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Abstract— A multi-marker automaton is a finite automaton which
keeps marks as pebbles in the finite control, and cannot rewrite any
input symbols but can make marks on its input with the restriction that
only a bounded number of these marks can exist at any given time. An
improvement of picture recognizability of the finite automaton is the
reason why the multi-marker automaton was introduced. On the other
hand, a multi-inkdot automaton is a conventional automaton capable
of dropping an inkdot on a given input tape for a landmark, but unable
to further pick it up. Due to the advances in many application areas
such as moving image processing, computer animation, and so on, it
has become increasingly apparent that the study of four-dimensional
pattern processing has been of crucial importance. Thus, we think that
the study of four-dimensional automata as a computational model of
four-dimensional pattern processing has also been meaningful. This
paper deals with marker versus inkdot over four-dimensional input
tapes, and investigates some properties.
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I. I NTRODUCTION

A multi-marker automaton is a finite automaton which keeps
marks aspebbles in the finite control, and cannot rewrite
any input symbols but can make marks on its input with
the restriction that only a bounded number of these marks
can exist at any given time. An improvement of picture
recognizability of the finite automaton is the reason why the
marker automaton was introduced. That is, a two-dimensional
multi-marker automaton can recognize connected pictures [3].

On the other hand, as is the well-known open problems in
computational complexity, there is the historical open question
whether or not the separation exists between deterministic
and nondeterministic space (especially hard-level) complexity
classes. Related to the historical open question, D. Ranjan
et al. introduced a slightly modified Turing machine model,
called a one-inkdot Turing machine [70]. An inkdot machine
is a conventional Turing machine capable of dropping an
inkdot on a given input tape for landmark, but unable to
further pick it up. Against an earlier expectation, it was
proved that nondeterministic inkdot Turing machines are more
powerful than nondeterministic ordinary Turing machines for
sublogarithmic space bounds. As is well-known result in the
case of two-dimensional input tapes, there is a set of square
tapes accepted by a nondeterministic finite automaton, but
not by any deterministic Turing machine with sublogarithmic
space bounds. Thus, it makes no sense to ask the same ques-
tion whether the separation exists between deterministic and
nondeterministic complexity classes for the two-dimensional
Turing machines. However, there is an other important aspect
in the inkdot mechanism : we can see a two-dimensional finite

automaton with inkdot as a weak recognizer of the inherent
properties of digital pictures. By this motivation, a two-
dimensional multi-inkdot automaton was introduced [41,70].
(See [3,6,35,70,74,104] for another results concerning two-
dimensional inkdot and marker machines.)

By the way, the question of whether processing three-
dimensional digital patterns is much more difficult than two-
dimensional ones is of great interest from the theoretical and
practical standpoints. Thus, the research of three-dimensional
automata as the computational model of three-dimensional
pattern processing has been meaningful. From this viewpoint,
we investigated a multi-marker automaton and a multi-inkdot
automaton on three-dimensional input tapes [1,2,4,5,7-115].
Due to the advances in many application areas such as
moving image processing, computer animation, and so on,
it has become increasingly apparent that the study of four-
dimensional pattern processing has been of crucial importance.
Thus, we think that the study of four-dimensional automata as
a computational model of four-dimensional pattern processing
has also been meaningful[92,95-97,108,112].

This paper deals with a relationship between marker and
inkdot for four-dimensional automata, and shows some prop-
erties (see Fig. 3,4.).

II. D EFINITIONS AND NOTATIONS

Definition2.1. Let Σ be a finite set of symbols. A
four-dimensional tapeover Σ is a four-dimensional rectangu-
lar array of elements ofΣ. The set of all four-dimensional
tapes overΣ is denoted byΣ(4).

Given a tapex ∈ Σ(4), for each integerj (1 ≤ j ≤ 4), we
let lj(x) be the length ofx along thejth axis. The set of allx
∈ Σ(4) with l1(x) = n1, l2(x) = n2, l3(x) = n3, andl4(x) = n4

is denoted byΣ(n1, n2, n3,n4). When 1≤ ij ≤ lj(x) for each
j (1 ≤ j ≤ 4), letx(i1, i2, i3, i4) denote the symbol inx with
coordinates (i1, i2, i3, i4), as shown in Fig.1. Furthermore, we
definex[(i1, i2, i3, i4),(i′1, i′2, i′3 ,i′4)], when 1≤ ij ≤ i′j ≤
lj(x) for integerj (1 ≤ j ≤ 4), as the four-dimensional tape
y satisfying the following conditions:

(i) for eachj (1 ≤ j ≤ 4), lj(y) = i′j–ij+1;
(ii) for each r1, r2, r3, r4( 1≤r1≤l1(y), 1≤r2≤l2(y),

1≤r3≤l3(y), 1≤r4≤l4(y)), y(r1, r2, r3, r4)=x(r1+i1-
1, r2+i2-1, r3+i3-1, r4+i4-1). (We call
x[(i1, i2, i3, i4), (i′1, i

′
2, i

′
3, i

′
4)] the [(i1, i2, i3, i4),

(i′1, i
′
2, i

′
3, i

′
4)]-segmentof x.)

For each x∈
∑

(n1,n2,n3,n4) and for each 1≤i1≤n1,
1≤i2≤n2, 1≤i3≤n3, 1≤i4≤n4, x[(i1, 1, 1, i4),
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(i1, n2, n3, i4)], x[(1, i2, 1, i4), (n1, i2, n3, i4)], x[(1, 1, i3, i4),
(n1, n2, i3, i4)], x[(i1, 1, i3, i4), (i1, n2, i3, i4)], and
x[(1, i2, i3, i4), (n1, i2, i3, i4)] are called the i1th (2-3)
plane of thei4th three-dimensional rectangular array of x,
the i2th (1-3) plane of thei4th three-dimensional rectangular
array of x, thei3th (1-2) plane of thei4th three-dimensional
rectangular array of x, the i1th row on thei3th (1-2) plane of
the i4th three-dimensional rectangular array of x, and thei2th
column onthe i3th (1-2) plane of thei4th three-dimensional
rectangular array of x, and are denoted byx(2-3)i1 ·i4 ,
x(1-3)i2 ·i4 , x(1-2)i3 ·i4 , x[i1, ∗, i3, i4] and x[∗, i2, i3, i4],
respectively (See Fig.1.).
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Fig. 1. Four-dimensional input tape.

Definition2.2. A four-dimensional finite automaton(4-FA),
which can be considered as a natural extension of the three-
dimensional finite automaton to four dimensions, consists of
read-only four-dimensional input tape, a finite control, and an
input head which can move east, west, south, north, up, down,
in the past, or in the future [3]. Afour-dimensional alternating
finite automaton(4-AFA) is a sixtupleM=(Q,q0,U,F ,Σ,δ),
where

(1) Q is a finite set ofstates,
(2) q0∈Q is the initial state,
(3) U⊆Q is the set ofuniversal states,
(4) F⊆Q is the set of theaccepting states,
(5) Σ is a finite input alphabet(# /∈Σ is the boundary

symbol), and
(6) δ⊆(Q×(Σ∪{#})) ×(Q×{ east, west, south, north,

up, down, future, past, no more}) is the next-move
relation.

A stateq in Q − U is said to beexistential. As shown in
Fig.2, the machineM has a read-only rectangular input tape
with boundary symbols#’s, and finite control. A position is
assigned to each cell of the input tape as shown in Fig.2.

At each moment, the machineM is in one of the states. A
stepof M consists of reading the symbol currently under the
input head, changing its state, and moving the input head in
specified direction (east, west, south, north, up, down, future,
past, or no more) which is determined by the next-move
relation δ. If the input head falls off the input tape, thenM
can move no further make.

four -dimensional input tape
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the 3rd axis

the 2nd axis

the 1st axis
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finite control

input head

up
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south
west

north
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Fig. 2. Four-dimensional alternating finite automaton.

Definition2.3. A configuration of a 4-AFA M on
an input x∈Σ(4)is of the form ((i1,i2,i3,i4),q), where
(i1,i2,i3,i4), 0≤i1≤l1(x)+1, 0≤i2≤l2(x)+1, 0≤i3≤l3(x)+1,
and 0≤i4≤l4(x)+1, is a position of the input head, andq
is a state of the finite control. Ifq is the state associated
with configurationc, then c is said to beuniversal (existen-
tial, accepting) configuration ifq is a universal (existential,
accepting) state. Theinitial configuration of M on input x
is IM (x)=((1, 1, 1, 1),q0). For each input tapex, we write
c⊢M,xc’, and say thatc’ is an immediate successorof c (of
M on x), if configurationc’ is derived from configurationc
in one step ofM on x according to the next-move relation.
A configuration with no immediate successor is called a
halting configuration. Below, we assume that every accepting
configuration is a halting configuration.

We can view the computation ofM as a tree whose made
are labelled by configurations. Acomputation treeof M
on an input tapex is a tree whose nodes are labelled by
configurations ofM on x. The root of the tree is labelled
by the initial configurationIM (x); the children of any node
labelled by a universal configuration are all the immediate
successors of that configuration onx; and any node labelled
by an existential configuration has one child, which is labelled
by one of the immediate successors of that configuration on
x (provided there are any). Anaccepting computation treeof
M on x is a computation tree ofM on x whose leaves are all
labelled by accepting configurations. We say thatM accepts
x if there is an accepting computation tree ofM on inputx.
DefineT (M )={x ∈Σ(4)|M acceptsx}.

Definition2.4. A four-dimensional alternating one-maker au-
tomaton[6,21] is a 4-AFAwith the capability of using one-
marker which the finite control can use as a marker on the
input tape, as shown in Fig.3. During the computation, the
device can deposit (retrieve) a marker on (from) any cell of the
input. The action of the machine depends on the current state
of the finite control, the currently scanned input tape symbol,
and on the presence of the marker on the current input tape
cell. The action consists of moving the input head, changing
the state of the finite control, and picking up or placing the
marker on the currently scanned cell of the input tape.

A configuration of a four-dimensional alternating one-
marker automatonM on an input tapex is of the form
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Fig. 3. Image of marker on four-dimensional input tape.

((i1,i2,i3,i4), marker-position,q), where (i1,i2,i3,i4) is the in-
put head position,marker-positionis the position of the marker
on x (let marker-positionbe “no” if the marker is not placed
on the input tapex), and componentq represents a state of
the finite control. Theinitial configurationof M on x is ((1,
1, 1, 1), no, q0), whereq0 is the initial state ofM . That is,
the machineM starts with the marker in the finite control and
with the input head on the upper-northwestmost corner of the
first three-dimensional rectangular array of the input tape. An
accepting computation treeof M on an input tape is defined as
in the case of a four -dimensional alternating finite automaton.
We say thatM acceptsan input tapex if there is an accepting
computation tree ofM on x. By T (M ), we denote the set of
all the four-dimensional tapes accepted byM .

Definition2.5. A four-dimensional alternatingk-inkdot finite
automaton[41] is a 4-AFA capable of dropping inkdots on
a given iput tape for a landmark, but unable to further pick
it up. That is, a four-dimensional alternatingk-inkdot finite
automaton is a four-dimensional alternating multi-marker finite
automaton which cannot pick up the pebbles again, once it has
put down the marker on a given input tape, as shown in Fig.4.
(See [41].)
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Fig. 4. Image of inkdot on four-dimensional input tape.

By 4-AFA (resp., 4-NFA, 4-DFA, 4-AM1, 4-NM1, 4-
DM1, 4-AIk, 4-NIk, 4-DIk), we denote alternating (resp.,
nondeterministic, deterministic, alternating 1-marker, nonde-
terministic 1-marker, deterministic 1-marker, alternatingk-
inkdot, nondeterministick-inkdot, deterministick-inkdot) 4-
FA. Furthermore, by 4-UFA (resp., 4-UM1, 4-UIk), we
denote alternating (resp., alternating 1-marker, alternatingk-
inkdot) 4-FA with only universal states.

For eachX ∈ {D, N, U,A}, we denote byL[4-XFA]
the class of sets of all four-dimensional tapes accepted by
4-XFA’s. That is,

L[4-XFA]={T | T=T (M) for some4-XFA M},
where T (M) is the set of all four-dimensional tapes ac-

cepted byM . L[4-XM1] andL[4-XIk] are defined similarly.
Let M be a 4-AM1 (or 4-AIk), and x be an input tape.

A sequence of configurationsc1c2· · · cm (m≥1) is called a
computation pathof M onx if c1⊢M,xc2⊢M,x· · · ⊢M,xcm. For
simplicity, we below call a computation path acomputation.
For any setS, |S| denotes the cardinality ofS.

III. K NOWN RESULTS AND RELATED RESULTS

This section surveys known results and related results in
[50,83,84,86,89] concerningk-inkdot and 1-marker 4-FA’s.
The following result shows a relationship among the accepting
powers of 4-FA’s k-inkdot 4-FA’s, and 1-marker 4-FA’s.

Theorem 3.1[50,83,84,86,89].
(1) L[4-DFA] = L[4-DIk] ( L[4-DM1],
(2) L[4-NFA] ( L[4-NIk] ( L[4-NM1],
(3) L[4-UFA] ( L[4-UIk] ( L[4-UM1], and
(4) L[4-AFA] ( L[4-AIk] ⊆ L[4-AM1].

It is unknown whetherL[4-AIk] ( L[4-AM1]. What are
the relationships betweenL[4-NIk] andL[4-DM1], between
L[4-UIk] and L[4-DM1], and betweenL[4-AIk] and L[4-
NM1]? The following theorem answer this question.

Theorem 3.2.
(1) L[4-NIk] is incomparable withL[4-DM1],
(2) L[4-UIk] is incomparable withL[4-DM1], and
(3) L[4-NM1] ( L[4-AIk].

Proof: Let T1={x ∈ {0, 1}(4) | ∃n≥1 [l1(x)=l2(x)=
l3(x)=l4(x)=2n ∧ (the top half of x is the same as the
bottom half of x)]}, and T2={x ∈ {0, 1}(4) | ∃n≥2
[l1(x)=l2(x)=l3(x)=l4(x)=n ∧ ∃ i(2≤i≤n) { the first three-
dimensional rectangular array ofx is the same as theith three-
dimensional rectangular array ofx }}}.

By using the same technique as in the proof of Lemma
5.1, Corollary 5.1, Theorem 6.4 in [41], we can show that
the complement ofT1 is in L[4-NIk], T1∈L[4-UIk], and
T2 /∈L[4-NIk]∪L[4-UIk]. Furthermore, we can easily prove
that T2∈L[4-DM1] [21,23].

By using the same technique as in the proof of Theorem
4.1 in [21], we can show that the complement ofT1 is not in
L[4-DM1]. From these observation, (1) and (2) of the theorem
follow. (3) of the theorem can be proved by using the same
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ideaof Ref. [22,23]. �

The following result in [50,83,84,86,89] shows a relation-
ship among the accepting powers of determinism, nondeter-
minism, alternation with only universal states, and alternation
for k-inkdot 4-FA’s.

Theorem 3.3[50,83,84,86,89].(1) L[4-DIk] ( L[4-NIk] (
L[4-AIk], and (2) L[4-DIk] ( L[4-UIk] ( L[4-AIk].

A relationship betweenL[4-NIk] and L[4-UIk] is shown
in the following theorem.

Theorem 3.4.L[4-NIk] is incomparable withL[4-UIk].

Proof: Let T1 andT2 be sets described in the proof of Theorem
3.2. We can easily prove thatT1∈L[4-UIk]−L[4-NIk] [7],
and the complement ofT2 is in L[4-NIk], but not in L[4-
UIk]. From this fact, the theorem follows. �

For 1-marker 4-FA’s, we can easily get the following result
[21,23]. That is, alternation is better than nondeterminism,
which is better than determinism.

Theorem 3.5.L[4-DM1] ( L[4-NM1] ( L[4-AM1].

IV. M AIN RESULTS

This section investigates an open problem. That is, a rela-
tionship betweenL[4-UMI1] andL[4-AIk].

Here is some preliminaries. Letc1c2......cm(m≥1) be a
computation ofM on an input tapex. Then, this computation
is called:
· a halting computationof M on x if cm is a halting

configuration other than any accepting configuration,
· a double-looping computationof M on x if there exist

somei(1≤i≤m−2) and some (possibly empty) sequence of
configurationss such that (i)cj ̸=ck for each 1≤j≤k≤i, (ii)
c1c2......cm = c1c2......ci−1ciscisci, and (iii) each configura-
tion in cis is different from each other, and different from each
cr(1≤r≤i), and
· a rejecting computationof M on x if the sequence

c1c2......cm is a halting, or double-looping computation.

Theorem 4.1.L[4-AIk]−L[4-UM1] ̸= ϕ.

Proof: Let V (m)={x1c1x2c2......xmcm | ∀i(1≤i≤m)
{xi∈{0,1}(m,m,m,m) ∧ ci∈{2}(m,1,m,m)}}, and T3={xy |
∃m≥1{x,y∈V (m)} ∧ x̸=y}, where for any two four-
dimensional tapesx andy with l4(x)=l4(y), we denote byxy
the four-dimensional tape obtained by concatenatingy to the
future side ofx. To prove the theorem, we below show that
(1) T3 ∈ L[4-AIk], and (2)T3 /∈ L [4-UM1]. It is obvious
that Part (1) of the theorem holds. Here we only prove (2).
We suppose to the contrary that there is a 4-UM1 M which
acceptsT3. Let Q be the set of states of the finite control
of M . We divide Q into two disjoint subsetsQ+ and Q−

which correspond to the sets of states whenM holds and

does not hold the marker in the finite control, respectively.
M starts from the initial state inQ+ with the input head on
the upper-northwestmost symbol of first three-dimensional
rectangular array of an input tape. We assume without
loss of generality thatM satisfies the following condition
(A): ‘ M does not go out of the boundary symbols #’s.
(Of course,M does not go into the input tape from the
outside of the boundary symbols #’s.)’ For eachM≥1, let
W (m)={xy | x,y∈V (m)}. Below we shall again consider
the computations ofM on tapes inW (m) for largem≥1. Let
x be any tape inV (m) that is supposed to be a future or past
half on an input tape (inW (m)) to M , and let #’sx (resp.,
x#’s) be the tape obtained fromx by attaching the boundary
symbols #’s to the east, west, south, north, upper, lower, and
in the future (resp., east, west, south, north, upper, lower,
and in the past) sides. Note that, from the above condition
(A), both the entrance points to #’sx (resp.,x#’s) and the exit
points from #’sx (resp.,x#’s) are the future (resp., past) side
of #’sx (resp.,x#’s). Let PT (m) be the set of these entrance
(or exit) points. Clearly,|PT (m)| = (m + 2)3. Suppose that
the marker ofM is not placed on the #’sx(resp.,x#’s). Then,
we define a mappingMw

x (resp.,Me
x), which depends onM

andx, from Q×PT (m) to the power set of (Q×PT (m)) ∪
Qstop ∪ {loop} as follows (whereQstop is the set of halting
states other than accepting states, andloop is a new symbol):

· for any (s,p), (s
′
,p

′
)∈Q−×PT (m), (s

′
,p

′
)∈Mw

x (s,p)
(resp.,Me

x(s,p)) ⇔ whenM enters #’sx (resp.,x#’s) in state
s from entrance pointp of the future (resp., past) edge of
#’sx (resp.,x#’s),there exists a computation ofM in which
M eventually exits #’sx (resp.,x#’s) in states

′
from exit point

p
′

of the furture (resp., past) edge of #’sx (resp.,x#’s),
· for any (s,p) ∈Q×PT (m) and for anyq∈Qstop, q∈Mw

x (s,
p) (resp.,Me

x(s, p)) ⇔ when M enters #’sx(resp.,x#’s) in
states from entrance pointp of the future (resp., past) edge of
#’sx (resp.,x#’s), there exists a computation ofM in which
M eventually enters stateq in #’sx (resp.,x#’s), and halts,
and

· for any (s,p)∈Q×PT (m), loop∈Mw
x (s, p) (resp.,Me

x(s,
p)) ⇔ when M enters #’sx (resp., x#’s) in state s from
entrance pointp of the future (resp., past) edge of #’sx (resp.,
x#’s), there exists a computation in whichM enters a loop in
#’s x (resp.,x #’s).

Let x1, x2 ∈ V (m). We say thatx1 andx2 are
· M -equivalentif two mappingsMw

x1
andMw

x2
are equiva-

lent, and two mappingsMe
x1

andMe
x2

are equivalent, and
· M -equivalent if for any (s, p), (s

′
, p

′
)∈Q−×PT (m),

and for anya∈{w, e}, (s
′
, p

′
)∈Ma

x1
(s, p) if and only if (s

′
,

p
′
)∈Ma

x2
(s, p).

(Note that if x1 and x2 are M -equivalent, thenx1

and x2 are M -eqivalent.) Clearly, M -equivalence is an
equivalence relation onV (m). Clearly, there are at most
e(m) = (2|Q|(m+2)3+d+1)|Q|(m+2)3 , whered = |Qstop|, M -
equivalence classes ofV (m). Let P (m) be a largestM -
equivalence classes ofV (m). Then, we have|P (m)| ≥
V (m)
e(m) = 2m4

e(m) .
Note that |P (m)|≫1 for large m. By using the same

technique as in the proof of Theorem 6 in [23] and the well-
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known counting argument, finally, we can prove thatT3 /∈
L[4-UM1]. �

V. CONCLUSION

We investigated about marker versus inkdot on four-
dimensional input tapes, and showed some accepting prop-
erties of various four-dimensional automata with markers or
inkdots.

We conclude this paper by giving the following open
problems : (1)L[4-AIk](L[4-AM1]? (2) What are the re-
lationships betweenL[4-NIk] and L[4-UM1] and between
L[4-UIk] and L[4-NM1]? (3) Is L[4-NM1] incomparable
with L[4-UM1]? (4) L[4-UM1](L[4-AIk]?
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