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Abstract— M.Blum and C.Hewitt first proposed two-dimensional
automata as a computational model of two-dimensional pattern pro-
cessing, and investigated their pattern recognition abilities in 1967.
Since then, many researchers in this field have been investigating
many properties about automata on two- or three-dimensional tapes.
By the way, the question of whether processing four-dimensional
digital patterns is much difficult than two- or three-dimensional ones
is of great interest from the theoretical and practical standpoints.
Recently, due to the advances in many application areas such as
computer animation, motion image processing, virtual reality sys-
tems, and so forth, it has become increasingly apparent that the
study of four-dimensional pattern processing has been of crucial
importance. Thus, the study of four-dimensional automata, i.e., four-
dimensional automata with the time axis as a computational model
of four-dimensional pattern processing has also been meaningful.
On the other hand, the comparative study of the computational
powers of deterministic and nondeterministic computations is one
of the central tasks of complexity theory. This paper investigates
the computational power of nondeterministic computing devices with
restricted nondeterminism. There are only few results measuring the
computational power of restricted nondeterminism. In general, there
are three possibilities to measure the amount of nondeterminism
in computation. In this paper, we consider the possibility to count
the number of different nondeterministic computation paths on any
input. In particular, we deal with seven-way four-dimensional finite
automata with multiple input heads operating on four-dimensional
input tapes.

Keywords— computational complexity, finite automaton, four-
dimension, multihead, path-bounded

I. I NTRODUCTION

COMPUTER science has two major components : first,
the fundamental mathematics and theories underlying

computing, and second, engineering techniques for the design
of computer systems―　 hardware and software. Theoretical
computer science falls under the first area of the two major
components. It had its beginnings in various field : physics,
mathematics, linguistics, electric and electronic engineering,
physiology, and so on. Out of these studies came important
ideas and models that are central to theoretical computer
science. In theoretical computer science, the Turing machine
has played a number of important roles in understanding and
exploiting basic concepts and mechanisms in computing and
information processing. It is a simple mathematical model of
computers which was introduced by Alan M.Turing in 1936 to
answer fundamental problems of computer science― ’What
kind of logical work can we effectively perform― [41] ’.
If the restrictions in its structure and move are placed on the
Turing machine, the restricted Turing machine is less powerful
than the original one. However, it has become increasingly

apparent that the characterization and classification of powers
of the restricted Turing machines should be of great important.
Such a study was active in 1950’s and 1960’s. After
that, the growth of the processing of pictorial information
by computer was rapid in those days. Therefor, the problem
of computational complexity was also arisen in the twodi-
mensional information processing. M.Blum and C.Hewitt first
proposed two-dimensional automata― two-dimensional finite
automata and marker automata, and investigated their pattern
recognition abilities in 1967 [1]. Since then, many researchers
in this field have been investigating a lot of properties about
automata on a two-dimensional tape [10]. Moreover, due to
the advances in many application areas such as computer
graphics, computer-aided design / manufacturing, computer
vision, image processing, robotics, and so on, the study of
three-dimensional pattern processing has been of crucial im-
portance. Thus, the study of three-dimensional automata as the
computational model of three-dimensional pattern processing
has been meaningful [12,15-26,38]. By the way question of
whether processing four-dimensional digital patterns is much
difficult than three-dimensional ones is of great interest from
the theoretical and practical standpoints. In recent years, due to
the advances in many application areas such as moving image
processing, computer animation, and so on, the study of four-
dimensional pattern processing has been of crucial importance.
Thus, the study of four-dimensional automata as the computa-
tional model of four-dimensional pattern processing has been
meaningful. For example, in [13,16], a four-dimensional finite
automaton was proposed as a natural extension of the three-
dimensional finite automaton to four dimensions[8,9,18,20,24-
28,34-37,40,42-44]. On the other hand, the comparative study
of the computational powers of deterministic computations is
one of the central tasks of complexity theory. In this paper,
we investigate the computational power of nondeterministic
computing devices with restricted nondeterminism. However,
there are only few results [3-6] measuring the computational
power of restricted nondeterminism. In general, there are three
possibilities to measure the amount of nondeterminism in
computation. One possibility is to count the number of advice
bits (nondeterministic guesses) in particular nondeterministic
computations, and the second possibility is to count the
number of accepting computation paths. The third possibility is
to count the number of different nondeterministic computation
paths on any input. This paper considers the third one. In
particular, the paper investigates a hierarchy on the degree
of nondeterminism of seven-way four-dimensional (simple)
multi-head finite automata as a natural extension of the five-
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way three-dimensional (simple) multi-head finite automata
[7,15]. Furthermore, we investigate a relationship between
the accepting powers of nondeterminism and self-verifying
nondeterminism for seven-way four-dimensional (simple) mul-
tihead finite automata with the number of computation paths
restricted.

II. PRELIMINARIES

This section summarizes the formal definitions and nota-
tions necessary for this thesis.

Definition 2.1. Let Σ be a finite set of symbols. A
four-dimensional tapeover Σ is a four-dimensional rectangu-
lar array of elements ofΣ. The set of all four-dimensional
tapes overΣ is denoted byΣ(4).

Given a tapex ∈ Σ(4), for each integerj (1 ≤ j ≤ 4), we
let lj(x) be the length ofx along thejth axis. The set of allx
∈ Σ(4) with l1(x) = n1, l2(x) = n2, l3(x) = n3, andl4(x) = n4

is denoted byΣ(n1, n2, n3,n4). When 1≤ ij ≤ lj(x) for each
j (1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the symbol inx with
coordinates (i1, i2, i3, i4), as shown in Fig.1. Furthermore, we
definex[(i1, i2, i3, i4),(i′1, i′2, i′3 ,i′4)], when 1≤ ij ≤ i′j ≤
lj(x) for integerj (1 ≤ j ≤ 4), as the four-dimensional tape
y satisfying the following conditions:

(i) for eachj (1 ≤ j ≤ 4), lj(y) = i′j–ij+1;
(ii) for each r1, r2, r3, r4( 1≤r1≤l1(y), 1≤r2≤l2(y),

1≤r3≤l3(y), 1≤r4≤l4(y)), y(r1, r2, r3, r4)=x(r1+i1-
1, r2+i2-1, r3+i3-1, r4+i4-1). (We call
x[(i1, i2, i3, i4), (i′1, i

′
2, i

′
3, i

′
4)] the [(i1, i2, i3, i4),

(i′1, i
′
2, i

′
3, i

′
4)]-segmentof x.)

For each x∈
∑

(n1,n2,n3,n4) and for each 1≤i1≤n1,
1≤i2≤n2, 1≤i3≤n3, 1≤i4≤n4, x[(i1, 1, 1, i4),
(i1, n2, n3, i4)], x[(1, i2, 1, i4), (n1, i2, n3, i4)], x[(1, 1, i3, i4),
(n1, n2, i3, i4)], x[(i1, 1, i3, i4), (i1, n2, i3, i4)], and
x[(1, i2, i3, i4), (n1, i2, i3, i4)] are called the i1th (2-3)
plane of thei4th three-dimensional rectangular array of x,
the i2th (1-3) plane of thei4th three-dimensional rectangular
array of x, thei3th (1-2) plane of thei4th three-dimensional
rectangular array of x, the i1th row on thei3th (1-2) plane of
the i4th three-dimensional rectangular array of x, and thei2th
column onthe i3th (1-2) plane of thei4th three-dimensional
rectangular array of x, and are denoted byx(2-3)i1 ·i4 ,
x(1-3)i2 ·i4 , x(1-2)i3 ·i4 , x[i1, ∗, i3, i4], and x[∗, i2, i3, i4],
respectively (see Fig.1.).
Definition 2.2. A seven-way four-dimensional multihead finite
automaton (SV4-MHFA) [7,46] is a finite automaton with
multiple input heads operating on four-dimensional input tapes
surrounded by boundary symbols #’s. These heads can move
east, west, south, north,up, down, in the future, but not in the
past. A seven-way four-dimensional simple multihead finite
automaton(SV4-SMHFA) is anSV4-MHFA which has only
one reading head and other counting heads which can only
detect whether they are on the boundary symbols or a symbol
in the input alphabet.

When a four-dimensional input tapex is presented to a four-
dimensional deviceM , M starts in its initial state with all its
heads onx(1, 1, 1, 1).M acceptsthe input tapex if and only

Fig. 1. Four-dimensional input tape.

if it eventually halts in an accepting state with all its heads on
the bottom boundary symbols #’s(see Fig.2).

Fig. 2. Seven-way four-dimensional multihead finite automaton.

For a deviceM , we denote byT (M ) the set of all inputs
accepted byM . The states of this device are considered to
be divided into three disjoint sets of working, accepting, and
rejecting states.

Definition 2.3. A self-verifying nondeterministicdevice is a
device with four types of states : working, accepting, rejecting,
and neutral ones. The self-verifying nondeterministic device
M is not allowed to make mistakes. If there is a computation
of M on an inputx finishing in an accepting (resp., rejecting)
state, thenx must be inT (M ) (resp.,x must not be inT (M )).
For every inputy, there is at least one computation ofM that
finishes either in an accepting state (ify ∈ T (M )) or in a
rejecting state (ify /∈ T (M )).

For eachk≥1, let SV4-kHFA denote aseven-way four-
dimensional k-head finite automaton. In order to represent
different kinds of SV4-kHFA’s, we use the notationSV4-
XYkHFA, where
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(1)
{

X = N : nondeterministic,
X = SV N : self−verifying nondeterministic ;

(2)
{

Y = SP : simple,
there is no Y : non−simple.

We denote byL[SV4-XYkHFA] the class of sets of input
tapes accepted bySV4-XYkHFA’s.

Let r be a positive integer. A deviceM described above
is r path-boundedif for any input x, there are at mostr
computation paths ofM on x[14,33]. We denote anr path-
boundedSV4-XYkHFAby SV4-XYkHFA(r), and denote the
class of sets of input tapes accepted bySV4-XYkHFA(r)’s by
L[SV4-XYkHFA(r)].

III. A R EVIEW OF THREE-DIMENSIONAL AUTOMATA

The question of whether processing three-dimensional dig-
ital patterns is much more difficult than two-dimensional
ones is of great interest from the theoretical and practical
standpoints. Recently, due to the advances in many application
areas such as computer vision, robotics, and so forth, it has be-
come increasingly apparent that the study of three-dimensional
pattern processing has been of crucial importance. Thus, the
research of three-dimensional automata as a computational
model of three-dimensional pattern processing has also been
meaningful. This chapter gives the historical review of various
properties of three-dimensional automata before beginning the
main subject of four-dimensional automata [30-32].

A. Three-Dimensional Turing Machines

This subsection observes the properties of three-dimensional
Turing machines [30-32].

Theorem 3.1.If L(m) = o(logm), then

L[3-DTM c(L(m))] ( L[3-UTM c(L(m))] (
L[3-ATM c(L(m))].

Corollary 3.1. L[3-DFAc] ( L[3-NFAc] ( L[3-AFAc].

Theorem 3.2.If (i) L(m) = o(m2), or (ii) L(m) ≥ logm and
L(m) = o(m3), then
L[FV 3-DTM c(L(m))] ( L[FV 3-UTM c(L(m))] (
L[FV 3-ATM c(L(m))], and
L[FV 3-UTM c(L(m))] and L[FV 3-NTM c(L(m))] are in-
comparable.

Corollary 3.2.
(i) L[FV 3-UFAc] ( L[FV 3-AFAc].
(ii) L[FV 3-UFAc] is incomparable withL[FV 3-NFAc].
(iii) L[FV 3-DFAc] ( L[FV 3-UFAc].

Theorem 3.3.If (i) L(m) = o(m2), or
(ii) L(m) ≥ logm and L(m) = o(m3), then

L[FV 3-UTM c(L(m))] ( L[3-UTM c(L(m))].

Corollary 3.3. L[FV 3-UFAc] ( L[3-UFAc].

Theorem 3.4.L[FV 3-UFAc] ( L[FV 3-DTM c(m2)], and
spacem2 is necessary and sufficient forFV 3-DTM c’s and
FV 3-NTM c’s to simulateFV 3-UFAc’s.

Theorem 3.5. L[3-UFAc] ( L[FV 3-DTM c(m3)], and
spacem3 is necessary and sufficient forFV 3-DTM c’s to
simulate3-UFAc’s.

Remark 3.1. We conjecture that L[3-UFAc] (
L[FV 3-NTM c(m2)], but we have not completed the
proof of this conjecture yet.

Theorem 3.6. Space m3 is necessary and sufficient for
FV 3-DTM c’s to simulateFV 3-
AFAc’s and 3-AFAc’s.

Open Problems 3.1. (i) Is L[3-NTM c(L(m))]
incomparable with L[3-UTM c(L(m))] for any L such
that L(m) = o(logm)?
(ii) L[3-DTM c(L(m))] ( L[3-NTM c(L(m))] (
L[3-ATM c(L(m))] for any L(m) ≥ logm?

B. Three-Dimensionally Space Constructibility and Space Hi-
erarchy

This subsection concerns three-dimensionally space con-
structible functions and space complexity hierarchy of three-
dimensional Turing machines whose input tapes are restricted
to cubic ones. First, we summarize two definitions necessary
for the following results.

Definition 3.1. A function L(m): N → R is called
three-dimensionally space constructibleif there is a
3-DTM(L(m))c M such that for eachm ≥ 1, there
exists some input tapex with l1(x) = l2(x) = l3(x) = m on
which M halts after its storage head has marked off exactly
the greatest integer cells which is smaller than or equal to
L(m). (In this case, we say thatM constructs the functionL
in the storage tape.)

Definition 3.2. A function L(m): N → R is called
three-dimensionally fully space constructibleif there is a
3-DTM(L(m))c M which, for eachm ≥ 1 and for each
input tapex with l1(x) = l2(x) = l3(x) = m, makes use
of exactly the greatest integer cells which is smaller than or
equal toL(m) and halts.

Next, we show three-dimensionally fully space con-
structibility and space complexity hierarchies of three-
dimensional Turing machines whose input tapes are restricted
to cubic ones [30].

Theorem 3.7.We consider the following three functions:
log(0)m = m,
log(k)m = log(log(k−1)m), for k ≥ 1, and
log∗m = min{x|log(k)m ≤ 1}.
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Then, the functionslog(k)m (k: any natural number)and
log∗m are three-dimensionally fully space constructible.

Theorem 3.8. For any X ∈ {D, N, U,A}, for any function
L(m): N → R, and for any constantd > 0,

L[3-XTM c(L(m))] = L[3-XTM c(L(m) + d)].

Theorem 3.9. For any X ∈ {D, N, U,A}, for any function
L(m): N → R, and for any constantd > 0,

L[3-XTM c(L(m))] = L[3-XTM c(dL(m))].

Theorem 3.10.Let L1(m) and L2(m) be any functions such
that
(i) L2(m) is three-dimensionally space constructible,
(ii) limi→∞L1(mi)/L2(mi) = 0, and
(iii) L2(mi)/logmi > k (i=1, 2, …) for some increasing
sequence of natural numbersmi and for some constantk > 0.
Then there exists a setT in L[3-XTM c(L2(m))], but not in
L[3-XTM c(L1(m))] for any X ∈ {D, N}.

Theorem 3.11. For any functions L1(m) and L2(m)
such that (i) L2(m) is three-dimensionally space con-
structible, (ii) L1(m) = o(L2(m)), there exists a set in
L[3-DTM c(L2(m))], but not inL[3-NTM c(L1(m))].

Open Problems 3.2.(i) Are the functionslog(k)m (k ≥ 3)
and log∗m fully space constructible by one-dimensional de-
terministic two-head Turing machines or by two-dimensional
deterministic Turing machines with square inputs?
(ii) Is there any other unbounded function belowlogm which
is three-dimensionally fully space constructible?
(iii) Is there an infinite tight hierarchy for3-ATM c(L(m))’s
with L(m) ≥ logm?
(iv) Is there an infinite space hierarchy for3-ATM c(L(m))’s
with L(m) ≤ loglogm?

C. Recognizability of Connected Tapes

The recognition of the connectedness of digital pictures is
one of the most fundamental problems in picture process-
ing. There have been various results related to this prob-
lem. Especially, to recognize three-dimensional connectedness
seems to be much more difficult than the two-dimensional
case, because of intrinsic characteristics of three-dimensional
pictures. This subsection mainly shows the recognizability
of three-dimensional connected tapes by three-dimensional
automata. We use 3-DMk (3-NMk, 3-NIk, 3-UIk, 3-AIk)
to denote a three-dimensional deterministick-marker automa-
ton (three-dimensional nondeterministick-marker automaton,
three-dimensional nondeterministick-inkdot automaton, three-
dimensional alternatingk-inkdot automaton with only univer-
sal states, three-dimensional alternatingk-inkdot automaton),
where k ≥ 1 (see [30]). LetTc be the set of all three-
dimensional connected tapes. It is interesting to investigate
how much space is required for three-dimensional Turing
machines to acceptTc. For this problem, we have

Theorem 3.12.(i) Tc ∈ L[3-AFAc].
(ii) logm space is necessary and sufficient forFV 3-ATM ’s

to recognizeTc.

Theorem 3.13.Tc ∈ L[3-NMA1] [45].

Theorem 3.14.(i) the necessary and sufficient space forFV 3-
DTM ’s to simulate3-DM1’s (3-NM1’s) is 2lmloglm (2k,
wherek = l2m2). (ii) the necessary and sufficient space for
FV 3-NTM ’s to simulate3-DM1’s (3-NM1’s) is lmloglm
(l2m2), wherel(m) is the number of rows(columns) on each
plane of three-dimensional rectangular input tapes.

Theorem 3.15.Tc /∈ L[3-NIk] [19].

Remark 3.2. [3-NIk] ( L[3-AIk] for any integerk.

Open Problems 3.3.(i) Tc /∈ L[3-DTM(L(m))] or Tc /∈
L[3-NTM(L(m))] for L(m) = o(logm)?
(ii) Tc ∈ L[3-UI1]?
(iii) Is Tc accepted by a3-DM1?

D. Other Topics

In this subsection, we list up other topics and related
references about three-dimensional automata.
(i) Properties of special types of three-dimensional Turing ma-
chines (leaf-size bounded automata, parallel automata, multi-
counter automata, etc. on three-dimensional tapes) [17, 29,
30].
(ii) Cellular types of three-dimensional automata [10, 11, 39].
(iii) Closure properties [5, 13, 30].
(iv) Recognizability of topological properties [21-23].
(v) NP -complete problems [5, 16, 30].

E. Concluding Remarks

In this section, we reviewed historical properties of
three-dimensional automata. Especially, we dealt with three-
dimensional Turing machines, including finite automata, three-
dimensionally space constructibility, recognizability of three-
dimensional connected pictures, and so on. We believe that
there are many problems about three-dimensional automata to
solve in the future. We hope that this survey will activate the
investigation of three- or four-dimensional automata theory.

IV. N ON-SIMPLE CASE

We first prove a strong separation betweenr path-bounded
and (r+1) path-bounded for seven-way four-dimensional mul-
tihead finite automata.

Theorem 4.1.For each positive integersk≥2 and r≥1,

L[SV4-SVNkHFA(r+1)]–L[SV4-NkHFA(r)] ̸=ϕ.

Proof : For each positive integersk≥2 andr≥1, let
T1(k, r)={x∈{0,1}(4) | ∃n≥2rb(k)+1 [l1(x)=l2(x)=
l3(x)=l4(x)=n] ∧ ∃ i(0≤i≤r-1) [∀j(ib(k)+1≤ j ≤ (i+
1)b(k)) [x[∗, ∗, ∗, j]=x [∗, ∗, ∗, 2rb(k)-j+1] ∧ ∃z∈{0,1}∗
[x[∗, ∗, 2rb(k)+1]=0i1z (the string of the symbols forms a line
from the first column to the last column in the (2rb(k)+1)th
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three-dimensionalrectangular array ofx and from the first
row to the last row in a column one after another)]]}, where
b(k)=kC2 (see Fig.3.). To prove the theorem, it suffices to
show that for eachk≥2 and r≥1, (1) T1(k, r+1)∈L[SV4-
SVNkHFA(r+1)], and (2)T1(k, r+1)/∈L[SV4-NkHFA(r)]. First
of all we prove Past (1) of the theorem.T1(k, r+1) is
accepted by anSV4-SVNkHFA(r+1) M which acts as follows.
Suppose that an input tapex with l1(x)=l2(x)=l3(x)=l4(x)=n
(n≥2(r+1)b(k)+1) is presented toM . First, M nondetermin-
istically guesses somei (0≤i≤r) and checks whetherx[∗, ∗,
∗, j] and x[∗, ∗, ∗, 2(r+1)b(k)-j+1] are identical for each
j (ib(k)+1≤j≤(i+1)b(k)). This check can easily be done by
using a well-known technique in [12]. Ifx[∗, ∗, ∗, j]̸= x[∗,
∗, ∗, 2(r+1)b(k)-j+1] for somej (ib(k)+1≤j≤(i+1)b(k)) and
x[∗, ∗, ∗, 2(r+1)b(k)+1]=0i1z (the string of the symbols
forms a line from the first column to the last column in
the (2(r+1)b(k)+1)th three-dimensional rectangular array ofx
and from the first row to the last row in a column one after
another) for somez∈{0, 1}∗, thenM enters a rejecting state.
If x[∗, ∗, ∗, 2(r+1)b(k)+1]̸=0i1z (the string of the symbols
forms a line from the first column to the last column in
the (2(r+1)b(k)+1)th three-dimensional rectangular array of
x and from the first row to the last row in a column one
after another) for somez∈{0, 1}∗, M enters a neutral state,
whether or notx[∗, ∗, ∗, j]=x[∗, ∗, ∗, 2(r+1)b(k)-j+1] for
eachj (ib(k)+1≤j≤(i+1)b(k)). It is obvious thatM accepts
T1(k, r+1). On the other hand, by using a standard technique
in [9, 10], we can get Part (2) of the theorem.

�

Fig. 3. A tape inT1(k, r).

From Theorem 4.1, we have the following corollary :

Corollary 4.1. For each X∈{N, SV N}, and for each positive
integers k≥2 and r ≥1,

L[SV4-XkHFA(r)]( L[SV4-XkHFA(r+1)].

We next show a strong separation between self-verifying
nondeterminism and nondeterminism.
Theorem 4.2.For each positive integer k≥2.

L[SV4-NkHFA(2)]–L[SV4-SVNkHFA]̸=ϕ.

Proof : For each positive integerk ≥2, let T2(k)={x
∈{0,1}(4) | ∃n≥4b(k) [l1(x)=l2(x)=l3(x)=l4(x)=n] ∧
∃i (0≤i≤1) ∃j (ib(k)+1≤j≤(i+1)b(k)) [x[∗, ∗,∗, j] ̸=
x[∗,∗,∗, 4b(k)–j+1]}, whereb(k)=kC2 (see Fig.4.). Then, we
haveT2(k)∈ L[SV4-NkHFA(2)]–L[SV4-SVNkHFA]. Then, by
using the same idea as in [11,12], we can get the desired
result. �

Fig. 4. A tape inT2(k).

From Theorems 4.1 and 4.2, we have the following corol-
lary:

Corollary 4.2. For each positive integers k≥2and r≥2,

(1) L[SV4-SVNkHFA](L[SV4-NkHFA],
(2) L[SV4-SVNkHFA(r)](L[SV4-NkHFA(r)], and
(3) L[SV4-SVNkHFA(r+1)] and L[SV4-NkHFA(r)] are in-

comparable.

V. SIMPLE CASE

This section first prove a strong separation betweenr path-
bounded and (r+1) path-bounded machines for the seven-way
simple case.

Theorem 5.1.For each positive integers k≥2and r≥1,

L[SV4-SVNSPkHFA(r+1)]–L[SV4-NSPkHFA(r)]=ϕ.

proof : For each positive integersk≥2 andr≥ 1, let
T3(k, r)= {x∈{0, 1}(4) | ∃n≥max{2r+1, k} [l1(x)=
l2(x) =l3(x)=l4(x)=n] ∧ [ [ (the 1st three-dimensional rectan-
gular array ofx has exactlyk 1’s) ∧ x[∗, ∗, ∗, 1]=x[∗, ∗,
∗, 1+r] ∧ ∃z∈{0, 1}∗ [x[∗, ∗, ∗, 2r+1]=01z (the string of
the symbols forms a line from the first column to the last
column in the (2r+1)th three-dimensional rectangular array
and from the first row to the last row in a column one after
another)]]∨ [(the 2ndthree-dimensional rectangular array ofx
has exactlyk 1’s) ∧ x[∗, ∗, ∗, 2]=x[∗, ∗, ∗, 2+r] ∧ ∃z∈{0, 1}∗
[x[∗, ∗, ∗, 2r+1]=021z (the string of the symbols forms a line
from the first column to the last column in the (2r+1)th three-
dimensional rectangular array and from the first row to the last
row in a column one after another)]]∨· · · ∨ [(the rth three-
dimensional rectangular array ofx has exactlyk 1’s) ∧ x[∗,
∗, ∗, r]=x[∗, ∗, ∗, 2r] ∧ ∃z∈{0, 1}∗ [x[∗, ∗, ∗, 2r+1]=0r1z
(the string of the symbols forms a line from the first column to
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the last column in the (2r+1)th three-dimensional rectangular
array and from the first row to the last row in a column one
after another) ]]]}. By using the same technique as in the proof
of Theorem 5.1 in [12], we can get the desired result. �

From Theorem 5.1, we have the following corollary :

Corollary 5.1. For each X∈{N, SV N}, and for each positive
integers k≥2 andr≥1,

L[SV4-XSPkHFA(r)](L[SV4-XSPkHFA(r+1)].

We next show a strong separation between self-verifying
nondeterminism and nondeterminism.

Theorem 5.2.For each positive integerk≥2,

L[SV4-NSPkHFA(2)]–L[SV4-SVNSPkHFA]̸=ϕ.

Proof : For each positive integerk≥2, let T4(k)={x∈
{0, 1}(4) | ∃n≥max{4, k} [l1(x)= l2(x)=l3(x)=l4(x)=
n] ∧ ∃i(1≤i≤2) [(the ith three-dimensional rectangular array
of x has exactlyk ‘1’s) ∧ x[∗, ∗, ∗, i]̸=x[∗, ∗, ∗, i+2]]}. Then,
by using the standard technique in [11], we can show that

T4(2k-1)∈L[SV4-NSPkHFA(2)]
–L[SV4-SVNSPkHFA]. �

From Theorems 5.1 and 5.2, we have the following corol-
lary.

Corollary 5.2. For each positive integersk≥2 and r≥2,
(1) L[SV4-SVNSPkHFA](L[SV4-NSPkHFA],
(2) L[SV4-SVNSPkHFA(r)](L[SV4-NSPkHFA(r)],

and

(3) L[SV4-SVNSPkHFA(r+1)] and
L[SV4-NSPkHFA(r)] are incomparable.

VI. CONCLUSION

Recentry, due to the advances in computer animation, mo-
tion image processing, robotics, and so on, the study of four-
dimensional information processing has been of great impor-
tance. For instance, four-dimensional image is now needed
in visual communication, such as virtual reality systems.
Even in the Internet environment, new protocols have been
proposed for virtual reality communication on theWWW.
In the medical field, we can easily get the precise four-
dimensional volumetric image of a human body by excellent
equipments such asX-rayCT scanner andMRI scanner. Thus,
the study of four-dimensional automata has been meaningful
as the computational model of four-dimensional information
processing.

In this paper, we dealt with path-bounded seven-way four-
dimensional finite automata, and showed some properties
about them. We first investigated a hierarchy on the degree
of nondeterminism of seven-way four-dimensional (simple)
multihead finite automata as a natural extension of the five-way
three-dimensional (simple) multihead finite automata. Next,
we showed a relationship between the accepting powers of

nondeterminism and self-verifying nondeterminism for seven-
way four-dimensional (simple) multihead finite automata with
the number of computation paths restricted.

It is interesting to investigate a hierarchy based on the de-
gree of nondeterminism for eight-way four-dimensional multi-
head finite automata which can move east, west, south, north,
up, down, future, or past. Moreover, it will be interesting to
investigate the case of four-dimensionalalternatingmultihead
finite automata (see [2] for the concept ofalternation).
Finally, we would like to hope that some unsolved questions
concerning this paper will be explicated in the near future.
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