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Abstract— A multi-marker automaton is a finite automaton whicrautomaton with inkdot as a weak recognizer of the inherent
keeps marks as pebbles in the finite control, and cannot rewrite ampperties of digital pictures. By this motivation, a two-

input symbols but can make marks on its input with the restriction th Imensional multi-inkdot automaton was introduced [41,70]
only a bounded number of these marks can exist at any given time. &v Lo

improvement of picture recognizability of the finite automaton is th ee [3,6,35,70,74,104] for another results concerning two-

reason why the multi-marker automaton was introduced. On the otfgéfnensional inkdot and marker machines.)
hand, a multi-inkdot automaton is a conventional automaton capableBy the way, the question of whether processing three-

of dropping an inkdot on a given input tape for a landmark, but unabdgmensional digital patterns is much more difficult than two-

to further pick it up. Due to the advances in many application areaﬁpensional ones is of great interest from the theoretical and
such as maoving iImage processing, Computer animation, and so on

| . . . .
has become increasingly apparent that the study of four-dimensioﬁgﬁmt'c""I standpoints. Thus,.the research of three-d'lmensllonal
pattern processing has been of crucial importance. Thus, we think tBifomata as the computational model of three-dimensional
the study of four-dimensional automata as a computational modelg#ttern processing has been meaningful. From this viewpoint,

four-dimensional pattern processing has also been meaningful. Tig investigated a multi-marker automaton and a multi-inkdot
paper deals with marker versus inkdot over four-dimensional inpyt,somaton on three-dimensional input tapes [1,2,4,5,7-115].
tapes, and investigates some properties. . L
Due to the advances in many application areas such as
K_eyw_o_rds—finite automaton, four-dimension, inkdot, marker, ré¢noving image processing, computer animation, and so on,
ognizability it has become increasingly apparent that the study of four-
dimensional pattern processing has been of crucial importance.
|. INTRODUCTION Thus, we think that the study of four-dimensional automata as
A multi-marker automaton is a finite automaton which keegs computational model of four-dimensional pattern processing
marks aspebblesin the finite control, and cannot rewritehas also been meaningful[92,95-97,108,112].
any input symbols but can make marks on its input with This paper deals with a relationship between marker and
the restriction that only a bounded number of these marksdot for four-dimensional automata, and shows some prop-
can exist at any given time. An improvement of picturerties (see Fig. 3,4.).
recognizability of the finite automaton is the reason why the
marker automaton was introduced. That is, a two-dimensional Il. DEFINITIONS AND NOTATIONS
multi-marker automaton can recognize connected pictures [
On the other hand, as is the well-known open problems
computational complexity, there is the historical open questi
whether or not the separation exists between determini i
and nondeterministic space (especially hard-level) complex
classes. Related to the historical open question, D. Ranj _ ,
et al. introduced a slightly modified Turing machine modelSt l{if) be the length of: along thejth axis. The set of alk
called a one-inkdot Turing machine [70]. An inkdot maching >~ With l1(z) =n1, l>(x) = n2, ls(2) = n, andly(z) = n4
is a conventional Turing machine capable of dropping dn denoted by=(121, n, n3,n4). When 1< i; < l;(x) for each
inkdot on a given input tape for landmark, but unable o1 = J =< 4). 1eta(iy, iz, i3, ia) denote the symbol in with
further pick it up. Against an earlier expectation, it wa§C0rdinates iz, is, 14)_; aSISh/OW? in Fig.1. Furthermq/re, we
proved that nondeterministic inkdot Turing machines are mof&N€ (i1, iz, 43, 14),(1, @3, @5 iy)l, when 1< 4; < 4 <
powerful than nondeterministic ordinary Turing machines tg¢ () for integer; (1 < j < 4), as the four-dimensional tape
sublogarithmic space bounds. As is well-known result in tHeSatisfying the following conditions:
case of two-dimensional input tapes, there is a set of squardl) ~ for eachj (1 < j < 4), [;(y) = i}—i;+1;
tapes accepted by a nondeterministic finite automaton, bufi) ~ for each ri,ro, 73, 74( 1<ri1<li(y), 1<r2<ls(y),

efinition2.1. Let ¥ be a finite set of symbols. A
qur-dimensional tapever X is a four-dimensional rectangu-
array of elements of. The set of all four-dimensional
es overt is denoted by:n(Y),

ariiven a taper € ¥, for each integer (1 < j < 4), we

not by any deterministic Turing machine with sublogarithmic 1<r3<l3(y), 1<ra<la(y)), y(r1, 72,73, ra)=a(ri+is-
space bounds. Thus, it makes no sense to ask the same ques- 1, 72tiz-1,  rgtig-1,  rytig-1).  (We  call
tion whether the separation exists between deterministic and xl(i1,d2,i3,44), (i1,45,15,44)] the [(ir, 42, i3,14),
nondeterministic complexity classes for the two-dimensional (i1, i3, 5, i)]-segmenif z.)

Turing machines. However, there is an other important aspecFor each 2z (1m2m3m4) and for each 1<i<ng,
in the inkdot mechanism : we can see a two-dimensional finiteli, <no, 1<iz<ns, 1<iu<na, z[(i1,1,1,14),
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. . . . . . .o the 2nd axis
(11, n2,n3,14)], 2[(1,22,1,44), (n1, 22, n3,24)], 2[(1,1,43,74), ﬁﬂle et axis

(n17n27i3ai4)]! Z[(il, 17 7:37i4)! (ila n2, i37i4)]1 and the 3rd axis
l‘[(l,ig,ig,i4), (nl,ig,ig,i4)] are called the i;th (2'3)
plane of theisth three-dimensional rectangular array of x

future
the isth (1-3) plane of thei,th three-dimensional rectangular e )
array of x, theisth (1-2) plane of theisth three-dimensional 0
rectangular array of xthei;th row on theisth (1-2) plane of 0

theisth three-dimensional rectangular array of and theisth |ﬂ

column onthe isth (1-2) plane of thei,sth three-dimensional past ..

rectangular array of x and are denoted by(2-3);,-4,, ' the 4th axis
x(1-3)iy-i4, (1-2)i5-i,, xli1, *, i3, i4] and x[x, iz, i3, i4], four-dimensional input tape

respectively (See Fig.1.).
P y ( g ) Fig. 2. Four-dimensional alternating finite automaton.

the 2nd axis Definition2.3. A configuration of a 4-AFA M on
the It axis an input zeX@is of the form ((i,ia,i3,i4),q), wWhere
the 3rd axis SUORBORBOMON (1 i iz, ia), 0<in <l (2)+1, 0<ip<lap(2)+1, 0<iz<ls(z)+1,
and OKiyu<lg(x)+1, is a position of the input head, and

” is a state of the finite control. 1§ is the state associated
futnre with configuratione, thenc is said to beuniversal (existen-

Mo~ tial, accepting) configuration if; is a universal (existential,
past @ham accepting) state. Thanitial configuration of M on input
is Ip(x)=((1,1,1,1),90). For each input tape:, we write
x(iy, by, Iy, iy) € TW =1{0,1} cHm ¢, and say thate' is an immediate successaf ¢ (of
(iy, iy, I3, iy - the coordinates of four-dimensional rectangular array) M on z), if configurationc’ is derived from configuration:

in one step ofM on z according to the next-move relation.
A configuration with no immediate successor is called a
halting configuration. Below, we assume that every accepting
Definition2.2. A four-dimensional finite automato(ﬂ-FA), Configuration is a ha|t|ng Conﬁguraﬁon_

which can be considered as a natural extension of the threeye can view the computation df/ as a tree whose made
dimensional finite automaton to four dimensions, consists gfe |abelled by configurations. Aomputation treeof M
read-only four-dimensional input tape, a finite control, and &, g input taper is a tree whose nodes are labelled by
input head which can move east, west, south, north, up, doWgnfigurations ofA/ on z. The root of the tree is labelled
in the past, or in the future [3]. four-dimensional alternating y the initial configuration y;(x); the children of any node
finite automaton(4-AFA) is a sixtuple M=(Q,q,U,F,X.0), |apelled by a universal configuration are all the immediate

Fig. 1. Four-dimensional input tape.

where successors of that configuration enand any node labelled
(1) @ is afinite set ofstates, by an existential configuration has one child, which is labelled
(2) qo€Q is theinitial state, by one of the immediate successors of that configuration on
(3) UCQ is the set ofuniversal states x (provided there are any). Aaccepting computation treef
(4) FCQ is the set of theaccepting states, M on z is a computation tree of/ on z whose leaves are all
(5) X is a finite input alphabet(#¢X is the boundary labelled by accepting configurations. We say thataccepts
symbo), and x if there is an accepting computation tree /af on inputz.

(6) 0C(Qx(ZU#H)) x(Qx{east, west, south, north, Define T(M)={z c%(¥)|M acceptsr}.
up, down, future, past, no mdjeis the next-move
relation. Definition2.4. A four-dimensional alternating one-maker au-

A stateq in Q — U is said to beexistential As shown in tomaton[6,21] is a 4-AF Awith the capability of using one-
Fig.2, the machiné/ has a read-only rectangular input tapgnarker which the finite control can use as a marker on the
with boundary symbolg#'s, and finite control. A position is input tape, as shown in Fig.3. During the computation, the
assigned to each cell of the input tape as shown in Fig.2. device can deposit (retrieve) a marker on (from) any cell of the

At each moment, the machin¥ is in one of the states. A input. The action of the machine depends on the current state
stepof M consists of reading the symbol currently under thef the finite control, the currently scanned input tape symbol,
input head, changing its state, and moving the input headdnd on the presence of the marker on the current input tape
specified direction (east, west, south, north, up, down, futuggll. The action consists of moving the input head, changing
past, or no more) which is determined by the next-movde state of the finite control, and picking up or placing the
relation §. If the input head falls off the input tape, theéd  marker on the currently scanned cell of the input tape.
can move no further make. A configuration of a four-dimensional alternating one-

marker automaton)/ on an input taper is of the form
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the 2nd axis By 4-AF A (resp., 4ANFA, 4-DF A, 4-AM,, 4-NM;, 4-
the 1st axis DM, 4-Al,, 4-N1I,,, 4-D1I,), we denote alternating (resp.,
the 3rd axis nondeterministic, deterministic, alternating 1-marker, nonde-
(@:marker) terministic 1-marker, deterministic 1-marker, alternatikg
ﬁ"ite.w"tml inkdot, nondeterministid:-inkdot, deterministick-inkdot) 4-
future FA. Furthermore, by 4/ FA (resp., 4-UM, 4-Ul;), we

denote alternating (resp., alternating 1-marker, alternating
inkdot) 4-F A with only universal states.
reckangulal ey For eachX € {D,N,U, A}, we denote byL[4-X F A]
| the class of sets of all four-dimensional tapes accepted by
4-XFA's. That is,
LIA-XFA={T | T=T(M) for some4-XFA M},
where T'(M) is the set of all four-dimensional tapes ac-
cepted byM. L[4-X M;] and L[4-X I;] are defined similarly.
Let M be a 4-AM (or 4-Al;), andz be an input tape.
Fig. 3. Image of marker on four-dimensional input tape. A sequence of configurationgcs: - -¢,, (m>1) is called a
computation pattof M onz if ciFarzcob-ar e - - Far,zCm. FOr
simplicity, we below call a computation pathcamputation
((i1,i2,43,i4), marker-position,§, where (i,iz,i3,i4) is the in- For any setS, |S| denotes the cardinality df.
put head positionnarker-positioris the position of the marker
on z (let marker-positionbe “no” if the marker is not placed m
on the input taper), and componeng represents a state of
the finite control. Thenitial configurationof A on z is ((1, This section surveys known results and related results in
1, 1, 1),n0, qo), wheregq, is the initial state ofd/. That is, [50,83,84,86,89] concerning-inkdot and 1-marker 4-F4.
the machine\/ starts with the marker in the finite control andlhe following result shows a relationship among the accepting
with the input head on the upper-northwestmost corner of tRewers of 4-F A k-inkdot 4-F'As, and 1-marker 4-F'4.
first three-dimensional rectangular array of the input tape. An
accepting computation tree M on an input tape is defined asTheorem 3.1[50,83,84,86,89].
in the case of a four -dimensional alternating finite automaton.(1) £[4-DFA] = L[4-DIy] C L[4-DM;],
We say that\/ acceptsan input taper if there is an accepting  (2) L[4-NFA] C L[4-N1i] C L[4-NM;],
computation tree of\/ on z. By T(M), we denote the set of (3) L[4-UFA] C L[4-UI}] ¢ L[4-UM,], and
all the four-dimensional tapes accepted oy (4) L[4-AFA] C L[4-AL] C L[4-AM,].

the 4th axis

. KNOWN RESULTS AND RELATED RESULTS

Definition2.5. A four-dimensional alternating:-inkdot finite It is unknown whether[4-Al}] C L[4-AM,]. What are
automaton[41] is a 4-AF A capable of dropping inkdots onthe relationships betweefy4-NI;] and L[4-DM;], between
a given iput tape for a landmark, but unable to further pick[4-UI:] and L[4-DM;], and between[4-Al;] and L[4-
it up. That is, a four-dimensional alternatiriginkdot finite N M1]? The following theorem answer this question.
automaton is a four-dimensional alternating multi-marker finite
automaton which cannot pick up the pebbles again, once it gsorem 3.2,
put down the marker on a given input tape, as shown in Fig.4.(1) £[4-N1] is incomparable withC[4-DM;],
(See [41].) (2) L[4-U 1] is incomparable withC[4-DM;], and

(3) L[4-NM;] € L[4-ALL].

the 2nd axis
the 1st axis Proof: Let Ti={z € {0,1}¥ | In>1 [l1(z)=la(x)=
the 3rd axis l3(x)=ly(x)=2n A (the top half of z is the same as the
(X:inkdot) bottom half of x)]}, and To={z < {0,1}*® | In>2
finite control [l1(x)=l2(z)=l3(x)=ls(z)=n A T i(2<i<n) { the first three-
future

dimensional rectangular array ofis the same as thih three-
dimensional rectangular array of}}}.

By using the same technique as in the proof of Lemma
5.1, Corollary 5.1, Theorem 6.4 in [41], we can show that
the complement off} is in L[4-N1;], T1€L[4-Ul], and
To¢L[4-N I ]JUL[4-UI,). Furthermore, we can easily prove
that Ty e L[4-D M;] [21,23].

By using the same technique as in the proof of Theorem
4.1 in [21], we can show that the complementgfis not in
L[4-DM,]. From these observation, (1) and (2) of the theorem
Fig. 4. Image of inkdot on four-dimensional input tape. follow. (3) of the theorem can be proved by using the same

dropping

three-dimensional
rectangular array

the 4th axis
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ideaof Ref. [22,23]. O does not hold the marker in the finite control, respectively.
M starts from the initial state i)™ with the input head on
The following result in [50,83,84,86,89] shows a relationthe upper-northwestmost symbol of first three-dimensional
ship among the accepting powers of determinism, nondetegetangular array of an input tape. We assume without
minism, alternation with only universal states, and alternatidoss of generality that)/ satisfies the following condition
for k-inkdot 4-F As. (A): * M does not go out of the boundary symbols #'s.
(Of course, M does not go into the input tape from the
Theorem 3.350,83,84,86,89](1) L[4-DI,] € L[4-NI,] € outside of the boundary symbols #s.)’ For eath>1, let
L[4-AI], and (2) L[4-DI] € L[4-Uly] © L[4-Al]. W(m)={zy | z,yeV(m)}. Below we shall again consider
the computations o/ on tapes iV (m) for largem>1. Let
A relationship betweernC[4-N1,] and £[4-U1,] is shown x be any tape iri’(m) that is supposed to be a future or past

in the following theorem. half on an input tape (if¥(m)) to M, and let #s (resp.,
x#'s) be the tape obtained from by attaching the boundary
Theorem 3.4.£[4-N1}] is incomparable withC[4-UI}]. symbols #'s to the east, west, south, north, upper, lower, and

in the future (resp., east, west, south, north, upper, lower,
Proof: Let T andT5 be sets described in the proof of Theorerand in the past) sides. Note that, from the above condition
3.2. We can easily prove th&t eL[4-UI,]-L[4-N1,] [7], (A), both the entrance points to #gresp.,z#'s) and the exit

and the complement df; is in £[4-N1,], but not in £[4- points from #s (resp.,z#'s) are the future (resp., past) side
U1I,]. From this fact, the theorem follows. 0 of #sz (resp.,z#'s). Let PT(m) be the set of these entrance

(or exit) points. Clearly|PT(m)| = (m + 2)3. Suppose that
For 1-marker 4F A's, we can easily get the following resultthe marker ofM is not placed on the #s{resp.,z#s). Then,
[21,23]. That is, alternation is better than nondeterministwe define a mappind/;’(resp., M), which depends o/

which is better than determinism. andz, from Q x PT(m) to the power set of (¢x PT(m)) U
Qstop U {loop} as follows (whereQ) ., is the set of halting
Theorem 3.5.L[4-DM;] C L[4-NM,] C L[4-AM;]. states other than accepting states, g is a new symbol):

- for any (s,p), (5,p)€Q™xPT(m), (s',p)EM(s,p)
(resp.,MZS(s,p)) < whenM enters #g (resp.,z#'s) in state
s from entrance poinp of the future (resp., past) edge of
This section investigates an open problem. That is, a relas, (resp.,z#'s),there exists a computation @ in which
tionship betweerC[4-UMI,] and L[4-AlL]. M eventually exits #8 (resp.,z#s) in states’ from exit point
Here is some preliminaries. Letics.....c,,(m=>1) be a p' of the furture (resp., past) edge of #¢resp.,z#'s),
computation of}/ on an input tape:. Then, this computation . for any (s,p) €Q x PT(m) and for anyg€Q top, g€ M (s,

IV. MAIN RESULTS

is called: _ . _ . ~p) (resp.,MS(s, p)) < when M enters #sz(resp.,z#'s) in
- a halt_lng computationof M on z if ¢, is a halting - states from entrance poinp of the future (resp., past) edge of
configuration other than any accepting configuration, #sx (resp.,z#'s), there exists a computation 8f in which

- a double-looping computationf M on z if there exist 17 eventually enters state in #'sz (resp.,z#'s), and halts,
somei(1<i<m—2) and some (possibly empty) sequence @fnd
configurationss such that (i)c;#c;, for each Kj<k<i, (ii) - for any (s,p)eQx PT(m), loopeM¥ (s, p) (resp.,MS(s,

C1C-eCm = C1Co....Cim1CisCisc;, and (i) each configura- yy . when M enters #s (resp., z#'s) in states from
tion in ¢;s is different from each other, and different from eacéntrance poinp of the future (resp., past) edge of #gesp.,

¢ (1<r<i), and . _ z#'s), there exists a computation in whidld enters a loop in
- a rejecting computationof A on z if the sequence ys . (resp.g #5).
€163......Cry IS @ halting, or double-looping computation. Let 21,22 € V(m). We say thatr; andz, are

- M-equivalentif two mappingsM;’ and M}’ are equiva-
lent, and two mappingd/; and M, are equivalent, and

. M-equivalentif for any (s, p), (s, p)eQ~xPT(m),
and for anyae{w, e}, (s, p/)EM;I(s, p) if and only if (s ,
p)EM, (s, p).

(Note that if z; and z, are M-equivalent, thenz;

Theorem 4.1.L[4-AL |- L[4-UM;] # ¢.

Proof: Let V(m)={zic1z2¢3......xmcCm | Vi(1<i<m)
{xiE{Oyj_}(m,'m,'rn,m) A CiE{Z}(m’l’"L’m)}}, and T3:{$y |
Im>1{z,yeV(m)} A z#y}, where for any two four-
dimensional tapes andy with I4(z)=l4(y), we denote byry g ; i
the four-dimensional tape obtained by concatenairtg the 2nd z2 areé M-egivalent) Clearly, M/-equivalence is an
future side ofz. To prove the theorem, we below show tha?quwalenc‘g‘ (reia;)'gfd +01r1|/q§|721);2%|early, there are at most
(1) Ty € L[4-ALL], and (2)Ts ¢ £ [4-UM]. It is obvious €(7) = (2% IS TE, whered = | Qstopl, M-
that Part (1) of the theorem holds. Here we only prove (jauivalence classes df (m). Let P(m) be a largestM-
We suppose to the contrary that there is a 4-[/M which equwalenfg classes of (m). Then, we have[P(m)| >
acceptsTs. Let @ be the set of states of the finite contro% = f(m)-

of M. We divide @ into two disjoint subset€)™ and Q~ Note that |P(m)|>1 for large m. By using the same
which correspond to the sets of states whihholds and technique as in the proof of Theorem 6 in [23] and the well-
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known counting argument, finally, we can prove thg} ¢
L[4-U Mq].
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(22]
O

V. CONCLUSION [23]

We investigated about marker versus inkdot on four-
dimensional input tapes, and showed some accepting préa#
erties of various four-dimensional automata with markers or

inkdots.

[25]

We conclude this paper by giving the following open

problems :
lationships betweerC[4-NI;] and L[4-UM;] and between

(D) L[4-AL S L[4-AM]? (2) What are the re- [26]

L[4-Ul;] and L[4-NM;]? (3) Is L[4-N M,] incomparable [27]
with L[4-UM,]? (4) L[4-U M;1CL[4-AT]?

(1]
(2]
(3]
(4]
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(6]
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