use CSMA for the MAC protocol. Therefore, the isolation 
layer provides a shared mechanism above layer 2 that layer 3 
protocols can share. Unlike congestion control, which 
operates along an end-to-end path and manages queue 
occupancy along flows, an isolation layer operates on single 
hop wireless communication and manages medium access. 
RTS/CTS is another widely studied mechanism that can be 

used for collision avoidance at the isolation layer. In sensor 
nets, S-MAC [25] utilizes RTS/CTS exchanges for uni-cast 
transmissions. These RTS/CTS mechanisms could provide 
better collision avoidance performance than GTS since they 
prevent collisions at the current receiver, while GTS prevents 
collisions at the previous transmitter. In practice, however, 
RTS/CTS is rarely used. When the interference and 
communication ranges differ, RTC/CTS is no longer an 
effective collision avoidance mechanism [25]. In addition, in 
sensor networks, the control overhead associated with RTS/ 
CTS becomes significant due to small datagram sizes. More 
importantly, RTS/CTS cannot easily provide a collision-free 
environment for the broadcast packets that many wireless 
protocols depend on. For example, Deluge  [17] uses 
broadcasts for data packets rather than unicasts 
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since one burst of data packets can update all the 
neighbors of a node. In fact, many smart sensor net protocols 
exploit this broadcasting nature of the channel. CTP avoids 
congestion by making nodes overhear their parent’s data 
packets where information on queue depth is piggybacked. 
Typically, these broadcast packets are sent without control 
packets to avoid CTS explosions as in S-MAC. Recently, 
ZigZag Decoding [15] has shown that packet can be recovered 
from collisions using signal samples. Ideally, this can settle 
the issue of inter-protocol collision, because perceived 
collisions will become scarce. However, the need for high 
processing power and large memory requirements makes it 
hard to be applied to sensor nets.  
Discussing the whole subject of fairness is beyond the 

scope of this paper. Rather, we focus on the unique properties 
of protocol fairness. Demers et al. [10] showed that bit-by-bit 
round-robin fair queuing can be approximated by a packet-by-
packet mechanism in wired network. In wired, because there 
exist only one transmitter per link, the fair queuing 
mechanism directly chooses which packet to be transmitted. 
Meanwhile, in wireless LAN, a distributed mechanism is 
needed. MACAW [5] proposed a fair allocation scheme that 
controls the channel access using a modified CSMA back off 
algorithm. Vaidya et al. [26] extended this approachby 
implementing fair scheduling on multiple flows with different 
priorities. Protocol fairness requires a combination of intra-
node fair queuing and inter-node fair scheduling. 
The per-flow fairness is further extended to multichip 

wireless network. Typically in this case, a flow is defined to 
be a unique source, destination pair in the link layer [25, 28, 
23]. However, clearly this does not fit for protocol fairness. 
That is, it is hard to divide traffic of protocols to flows of 
every source, destination pair, because flows are correlated 
with one another. Alternatively, an end-to-end source-
destination pair as the definition of a flow is also considered 
[13, 19]. However, this is also not a feasible solution for 
protocol fairness because all network protocols have unique 
performance metrics. Therefore, we define the “flow” for 
protocol fairness as a single-hop term, allowing multiple 
sources to be the source nodes for each protocol. As discussed 
earlier, this caused the inconsistency of the state to be more 
persistent, requiring an explicit mechanism that can cure the 
inconsistency.  
The queuing scheme presented differs from common tag-

based approaches because it does not update the start-tag 
when packets are not queued back-to-back. Normally, 
updating the start-tag serves as a time-window in which the 
fairness between flows is achieved. However, TinyOS 
prevents this because the link-layer packet queues are single-
depth for each protocol. Thus, although it is possible to 
enforce immediate re-queuing, this cannot be applied for 
general protocols. 
For example, when CTP packets are delayed by the 

transmit timer, the link layer has no knowledge whether CTP 
has more packets. Therefore, we adjust the time window using 
the decay period: frequent decay results in a short-term 
fairness, and longer decay period improves long-term fairness. 

 

IV. PROFITABLE-BASED DETECTION 

A statistical profile-based detection system, a user Ui 
accesses the system through sessions. A session of Ui begins 
when Ui logs in and ends when Ui logs out. A behavior of Ui 
is a sequence of actions that can last across the boundaries of 
sessions. A short term behavior of Ui is a behavior that is 
composed of a sequence of Ui’s most recent actions. In 
contrast, a long term behavior of Ui is also a sequence of Ui’s 
most recent actions but it is much longer than the short term 
behavior. We assume the intrusion detector is triggered in 
every m actions (or m audit records), that is, after m new 
actions are executed, both the current short term behavior and 
long term behavior of Ui will be upgraded and the deviation 
of the new short term behavior from the new long term 
behavior will be computed. When a short term behavior is 
upgraded, its oldest m actions will be discarded and the 
newest m actions will be added. 
 

A. Signature-based detection 

A sequence of signature-based events leading from an 
initial to a final compromised state are specify [3].  
Each event causes a state transition from one state to 

another state. We identify a signature with length n, denoted 
sig(n), as sig(n) = s0E1s1…En , where Ei   is an event and si 
is a state, and Ei causes the state transition from si-1 to si. For 
simplicity, intra-event conditions are not explicitly shown in 
sig(n), although they are usually part of a signature.  
A partial matching of a signature sig(n) is a sequence of 

events that matches a prefix of sig(n) , A partial matching is 
not an intrusion, however, it can predict that an intrusion 
specified by sig(n) may occur. The accuracy of the prediction 
of a partial matching, denoted s0E1s1…Emsm, can be 
measured by the following parameter: Pm, the probability that 
the partial matching can lead to an intrusion later. Assume the 
number of the behaviors that match the prefix is Np and the 
number of the intrusions that match the prefix is Ni, then Pm 
= Ni / Np 
In signature-based detection, the set of actions that should 

be isolated is defined as follows. Isolating suspicious 
behavior can surely confine damage in signature-based 
detection because the behavior that is actually an intrusion 
will, with a high probability, be prevented from doing harm to 
the system. 
In signature-based detection, a behavior is suspicious if it 

matches the prefix of a signature but not the whole signature, 
and Pm  of the prefix is greater than or equal to a threshold 
that is determined by the SSO. 

B. Application of Intrusion Confinement support 

In signature-based detection, the decision of whether to 
enforce intrusion confinement on a known attack that is 
specified by a signature is dependent on the seriousness of the 
damage that will be caused by the attack and the value of Pm  
for each prefix of the signature 
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In statistical profile-based detection, however, it can be 
tricky to make the decision since degrading the requirement 
on Re usually can improve Rd, the SSO may want to find a 
tradeoff between Rd and Re; thus, the cost of isolation would 
be avoided. However, a satisfactory tradeoff may not be 
achievable in some systems since the relationship between Rd 
And Re can dramatically differ from one system to another. 
 
1. Architecture support: The Policy Enforcement 

Manager enforces the access controls in accordance with the 
system security policy on every access request [4]. We assume 
no data access can bypass it. We further assume that users’ 
accesses will be audited in the audit trail.  
The Intrusion Detection and Confinement Manager applies 

either statistical profile-based detection techniques or 
signature-based detection techniques, or both to identify 
suspicious behavior as well as intrusions. The detection is 
typically processed based on the information provided by the 
audit trail. 
Architecture of an intrusion confinement system in 

information welfare perspective is showed in Fig 1. 
 

 
 
 

Fig 1 Architecture of the Intrusion Confinement System 
 

When a suspicious behavior is detected, the corresponding 
user is marked suspicious. At this point, first we need to deal 
with the effects that the user has already made on the Main 
Data Version because these effects may have already caused 
some damage. In signature-based detection systems, we can 
accept these effects because a partial matching is not an 
intrusion. In statistical profile-based detection systems, if the 
SSO does not think these effects can cause any serious 
damage, we can accept these effects; if the SSO thinks these 
effects can cause intolerable damage, we can isolate and move 
these effects from the main data version to a separate 
Suspicious Data Version, which is created to isolate the user. 
The process of isolation may need to roll back some 
trustworthy actions that are dependent on the suspicious 
actions. At this point, we can apply another strategy that 
moves the effects of these suspicious actions as well as the 
affected trustworthy actions to the suspicious data version.  

Second, the Intrusion Detection and Confinement Manager 
notify the Policy Enforcement Manager to direct the 
subsequent suspicious actions of the user to the separate data 
version. Since we focus on the isolation itself, we can simply 
assume that when a suspicious behavior starts to be isolated, 
no damage has been caused by the behavior. Note that there 
can be several different suspicious users, e.g., S1,…., Sn, 
being isolated at the same time. Therefore, multiple 
suspicious data versions can exist at the same time. 
When a suspicious user turns out to be malicious, that is, 

his/her behavior has led to an intrusion; the corresponding 
suspicious data version can be discarded to protect the main 
data version from harm. On the other hand, when the user 
turns out to be innocent, the corresponding suspicious data 
version is merged into the main data version.  

 
A suspicious behavior can be malicious in several ways:  
(1) In signature-based detection, a complete matching can 

change a suspicious behavior to malicious.  
(2) Some statistics of gradual anomaly, such as frequency 

and total number, can make the SSO believe that a suspicious 
behavior is malicious.  
(3) The SSO can find that a suspicious behavior is 

malicious based on some nontechnical evidences.  
 
A suspicious behavior can be innocent in several ways:  
(1) In signature-based detection, when no signatures can 

be matched, the behavior proves innocent.  
(2) The SSO can prove it to be innocent by some 

nontechnical evidence. For example, the SSO can investigate 
the user directly.  
(3) Some statistics of gradual anomaly can also make the 

SSO believe that a behavior is innocent.  

 
After the damage is assessed, the Reconfiguration Manager 
reconfigures the system to allow access to continue in a 
degraded mode while repair is being done by the Damage 
Recovery Manager. In many situations damage assessment 
and recovery are coupled with each other closely. For 
example, recovery from damage can occur during the process 
of identifying and assessing damage. Also, the system can be 
continuously reconfigured to reject accesses to newly 
identified, damaged data objects and to allow access to newly 
recovered data objects. Interested readers can refer to [5 ] for 
more details on damage confinement, damage assessment, 
system reconfiguration, and damage recovery mechanisms in 
the database context. 

V. ISOLATION PROTOCOL 

The isolation protocol which is specified as follows is 
adapted from [6], where a protocol is proposed to detect and 
resolve mutual inconsistency in distributed file systems. In 
this protocol, the isolation is processed in terms of each file. 
When a file fi is modified by a suspicious user Si, the 
modification and the possible following modifications of Si 

Audit 
Trail 

Access 

Request User 

Policy Enforcement Manager 

Intrusion Detection & 
Confinement Manager 

Main Data 
Version 

Suspicious Version 

merge 

Suspicious Version 

Re-confinement & Damage 
Recovery Manager 

Damage Confinement & 
Assessment Manager 

SSO 

Isolation 
Manager 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

53



 

 

on fi will be isolated until Si proves to be malicious or 
innocent. To identify the conflicts between the modifications 
of Si on fi and the modifications of trustworthy users on fi we 
associate a version vector with the main version and every 
isolated version of fi.  
To identify and resolve the conflicts between these two 

versions, we need to first pad the suspicious version vector 
such that the two vectors have the same set of dimensions. 
The padding is done by inserting each missed dimension with 
the value 0 into the suspicious version vector. 
The ability to use multiple layer 3 protocols concurrently 

is a common requirement in large wireless sensor systems. 
  

 
(a) Current network architecture with individual 

collision/congestion avoidance mechanisms 
 

 
(b) Network architecture with isolation layer of shared 

mechanisms 

 
 

Figure 2. Individual collision avoidance mechanisms in 
the current architecture do not work across protocols; a new 
isolation layer can organize and share collision information. 
[20] 
 
Rather than use a single layer 3 protocol, such as IP, these 

networks improve their energy efficiency by using a variety 
MintRoute [16], CTP [2], MultihopLQI [1], IFRC [17] and 
other collection protocols build minimum-cost trees to data 
sinks such as gateways. These collection protocols establish 
flows up a tree to pull data out of a network. Dissemination 
protocols, such as Deluge [17] and MNP [18], use leader 
elections and flurries of broadcasts to push data – e.g. new 
programs – into a network. Applications often use additional 
protocols beyond these two basic data flows, such as time 
synchronization [19] for data time-stamping and geographic 
[20] or coordinate [6, 12, 21] routing protocols for in-network 
storage [11, 20]. 
Typically, however, each of these protocols is designed, 

developed, and evaluated separately, hoping that it operates as 
well when other protocols are present. Designing a system 
with multiple protocols as building blocks can easily run into 
unforeseen interactions and complications. This discrepancy 
makes the design phase complicated, performance 
unpredictable, and debugging difficult.  
This paper argues that improving the isolation between 

layer 3 protocols will greatly simplify the design and 
implementation of efficient wireless sensor systems. Just as 
an operating system simplifies building complex system on a 
single node by isolating processes, a network that isolates 
protocols would enable each one to be developed, tested, and 
optimized independently. 
Given multiple layer 3 sensor net protocols, there are two 

ways to achieve protocol isolation. The first is to design all 
layer 3 protocols such that they respect each other channel 
requirements. This is similar to the way non-TCP protocols in 
the Internet are required to be TCP-friendly [16]. The second 
option is to implement a new mechanism that sits between 
layers 2 and 3 and ensures that no one protocol interacts badly 
with the rest minimizing the modifications to the layer 3 
protocols. Changing all existing sensor net network protocols 
would be infeasible. Thus, this paper uses the second route 
and shows that it is an effective way to achieve protocol 
isolation. 
 

A. Shared Collision Avoidance Mechanism 

 
Layer 3 protocols often have mechanisms to avoid 

interference as in Figure 2(a). For example, CTP delays the 
next transmission for a random period (16_31ms) to give time 
to the previous packet to be forwarded out of interference 
range by using a transmission timer that prevents back-to-
back transmissions. Deluge can suppress transmissions from 
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neighbors while a node is receiving data bursts [21], since 
data bursts can easily collide with these transmissions. 
These mechanisms do not work across protocols: a node 
can transmit non-CTP traffic during CTP’s backoff or a 

neighbor can send non-Deluge traffic to a node that is 
receiving a binary update. MintRoute [22] has been reported 
to break when Deluge coexists in a deployment [23]. That is, 
the bursts of data packets cause excessive collisions with the 
control packets of MintRoute, collapsing the network 
topology. Section 5 also shows that concurrent operation of 
CTP and Deluge decreases the efficiency of both protocols, 
increasing the end-to-end delivery cost by 24% and 72% 
respectively. 
Many other deployments have also reported low data 

yields [3, 4, 22, 32]. While the causes are mostly uncertain, 
we believe many of them to be the interactions between 
network protocols. 
To deal with undesired interactions, some protocols 

simply assume inter-protocol collisions do not exist. Flush 
[22] assumes it has complete control of the channel and 
supports a single flow. While such strict partitioning may be 
acceptable for application-level workloads, it precludes 
concurrent services such as management, time 
synchronization, code distribution, or localization. 

VI. SHARED COLLISION AVOIDANCE 

Grant-to-send (GTS) is a collision-avoidance mechanism 
proposed by Choi et al. [8] that can be used to provide 
isolation between multiple network protocols. Every link-
layer packet contains a grant duration field, which grants the 
channel around the transmitter to the receiver of the packet. 
That is, upon overhearing or transmitting a packet, nodes can 
only transmit after the grant duration has expired, and only the 
receiver of the packet can transmit immediately. The local 
collision avoidance mechanisms of CTP can be expressed 
using GTS. Section 2 introduced CTP’s transmission timer – a 
simple mechanism that delays the next packet transmission to 
give time for the previous packet to be forwarded out of 
interference range. This mechanism can be replaced by GTS 
by including a grant of one packet time in each sent packet. 
Since a grant silences its originator, the recipient of the packet 
will have time to forward the data up the collection tree.  
The lack of a layer 3 collision avoidance mechanism in 

Deluge has been shown to cause collision losses during a 
burst transmission. Therefore, an improved version, Deluge 
[27], augments a request packet to silence neighbors while the 
data exchange takes place. This approach is equivalent to the 
grants that GTS supports; a network architecture that employs 
GTS can use regular Deluge where request packets carry a 
grant for the duration of the data burst. 
GTS is a general mechanism that can be effectively 

applied to protocols that exhibit correlated packet 
transmissions. Ideally, the grant included in one packet will 
prevent collisions for the packet or packets that follow. We 
believe that because of its generality, GTS can act as a 
common language that different network protocols can use to 

communicate collision avoidance information with each 
other. However, the authors of GTS do not explore what 
happens when multiple protocols use GTS at the same time. 
The key difference between using V-Deluge and GTS is that 
the first affects only packets from Deluge but the latter affects 
packets from every protocol since GTS is a MAC mechanism. 
This property enables GTS to be used as a shared 

mechanism for the isolation layer, enforcing the grants on all 
protocols. For example, if Deluge requires silence while a 
node receives a burst of data packets, all other protocols are 
held in the isolation layer, providing silence as required. 
When GTS is used by multiple network protocols 
concurrently, it is possible that a node is granted by one 
protocol but sends on behalf of another. GTS specifies neither 
the destination of the granted packet, nor the protocol it 
should come from. This is important since otherwise one 
protocol could easily starve the rest or two nodes could take 
over the channel. [29] 
At the same time, this under specification still leaves 

space for unfairness in the way channel time is shared 
between protocols and nodes. The following section discusses 
this issue in more detail. Ideally, GTS requires overhearing of 
all packets in the vicinity of a node. In practice, nodes can 
have their radios turned off during periods of low contention. 
In such periods, a node may not overhear packets, and hence 
not update its GTS timer. However, since a node in low-
power state is not contending for the channel, collision 
avoidance is not crucial in this case. 
 

A. Fair Queuing 

To explain a major challenge fair queuing encounters in a 
wireless network, we start with a very simple case: two nodes 
both send packets from two protocols P1 and P2 as fast as 
possible. If there are no packet losses, this network will 
achieve node, channel, and transmit fairness. Each node has 
an equal chance of acquiring the channel, and on doing so 

will transmit the protocol with a smaller channel time. Packet 
losses, however, complicate this situation. If a node fails to 
hear a transmission, then the channel occupancy tables on the 
two nodes become inconsistent: the transmitter has 
incremented channel occupancy but the receiver has not. 
Because each node is queuing packets based on its own local 
view of the channel, an inconsistency can lead to a “ping-
pong” effect, where the two nodes disagree on which protocol 
has used the channel less. It can cause low transmit fairness. . 
For simplicity, a transmission of each protocol increments the 
value of OpN by one. Suppose that both protocols have 
accessed the channel N times but, for some reason, N1 has 
missed two packets from P2. When N1 accesses the channel 
again, it sends a packet from P2 trying to equalize the 
protocols. Upon hearing this packet, N2 increments the 
channel access history for P2 by one. If N2 accesses the 
channel next, it will send P1, balancing out its protocol table. 
However, this packet reverts the effort of N1 trying to achieve 
equality. Thus, at the next chance N1 will transmit P2 again, 
and this cycle goes on. Eventually, N1 will be biased for P2, 
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and N2 for P1. This communication schedule has perfect 
channel fairness but low transmit fairness. 
Unfortunately, the ping-pong effect is not an edge case that 

rarely happens; inconsistency can occur from packet losses, 
collisions, or even different boot times. Furthermore, in 
multichip networks, each node typically has a different view 
of the channel as it hears transmissions from a different set of 
neighbors. Prior work by Luo et al. [28][30] showed how, in 
the case of unicast flows, a transmitter can embed the flow’s 
channel occupancy in a data packet. Nodes overhearing a 
packet can use the information to update their table and 
restores consistency. But in the case of protocol fairness, 
virtual tags are not easily synchronizable because there can be 
many transmitters: doing so would require each node to 
maintain O(np) space, where n is the number of neighbors and 
p is the number of protocols. 
 

VII. CONCLUSION 

 
In this paper we have shown that a second level in addition 

to access control intrusion confinement can dramatically 
enhance the security especially integrity and availability of a 
system in many situation. It showed that intrusion 
confinement can effectively resolve the conflicting design 
goals of an intrusion detection system by achieving both a 
high rate of detection and a low rate of errors. Developing a 
more concrete isolation protocols will further be studied in 
our future research. 
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