

Abstract— In this paper, we define Intrusion Confinement through
isolation to address such security issue, its importance and finally
present an isolation protocol. Security has emerged as the biggest
threat to information systems. System protection mechanisms such as
access controls can be fooled by authorized but malicious users,
masqueraders, and trespassers. As a result, serious damage can be
caused either because many intrusions are never detected or because
the average detection latency is too long.

Keywords—Intrusion detection, Isolation, Information Systems,

Shared Collision, Queuing

I. INTRODUCTION

NTRUSION detection is a type of security management
system for computer and networks. An ID gathers and

analyzes information from various areas within a computer or
a network to identify possible security breaches, which
includes both intrusion (attack from outside the organization)
and misuse (attack from within the organization)[1].The latter
case includes seemingly authorized users, such as
masqueraders operating under another user’s identification
(ID) and password, or outside attackers who successfully
gained systems access but eluded detection of the method of
entry. The methodology of intrusion can be roughly classed as
being either based on statistical profile or known patterns of
attacks, called signatures or another classification, the
anomaly-based. In Anomaly-based, system detects computer
intrusion and misuse by monitoring system activity and
classifying it as either normal or anomalous.
 In this paper we solely concentrate in the Statistical profile-
based system. In the following section we define further the
Statistical profile-based system, Intrusion confinement thru
isolation and the importance. We also present an isolation
protocol in the file system.
Importance of intrusion confinement :
 Statistical profile-based system compare relevant data by
statistical or other methods to representative profiles of
normal, expected activity on the system or network [2].
Deviations indicate suspicious behavior. In these systems,
there are stringent requirements on not only reporting an
intrusion accurately (this is necessary because abnormal
behavior is not always an intrusion) but also detecting as many
intrusions as possible (usually, not all intrusions can be
detected. Based on the assumption the more significant the

deviation, the larger the possibility that the behavior of a user
is an intrusion, in order to ensure a high degree of intrusion
reporting, significant anomaly is required to raise a warning.
Moreover, when the anomaly of an intrusion is accumulated,
detecting it can still cause a long latency even if it is
characterized by significant anomaly. As a result, substantial
damage can be caused by an intruder within the latency.

II. SUSPICIOUS BEHAVIOR

Suspicious behavior is the behavior that may have already
caused some damage, or may cause some damage later on, but
was not reported as an intrusion when it happened. Suspicious
behavior emerges in several situations:

(1) In statistical profile-based detection:
 (a) in order to get a high degree of soundness of
intrusion reporting, some intrusions characterized by
gradual deviations may stay undetected. The
corresponding behaviors can be reported as suspicious.
 (b) For a detection with a long latency, the
corresponding behavior can be reported as suspicious in
the middle of the latency.
 (c) Legitimate behavior can be reported as suspicious
if it is sufficiently unlike the corresponding profile.

(2) In signature-based detection, partial matching of a
signature can trigger a report of suspicious behavior.

III. RELATED STUDIES

A. Motivation

Photo organizer. Consider an application that scans

specified directories for image files and generates photo
album les that are written to the same directories. It also
generates thumbnail pictures from these files (for creating
index files) and has the ability to modify/resize these files.
Similar applications that modify images and other media such
as audio files are available as freeware on the Internet, e.g.,
the picture pages [14] package. Safe execution of such
applications poses two challenges for sandboxing approaches.
Policy selection: Users have to anticipate the resource access
requirements of a program prior to its execution, which is

A Non-Secure Information Systems and the
Isolation Solution

Dr. Tai-hoon Kim

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

50

often difficult. To overcome this problem, some sandboxing
approaches allow changes to policies through runtime
prompts to the user: when the sandboxed application violates
the initially specified policy, the user is informed and queried
whether he/she wants to permit this access. Unfortunately,
such repeated prompts lead to .click-fatigue,. as a result of
which the user simply grants (or refuses) all subsequent
prompts without reviewing them.
fi policy granularity: Users need to develop policies that

permit an application to access the resources that it needs,
while ensuring that these resources are not corrupted or
deleted. For the photo organizer example, such a policy would
have to permit .legitimate. changes to image files, as needed
for resizing images or including previews, while disallowing
other changes. Development of a policy that can capture such
legitimate transformations is likely to be hard. Even if such
policies can be expressed, enforcement of such policies is
likely to be inefficient, if not impossible [18].
Due to these difficulties, sandboxing policies tend to be

conservative and often disallow a large class of useful
programs such as the picture pages program. In contrast, our
proposed approach will permit execution of programs as long
as they don't make system changes other than file
modification operations. Most applications observe this
constraint, and hence they can be run safely using isolation.
Moreover, users need not develop safety policies ahead of
time. Finally, they have the opportunity to examine the system
state resulting due to the execution of the untrusted program,
and then decide whether to .keep. or .rollback. These changes.
They can use standard system utilities such as find and Diff,
as well as arbitrary helper applications such as image viewers,
to examine the system state.
Software installation. Users are all too familiar with

poorly packaged software that crashes during its installation,
or simply does not function correctly. Even worse, the new
package may .break. other applications installed on the
system. In all these cases, the users are faced with the
daunting task of rolling back the installation.
If the package made use of standard package
Management utilities, this rollback is usually not

burdensome. However, if the package came as a self-installing
executable or as a source package, rollbacks are almost
always very difficult. The package may install its files into
standard directories such as /usr/local/bin and /lib. It may also
modify system configuration files such as /etc/passwd,
/etc/mime.types or user profile files such as ./.bashrc.
Identifying the exact set of files that were modified is
cumbersome. It is also prone to errors as the user does not
know the directories where the package installed files, and
hence has to search the entire file system. This may result in
identifying many files that may have been modified by
applications other than the installer. Even if the modified files
are identified correctly, rollback is still a hard problem: it is
possible only if the user had backed up modified files, but
unfortunately, the user did not know ahead of time which files
would be modified by the installation.

Using our isolation approach, all of the above problems
can be tackled easily. Users simply install the package in
isolation. Within this isolation environment, users can then
try out the package. They can also examine the files modified
by the package, and see if it includes security-critical files, or
files that may be used by other packages. (System
configuration databases, such as the Red hat Package
Manager database, can help in identifying files used by other
packages.) If so, they can examine these files to identify the
changes made. Alternatively, they can try out the applications
that depend on these modified files to ensure that they are not
broken. If the users are convinced, after making all these
checks, that the new package has been installed correctly and
is functioning properly, they can commit the installation.
Otherwise they can discard the installation at this point,

the file system state will be as if the installation never took
place.
The idea that a network should support concurrent

operation for multiple protocols is not new in the Internet.
TCP slows down its data generation when it encounters a
packet loss. This property is one of the keys to Internet
scalability.
However, a protocol can disrupt TCP by not slowing down

in response to losses: as TCP sources slow down this TCP
unfriendly protocol will saturate the network. To prevent this,
non-TCP protocols are expected equip a TCP-friendly feature
[16, 23]; the data generation rate must depend on the packet
loss rate as TCP does. This property aims to provide a
network where multiple protocols can coexist.
This congestion control feature exists at layer 4 because

the narrow waist of the Internet is layer 3. That is, there exist
multiple layer-4 protocols such as TCP and UDP but most of
them use a single layer 3 protocol, IP. Meanwhile, in sensor
nets, there exist multiple layer 3 protocols while most systems
use CSMA for the MAC protocol. Therefore, the isolation
layer provides a shared mechanism above layer 2 that layer 3
protocols can share. Unlike congestion control, which
operates along an end-to-end path and manages queue
occupancy along flows, an isolation layer operates on single
hop wireless communication and manages medium access.
RTS/CTS is another widely studied mechanism that can be

used for collision avoidance at the isolation layer. In sensor
nets, S-MAC [25] utilizes RTS/CTS exchanges for uni-cast
transmissions. These RTS/CTS mechanisms could provide
better collision avoidance performance than GTS since they
prevent collisions at the current receiver, while GTS prevents
collisions at the previous transmitter. In practice, however,
RTS/CTS is rarely used. When the interference and
communication ranges differ, RTC/CTS is no longer an
effective collision avoidance mechanism [25]. In addition, in
sensor networks, the control overhead associated with RTS/
CTS becomes significant due to small datagram sizes. More
importantly, RTS/CTS cannot easily provide a collision-free
environment for the broadcast packets that many wireless
protocols depend on. For example, Deluge [17] uses
broadcasts for data packets rather than unicasts

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

51

since one burst of data packets can update all the
neighbors of a node. In fact, many smart sensor net protocols
exploit this broadcasting nature of the channel. CTP avoids
congestion by making nodes overhear their parent’s data
packets where information on queue depth is piggybacked.
Typically, these broadcast packets are sent without control
packets to avoid CTS explosions as in S-MAC. Recently,
ZigZag Decoding [15] has shown that packet can be recovered
from collisions using signal samples. Ideally, this can settle
the issue of inter-protocol collision, because perceived
collisions will become scarce. However, the need for high
processing power and large memory requirements makes it
hard to be applied to sensor nets.
Discussing the whole subject of fairness is beyond the

scope of this paper. Rather, we focus on the unique properties
of protocol fairness. Demers et al. [10] showed that bit-by-bit
round-robin fair queuing can be approximated by a packet-by-
packet mechanism in wired network. In wired, because there
exist only one transmitter per link, the fair queuing
mechanism directly chooses which packet to be transmitted.
Meanwhile, in wireless LAN, a distributed mechanism is
needed. MACAW [5] proposed a fair allocation scheme that
controls the channel access using a modified CSMA back off
algorithm. Vaidya et al. [26] extended this approachby
implementing fair scheduling on multiple flows with different
priorities. Protocol fairness requires a combination of intra-
node fair queuing and inter-node fair scheduling.
The per-flow fairness is further extended to multichip

wireless network. Typically in this case, a flow is defined to
be a unique source, destination pair in the link layer [25, 28,
23]. However, clearly this does not fit for protocol fairness.
That is, it is hard to divide traffic of protocols to flows of
every source, destination pair, because flows are correlated
with one another. Alternatively, an end-to-end source-
destination pair as the definition of a flow is also considered
[13, 19]. However, this is also not a feasible solution for
protocol fairness because all network protocols have unique
performance metrics. Therefore, we define the “flow” for
protocol fairness as a single-hop term, allowing multiple
sources to be the source nodes for each protocol. As discussed
earlier, this caused the inconsistency of the state to be more
persistent, requiring an explicit mechanism that can cure the
inconsistency.
The queuing scheme presented differs from common tag-

based approaches because it does not update the start-tag
when packets are not queued back-to-back. Normally,
updating the start-tag serves as a time-window in which the
fairness between flows is achieved. However, TinyOS
prevents this because the link-layer packet queues are single-
depth for each protocol. Thus, although it is possible to
enforce immediate re-queuing, this cannot be applied for
general protocols.
For example, when CTP packets are delayed by the

transmit timer, the link layer has no knowledge whether CTP
has more packets. Therefore, we adjust the time window using
the decay period: frequent decay results in a short-term
fairness, and longer decay period improves long-term fairness.

IV. PROFITABLE-BASED DETECTION

A statistical profile-based detection system, a user Ui
accesses the system through sessions. A session of Ui begins
when Ui logs in and ends when Ui logs out. A behavior of Ui
is a sequence of actions that can last across the boundaries of
sessions. A short term behavior of Ui is a behavior that is
composed of a sequence of Ui’s most recent actions. In
contrast, a long term behavior of Ui is also a sequence of Ui’s
most recent actions but it is much longer than the short term
behavior. We assume the intrusion detector is triggered in
every m actions (or m audit records), that is, after m new
actions are executed, both the current short term behavior and
long term behavior of Ui will be upgraded and the deviation
of the new short term behavior from the new long term
behavior will be computed. When a short term behavior is
upgraded, its oldest m actions will be discarded and the
newest m actions will be added.

A. Signature-based detection

A sequence of signature-based events leading from an
initial to a final compromised state are specify [3].
Each event causes a state transition from one state to

another state. We identify a signature with length n, denoted
sig(n), as sig(n) = s0E1s1…En , where Ei is an event and si
is a state, and Ei causes the state transition from si-1 to si. For
simplicity, intra-event conditions are not explicitly shown in
sig(n), although they are usually part of a signature.
A partial matching of a signature sig(n) is a sequence of

events that matches a prefix of sig(n) , A partial matching is
not an intrusion, however, it can predict that an intrusion
specified by sig(n) may occur. The accuracy of the prediction
of a partial matching, denoted s0E1s1…Emsm, can be
measured by the following parameter: Pm, the probability that
the partial matching can lead to an intrusion later. Assume the
number of the behaviors that match the prefix is Np and the
number of the intrusions that match the prefix is Ni, then Pm
= Ni / Np
In signature-based detection, the set of actions that should

be isolated is defined as follows. Isolating suspicious
behavior can surely confine damage in signature-based
detection because the behavior that is actually an intrusion
will, with a high probability, be prevented from doing harm to
the system.
In signature-based detection, a behavior is suspicious if it

matches the prefix of a signature but not the whole signature,
and Pm of the prefix is greater than or equal to a threshold
that is determined by the SSO.

B. Application of Intrusion Confinement support

In signature-based detection, the decision of whether to
enforce intrusion confinement on a known attack that is
specified by a signature is dependent on the seriousness of the
damage that will be caused by the attack and the value of Pm
for each prefix of the signature

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

52

In statistical profile-based detection, however, it can be
tricky to make the decision since degrading the requirement
on Re usually can improve Rd, the SSO may want to find a
tradeoff between Rd and Re; thus, the cost of isolation would
be avoided. However, a satisfactory tradeoff may not be
achievable in some systems since the relationship between Rd
And Re can dramatically differ from one system to another.

1. Architecture support: The Policy Enforcement

Manager enforces the access controls in accordance with the
system security policy on every access request [4]. We assume
no data access can bypass it. We further assume that users’
accesses will be audited in the audit trail.
The Intrusion Detection and Confinement Manager applies

either statistical profile-based detection techniques or
signature-based detection techniques, or both to identify
suspicious behavior as well as intrusions. The detection is
typically processed based on the information provided by the
audit trail.
Architecture of an intrusion confinement system in

information welfare perspective is showed in Fig 1.

Fig 1 Architecture of the Intrusion Confinement System

When a suspicious behavior is detected, the corresponding
user is marked suspicious. At this point, first we need to deal
with the effects that the user has already made on the Main
Data Version because these effects may have already caused
some damage. In signature-based detection systems, we can
accept these effects because a partial matching is not an
intrusion. In statistical profile-based detection systems, if the
SSO does not think these effects can cause any serious
damage, we can accept these effects; if the SSO thinks these
effects can cause intolerable damage, we can isolate and move
these effects from the main data version to a separate
Suspicious Data Version, which is created to isolate the user.
The process of isolation may need to roll back some
trustworthy actions that are dependent on the suspicious
actions. At this point, we can apply another strategy that
moves the effects of these suspicious actions as well as the
affected trustworthy actions to the suspicious data version.

Second, the Intrusion Detection and Confinement Manager
notify the Policy Enforcement Manager to direct the
subsequent suspicious actions of the user to the separate data
version. Since we focus on the isolation itself, we can simply
assume that when a suspicious behavior starts to be isolated,
no damage has been caused by the behavior. Note that there
can be several different suspicious users, e.g., S1,…., Sn,
being isolated at the same time. Therefore, multiple
suspicious data versions can exist at the same time.
When a suspicious user turns out to be malicious, that is,

his/her behavior has led to an intrusion; the corresponding
suspicious data version can be discarded to protect the main
data version from harm. On the other hand, when the user
turns out to be innocent, the corresponding suspicious data
version is merged into the main data version.

A suspicious behavior can be malicious in several ways:
(1) In signature-based detection, a complete matching can

change a suspicious behavior to malicious.
(2) Some statistics of gradual anomaly, such as frequency

and total number, can make the SSO believe that a suspicious
behavior is malicious.
(3) The SSO can find that a suspicious behavior is

malicious based on some nontechnical evidences.

A suspicious behavior can be innocent in several ways:
(1) In signature-based detection, when no signatures can

be matched, the behavior proves innocent.
(2) The SSO can prove it to be innocent by some

nontechnical evidence. For example, the SSO can investigate
the user directly.
(3) Some statistics of gradual anomaly can also make the

SSO believe that a behavior is innocent.

After the damage is assessed, the Reconfiguration Manager
reconfigures the system to allow access to continue in a
degraded mode while repair is being done by the Damage
Recovery Manager. In many situations damage assessment
and recovery are coupled with each other closely. For
example, recovery from damage can occur during the process
of identifying and assessing damage. Also, the system can be
continuously reconfigured to reject accesses to newly
identified, damaged data objects and to allow access to newly
recovered data objects. Interested readers can refer to [5] for
more details on damage confinement, damage assessment,
system reconfiguration, and damage recovery mechanisms in
the database context.

V. ISOLATION PROTOCOL

The isolation protocol which is specified as follows is
adapted from [6], where a protocol is proposed to detect and
resolve mutual inconsistency in distributed file systems. In
this protocol, the isolation is processed in terms of each file.
When a file fi is modified by a suspicious user Si, the
modification and the possible following modifications of Si

Audit
Trail

Access

Request User

Policy Enforcement Manager

Intrusion Detection &
Confinement Manager

Main Data
Version

Suspicious Version

merge

Suspicious Version

Re-confinement & Damage
Recovery Manager

Damage Confinement &
Assessment Manager

SSO

Isolation
Manager

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

53

on fi will be isolated until Si proves to be malicious or
innocent. To identify the conflicts between the modifications
of Si on fi and the modifications of trustworthy users on fi we
associate a version vector with the main version and every
isolated version of fi.
To identify and resolve the conflicts between these two

versions, we need to first pad the suspicious version vector
such that the two vectors have the same set of dimensions.
The padding is done by inserting each missed dimension with
the value 0 into the suspicious version vector.
The ability to use multiple layer 3 protocols concurrently

is a common requirement in large wireless sensor systems.

(a) Current network architecture with individual

collision/congestion avoidance mechanisms

(b) Network architecture with isolation layer of shared

mechanisms

Figure 2. Individual collision avoidance mechanisms in
the current architecture do not work across protocols; a new
isolation layer can organize and share collision information.
[20]

Rather than use a single layer 3 protocol, such as IP, these

networks improve their energy efficiency by using a variety
MintRoute [16], CTP [2], MultihopLQI [1], IFRC [17] and
other collection protocols build minimum-cost trees to data
sinks such as gateways. These collection protocols establish
flows up a tree to pull data out of a network. Dissemination
protocols, such as Deluge [17] and MNP [18], use leader
elections and flurries of broadcasts to push data – e.g. new
programs – into a network. Applications often use additional
protocols beyond these two basic data flows, such as time
synchronization [19] for data time-stamping and geographic
[20] or coordinate [6, 12, 21] routing protocols for in-network
storage [11, 20].
Typically, however, each of these protocols is designed,

developed, and evaluated separately, hoping that it operates as
well when other protocols are present. Designing a system
with multiple protocols as building blocks can easily run into
unforeseen interactions and complications. This discrepancy
makes the design phase complicated, performance
unpredictable, and debugging difficult.
This paper argues that improving the isolation between

layer 3 protocols will greatly simplify the design and
implementation of efficient wireless sensor systems. Just as
an operating system simplifies building complex system on a
single node by isolating processes, a network that isolates
protocols would enable each one to be developed, tested, and
optimized independently.
Given multiple layer 3 sensor net protocols, there are two

ways to achieve protocol isolation. The first is to design all
layer 3 protocols such that they respect each other channel
requirements. This is similar to the way non-TCP protocols in
the Internet are required to be TCP-friendly [16]. The second
option is to implement a new mechanism that sits between
layers 2 and 3 and ensures that no one protocol interacts badly
with the rest minimizing the modifications to the layer 3
protocols. Changing all existing sensor net network protocols
would be infeasible. Thus, this paper uses the second route
and shows that it is an effective way to achieve protocol
isolation.

A. Shared Collision Avoidance Mechanism

Layer 3 protocols often have mechanisms to avoid

interference as in Figure 2(a). For example, CTP delays the
next transmission for a random period (16_31ms) to give time
to the previous packet to be forwarded out of interference
range by using a transmission timer that prevents back-to-
back transmissions. Deluge can suppress transmissions from

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

54

neighbors while a node is receiving data bursts [21], since
data bursts can easily collide with these transmissions.
These mechanisms do not work across protocols: a node
can transmit non-CTP traffic during CTP’s backoff or a

neighbor can send non-Deluge traffic to a node that is
receiving a binary update. MintRoute [22] has been reported
to break when Deluge coexists in a deployment [23]. That is,
the bursts of data packets cause excessive collisions with the
control packets of MintRoute, collapsing the network
topology. Section 5 also shows that concurrent operation of
CTP and Deluge decreases the efficiency of both protocols,
increasing the end-to-end delivery cost by 24% and 72%
respectively.
Many other deployments have also reported low data

yields [3, 4, 22, 32]. While the causes are mostly uncertain,
we believe many of them to be the interactions between
network protocols.
To deal with undesired interactions, some protocols

simply assume inter-protocol collisions do not exist. Flush
[22] assumes it has complete control of the channel and
supports a single flow. While such strict partitioning may be
acceptable for application-level workloads, it precludes
concurrent services such as management, time
synchronization, code distribution, or localization.

VI. SHARED COLLISION AVOIDANCE

Grant-to-send (GTS) is a collision-avoidance mechanism
proposed by Choi et al. [8] that can be used to provide
isolation between multiple network protocols. Every link-
layer packet contains a grant duration field, which grants the
channel around the transmitter to the receiver of the packet.
That is, upon overhearing or transmitting a packet, nodes can
only transmit after the grant duration has expired, and only the
receiver of the packet can transmit immediately. The local
collision avoidance mechanisms of CTP can be expressed
using GTS. Section 2 introduced CTP’s transmission timer – a
simple mechanism that delays the next packet transmission to
give time for the previous packet to be forwarded out of
interference range. This mechanism can be replaced by GTS
by including a grant of one packet time in each sent packet.
Since a grant silences its originator, the recipient of the packet
will have time to forward the data up the collection tree.
The lack of a layer 3 collision avoidance mechanism in

Deluge has been shown to cause collision losses during a
burst transmission. Therefore, an improved version, Deluge
[27], augments a request packet to silence neighbors while the
data exchange takes place. This approach is equivalent to the
grants that GTS supports; a network architecture that employs
GTS can use regular Deluge where request packets carry a
grant for the duration of the data burst.
GTS is a general mechanism that can be effectively

applied to protocols that exhibit correlated packet
transmissions. Ideally, the grant included in one packet will
prevent collisions for the packet or packets that follow. We
believe that because of its generality, GTS can act as a
common language that different network protocols can use to

communicate collision avoidance information with each
other. However, the authors of GTS do not explore what
happens when multiple protocols use GTS at the same time.
The key difference between using V-Deluge and GTS is that
the first affects only packets from Deluge but the latter affects
packets from every protocol since GTS is a MAC mechanism.
This property enables GTS to be used as a shared

mechanism for the isolation layer, enforcing the grants on all
protocols. For example, if Deluge requires silence while a
node receives a burst of data packets, all other protocols are
held in the isolation layer, providing silence as required.
When GTS is used by multiple network protocols
concurrently, it is possible that a node is granted by one
protocol but sends on behalf of another. GTS specifies neither
the destination of the granted packet, nor the protocol it
should come from. This is important since otherwise one
protocol could easily starve the rest or two nodes could take
over the channel. [29]
At the same time, this under specification still leaves

space for unfairness in the way channel time is shared
between protocols and nodes. The following section discusses
this issue in more detail. Ideally, GTS requires overhearing of
all packets in the vicinity of a node. In practice, nodes can
have their radios turned off during periods of low contention.
In such periods, a node may not overhear packets, and hence
not update its GTS timer. However, since a node in low-
power state is not contending for the channel, collision
avoidance is not crucial in this case.

A. Fair Queuing

To explain a major challenge fair queuing encounters in a
wireless network, we start with a very simple case: two nodes
both send packets from two protocols P1 and P2 as fast as
possible. If there are no packet losses, this network will
achieve node, channel, and transmit fairness. Each node has
an equal chance of acquiring the channel, and on doing so

will transmit the protocol with a smaller channel time. Packet
losses, however, complicate this situation. If a node fails to
hear a transmission, then the channel occupancy tables on the
two nodes become inconsistent: the transmitter has
incremented channel occupancy but the receiver has not.
Because each node is queuing packets based on its own local
view of the channel, an inconsistency can lead to a “ping-
pong” effect, where the two nodes disagree on which protocol
has used the channel less. It can cause low transmit fairness. .
For simplicity, a transmission of each protocol increments the
value of OpN by one. Suppose that both protocols have
accessed the channel N times but, for some reason, N1 has
missed two packets from P2. When N1 accesses the channel
again, it sends a packet from P2 trying to equalize the
protocols. Upon hearing this packet, N2 increments the
channel access history for P2 by one. If N2 accesses the
channel next, it will send P1, balancing out its protocol table.
However, this packet reverts the effort of N1 trying to achieve
equality. Thus, at the next chance N1 will transmit P2 again,
and this cycle goes on. Eventually, N1 will be biased for P2,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

55

and N2 for P1. This communication schedule has perfect
channel fairness but low transmit fairness.
Unfortunately, the ping-pong effect is not an edge case that

rarely happens; inconsistency can occur from packet losses,
collisions, or even different boot times. Furthermore, in
multichip networks, each node typically has a different view
of the channel as it hears transmissions from a different set of
neighbors. Prior work by Luo et al. [28][30] showed how, in
the case of unicast flows, a transmitter can embed the flow’s
channel occupancy in a data packet. Nodes overhearing a
packet can use the information to update their table and
restores consistency. But in the case of protocol fairness,
virtual tags are not easily synchronizable because there can be
many transmitters: doing so would require each node to
maintain O(np) space, where n is the number of neighbors and
p is the number of protocols.

VII. CONCLUSION

In this paper we have shown that a second level in addition

to access control intrusion confinement can dramatically
enhance the security especially integrity and availability of a
system in many situation. It showed that intrusion
confinement can effectively resolve the conflicting design
goals of an intrusion detection system by achieving both a
high rate of detection and a low rate of errors. Developing a
more concrete isolation protocols will further be studied in
our future research.

VIII. REFERENCES

[1] Graubart, R., Schlipper, L., and McCollum, C. (1996).
Defending database management systems against
information warfare attacks. Technical report, The MITRE
Corporation.

[2] Ammann, P., Jajodia, S., and Liu, P. Recovery from
malicious transactions. Technical report, George Mason
University, Fairfax, VA. http://www.isse.gmu.edu/R
pliu/papers/dynamic.ps.

[3] Jajodia, S., Liu, P., and McCollum, C. (1998).
Applicationlevel isolation to cope with malicious database
users. In Proceedings of the 14th Annual Computer
Security Application Conference, pages 73–82, Phoenix,
AZ.

[4] S. Northcutt, Network Intrusion Detection, New Riders,
Indianapolis, 1999.

[5] Ilgun, K.,Kemmerer, R., and Porras, P. (1995). State
transition analysis: A rulebased intrusion detection
approach. IEEE Transactions on Software Engineering,
21(3):181–199.

10. COSTIN CEPISCA, HORIA ANDREI, EMIL
PETRESCU, CRISTIAN PIRVU, CAMELIA PETRESCU,
"Remote Data Acquisition System for Hydro Power
Plants", Proceedings of the 6th WSEAS International
Conference on Power Systems, Lisbon, Portugal,
September 22-24, 2006, pp. 59-64

11.RAMÓN MARTÍNEZ-RODRÍGUEZ-OSORIO, MIGUEL
CALVO-RAMÓN, MIGUEL Á.

 FERNÁNDEZ-OTERO, LUIS CUELLAR NAVARRETE,
"Smart control system for LEDs traffic-lights based on
PLC", Proceedings of the 6th WSEAS International
Conference on Power Systems, Lisbon, Portugal,
September 22-24, 2006, pp. 256-260

[12] K. Kato and Y. Oyama. Softwarepot: An encapsulated
transferable file system for secure software circulation. In
Proc. of Int. Symp. on Software Security, 2003.

[13] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion
confinement by isolation in information systems. Journal of
Computer Security, 8, 2000.

[14] D. Malkhi and M. K. Reiter. Secure execution of java
applets using a remote playground. Software Engineering,
26(12), 2000.

[15] N. Provos. Improving host security with system call
policies, 2002.

[16]A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of multihop routing in sensor networks. In
Proceedings of the First ACM Conference on Embedded
networked sensor systems (SenSys), 2003

[17] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor
networks. In Proceedings of the international conference on
Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM), 2006.

[18] L. Wang. MNP: multihop network reprogramming service
for sensor networks. In Proceedings of the Second ACM
Conference on Embedded networked sensor systems
(SenSys), 2004.

[19] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E.
Knightly. Distributed multi-hop scheduling and medium
access with delay andthroughput constraints. In
Proceedings of the 7th annual international conference on
Mobile computing and networking (MobiCom), 2001.

[20] B. Karp and H. T. Kung. GPSR: greedy perimeter
stateless routing for wireless networks. In Proceedings of
International Conference on Mobile Computing and
Networking (MobiCom), 2000.

[21] Y. Mao, F. Wang, L. Qiu, , S. Lam, and J. Smith. S4:
Small state and small stretch routing protocol for large
wireless sensor networks. In Proceedings of the Fourth
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[22] A. Woo and T. Tong. Tinyos mintroute collection
protocol. tinyos- 1.x/lib/MintRoute.

[23] E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
congestion control without reliability. Proceedings of the
2006 conference on Applications, technologies,
architectures, and protocols for computer communications
(SIGCOMM), 2006.

[24] V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer,
and M. Witt. The heathland experiment: Results and
experiences. In Proceedings of the Workshop on Real-
World Wireless Sensor Networks (REALWSN), 2005.

[25] K. Xu, M. Gerla, and S. Bae. How effective is the ieee
802.11 rts/cts handshake in ad hoc networks? In

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

56

Proceedings of IEEE GLOBECOM’ 02, volume 1, pages
17–21, Nov. 2002.

[26] N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fair
scheduling in a wireless lan. In Proceedings of the 6th
annual international conference on Mobile computing and
networking (MobiCom), 2000.

[27] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen,
M. Jain, and P. Levis. Visibility: A new metric for protocol
design. In Proceedings of the Fifth ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2007.

[28] H. Luo, J. Cheng, and S. Lu. Self-coordinating localized
fair queueing in wireless ad hoc networks. Mobile
Computing, IEEE Transactions on, 3(1):86–98, Jan-Feb
2004

[29] M. BURGIN, Robustness of Information Systems and
Technologies, Proceedings of the 8th WSEAS International
Conference on DATA NETWORKS,
COMMUNICATIONS, COMPUTERS, , 67-72, 2009

[30] CHUNG-PING CHEN*, YING-WEN BAI** and
CHENG-HUNG TSAI, Performance Measurement and
Queueing Analysis at Medium-High Blocking Probability
of Parallel Connection Servers with Identical Service Rate,
Proceedings of the 8th WSEAS International Conference on
DATA NETWORKS, COMMUNICATIONS,
COMPUTERS, , 173-178, 2009

AUTHOR

Dr. Tai-hoon Kim
He received B.E., M.E., and Ph.D. degrees from
Sungkyunkwan University. Now he is a professor, School of
Information & Multimedia, Hannam University, Korea. His
main research areas are security engineering for IT products,
IT systems, development

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

57

