
Effort and Cost Allocation in Medium to Large Software Development Projects

KASSEM SALEH

Department of Information Sciences

Kuwait University

KUWAIT

saleh.kassem@yahoo.com

Abstract: - The proper allocation of financial and human resources to the various software development activities is a

very important and critical task contributing to the success of the software project. To provide a realistic allocation, the

manager of a software development project should account for the various activities needed to ensure the completion

of the project with the required quality, on-time and within-budget. In this paper, we provide guidelines for cost and

effort allocation based on typical software development activities using existing requirements-based estimation

techniques.

Key-Words: - estimation, resource allocation, requirements, software project.

1 Introduction
One of the main reasons for failures in software

development projects is the improper or unbalanced

allocation of the resources over the different phases and

activities preferred during the execution of the project.

The project manager should ensure that enough budget

is allocated to critical activities like quality assurance

and validation and verification. During the initial

planning for the project, requirements-based software

cost and effort estimation techniques can be used to

obtain an estimation of the overall budget and human

resource requirements needed to successfully develop

the software. In this paper, we propose a guideline for

the proper allocation of effort and budget given an

estimation of the overall required effort and budget.

This guideline will provide the software project

manager with information than can be used to

appropriately develop the project schedule and

deadlines.

The rest of the paper is organized as follows. Section 2

provides some background information on the software

development phases and activities that are needed to

develop typical medium to large software projects.

Section 3 describes two existing requirements-based

estimation techniques, namely, the function point and

use case point estimation techniques. Section 4

introduces the proposed effort and cost estimation

guidelines. Section 5 provides an illustrative example.

Finally, we conclude in Section 6.

2 Software phases and activities
To properly allocate financial and human resources, the

various phases and activities that must be undertaken in

a typical medium to large software project need to be

identified. In the following, we briefly describe two

types of activities that must be performed to complete

the project, namely, the phased activities and the

ongoing life cycle activities.

2.1 Phased software activities
These activities exist in typical software development

life cycle models like the waterfall model or the object-

oriented model [1].

Analysis
The analysis phase includes the requirements and

specifications activities [6]. The main activities

involved in this phase include the definition of both

functional and non-functional requirements, the

definition of the various interfaces between external

entities and the software to be developed, and a

prioritization of the identified software requirements.

The main deliverables of the analysis phase are the

scope and vision document, the software requirements

specifications document, and the acceptance test plan

document. As a result of the analysis phase activities,

the functional and non-functional software

requirements are well defined and agreed upon by the

various software stakeholders. The deliverables of this

phase are considered binding documents that guide the

rest of the software development activities. It is

imperative to spend enough time in this phase to ensure

that all aspects of the software are considered, including

constraints, assumptions, functionalities, user needs,

developmental context and environment, risks, quality

requirements, among many other aspects. Studies have

shown that most of the serious software errors are those

errors that are not captured during the analysis phase.

Fixing errors originating from the analysis phase is

costly if the errors are not discovered until subsequent

phases or during the software operations. Therefore, the

deliverables of this phase must be carefully reviewed

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

74

and verified (tested) for completeness, correctness, and

consistency among other quality requirements.

Design

The design phase activities include the high level

architectural, database, interface, and detailed designs.

The main deliverables of the design phase include the

high level design and the detailed design documents.

Design documents are reviewed for quality,

completeness, and correctness with respect to the

software requirements specifications document. The

high level architectural design concentrates on the

identification of software modules and their interfaces.

In addition, concerns related to design robustness,

scalability, security, fault-tolerance, and testability are

addressed in the high level design. The detailed design

document provides details on each of the modules

identified in the high level design. The details include

the data structures and algorithms needed to implement

each module. The database design presents a detailed

description of the database schema needed to support

the high level and detailed design. The database design

considers the data model described in the software

requirements specifications document of the analysis

phase. The interface design consists of the design of the

graphical user interface components and artifacts

needed to support the human interaction with the

software system. In addition, all interfaces between the

system and other external software and hardware

systems, components, and devices are clearly designed.

Implementation
The main activity of this phase is the transformation of

the detailed design into an executable code. The code is

developed according to the coding standards adopted by

the development firm. In addition, the database design

is implemented and properly integrated with the

produced code.

Testing and Integration
Once the modules of the executable code are tested

individually, the developed modules are integrated with

external modules, systems, and components. The

integration test plans are executed. The obtained test

results are analyzed and errors are dealt with

accordingly. The deliverable of this phase is the

integrated software.

Installation
Once the software is properly integrated, it is delivered

to the client premises and installed according to the

installation and deployment plan. The client runs the

acceptance test plan and, ideally, accepts the software.

The deliverables of this phase are the official

acceptance document signed by the client and the

properly installed software system.

2.2 Ongoing life-cycle activities
In addition to the phased activities, there are activities

that are performed continuously while the phased

activities are performed. These ongoing activities are

briefly described below.

Project Management

During the progress of the life cycle activities, the

project manager continuously performs project

management-related activities. The progress of the

activities is closely monitored using an appropriate

reporting procedure. Risks are continuously monitored

and corrective actions are taken when needed. In

addition, new risks are identified and monitored. The

project schedule is updated regularly as needed.

Project- and process-related metrics are regularly

collected and assessed. In addition, human resource

management and project management activities,

including delegation and evaluation, are performed.

Quality Assurance
During each phase, the quality assurance group

performs its activities, including the review of the

deliverables of each phase and ensuring the use of and

conformance to internal and external standards.

Reviews of parts of the deliverables are conducted

during the phase execution and after the deliverables

are produced. Quality reports and logs are maintained

and relevant metrics are collected according to the

metrics collection plan. The quality assurance plan is

executed and updated if needed. Moreover, process

improvement recommendations are provided by the

group after completion of the project.

Evaluation and Testing
Evaluation and testing processes and activities,

including validation and verification activities, are

performed all along the various product development

phases. At the end of each phase, the phase deliverable

is evaluated and tested. Once the deliverable is

approved, the next phase starts. Formal and informal

processes are used for evaluation and testing purposes.

The processes are performed by the developers

themselves and by independent groups such as quality

assurance. Informal evaluation processes include

reviews that might involve walkthroughs, inspections,

and audits. Formal evaluation processes include the

use of formal techniques and automated tools for the

verification of phase deliverables. Tools and

techniques for design verification and code testing can

be used for these purposes. Formal product validation

techniques and methods can also be used to generate

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

75

and document effective tests, automate the validation

process, and analyze and validate the results.

Configuration Management

Configuration management (CM) activities initially

include the identification of all software documents,

deliverables, and artifacts that will be produced,

manipulated, and maintained during the development

and maintenance of the software. Configuration

control activities are then performed continuously

during the software development and post-

development phases. CM deals mainly with the

management of the software resources and the overall

support and control of the software development and

maintenance processes. The CM control activities

include revision and version control, process and

workflow control, build control, and change control.

Ideally, the control activities are performed using an

integrated and automated CM tool for revision,

version, build, and change management. Finally, a

periodic CM audit and status report is generated by the

automated tool. The report is then analyzed by the

appropriate management team.

Technical support and internal training
During the development and maintenance of a

software product, the developers might require some

technical support and training. Support technicians

help the developers in solving technical problems that

arise while developing the software. The activities

help improve the efficiency and productivity of the

development and maintenance teams. A plan can be

devised as part of a project plan to deal with the

training of technical staff on the development process,

or new tools and technologies that are needed during

the development phases.

Documentation
During product development, various documents that

target different audiences are produced. Some of them

are internal technical documents that are needed for

future software maintenance activities. Other

documents target external users and include user

manuals, installation manuals, and operations manuals.

Standards and standard templates are normally used to

guide the writing of the software-related documents.

Technical writers are involved with the production of

the external documents. Internal documents are

typically written by the software developers

themselves. The documents are evaluated by internal

review processes for quality involving various

stakeholders, including software development team

members and representatives of the software quality

assurance group.

Figure 1 shows the typical life cycle model including

both the phased and ongoing activities we presented in

this section.

 Figure 1. Phased and ongoing activities.

3 Effort and cost estimation and

reconciliation
In the following, we briefly present two well-known

requirements-based cost and effort estimation

techniques. We then show how we can reconcile using

a third input from an expert opinion.

Function point estimation

Function point (FP) metrics, introduced by Allan

Albrecht in 1979 [2-5], are specification-based metrics

that are used to estimate the effort needed to develop a

software system. Function points are implementation

independent. Computing the number of function points,

for the project is independent of the design choices

taken, the tools used, or the programming language

utilized to implement the system. According to FP

metrics, the complexity of software and the effort

needed to develop it are a function of the number and

type of five kinds of functional components that can be

obtained and assessed at the requirements specifications

phase. These five functional components include:

1. Internal files corresponding to the database files

that are created and maintained within the

application

2. External files corresponding to the files that are

owned and maintained by other applications but

used by the application

3. External inputs corresponding to the inputs that

affect the control flow and internal logic of the

application leading to the creation and

maintenance of data

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

76

4. External outputs corresponding to the data

leaving the application to different output

devices, files, or external systems

5. External inquiries corresponding to simple user

queries resulting in responses to them

These functional components should also be classified

under one of the three complexity levels: simple,

average, and complex. Simple internal and external

files include few records with simple structures.

Complex internal and external files have a large number

of records with complex structures. External inputs is

information from the outside to the inside, originating

from user interfaces or from other applications. Simple

external inputs include control information and simple

business information affecting one internal file.

Complex external inputs contain business information

originating from the outside to the inside and triggering

the update of two or more internal files. Complex

external outputs refer to many data subsets across many

files. The complexity of an external inquiry is obtained

by taking the greater of the complexities of the input

and output parts of the inquiry. Various weighting

factors are then used for each of the five types of

functional components and for each of the three

complexity levels. The number of unadjusted function

points (UFP) is obtained by summing up all factors

assigned to an identified component according to its

complexity. To take the context and the type of

software project into account, Albrecht has introduced a

list of 14 technical factors that influence the effort

needed to complete the project. The product of these

factors is then used to adjust the number of function

points. Each of these factors must be rated on a scale 0

to 5. A rating of 0 means that the factor is irrelevant or

has no influence, and a rating of 5 means that the factor

is essential and has a strong influence. A rating from 0

to 5 is assigned to each factor. Their sum is computed

to obtain a value for S. The overall complexity factor

CF is then computed using the equation: CF = 0.65 ×

0.01 × S. CF is within the range 0.65 to 1.35. The

number of adjusted function points (AFP) is UFP × CF.

To map the number of adjusted function points (f) to

the needed effort in person-months, Jones proposed a

first-order estimation as a function of f and an exponent

j to compute the effort in person-months using the

equation: m = f 3*j/27 person-months. j depends on the

type of the software application involved and the

capabilities and expertise of the development team and

varies from 0.39 to 0.48

Use case point estimation
The use case point (UCP) is a software effort

estimation technique that was introduced by Gustav

Kamer in 1993 [3-5]. It is based on the use cases

existing in the use case model of a software system. In

UCP metrics, actors and use cases are classified under

three categories: simple, average, and complex. For

example, an external system interacting with the system

using defined application programming interfaces is

typically a simple actor. External systems interacting

with the system using some standard protocols and data

stores are typical actors of average complexity. A user

interacting with the software using graphical-user

interface components, such as forms and dialog boxes,

is considered a complex actor. The complexity

assessment of a use case is based on the number of

transactions or steps that are included in the use case

description. These steps are included in the normal and

alternative flow of events in the use case description. A

use case is classified as simple if the number of

transactions does not exceed 3. Similarly, an average

complexity use case includes 4 to 7 transactions and a

complex use case includes more than 7 transactions.

Factors are assigned to the various complexities of both

actors and use cases. The unadjusted actor weight

(UAW) is the sum of complexity values assigned to

each actor. Similarly, the unadjusted use case weight

(UUCW) is the sum of complexity values assigned to

each use case. The total unadjusted use case point

(UUCP) is the sum of UAW and UUCW. The number

of adjusted use case points (AUCP) is computed by

multiplying the UUCP with the product of two

adjustment factors: the technical complexity factor

(TCF) and the environmental factor (EF).

The TCF is obtained using the equation: TCF = 0.6 +

(0.01 × TF), where TF is the sum of all the weighted

values computed for each of the 13 technical factors.

Technical complexity factors are mainly related to the

product and its complexity in terms of functional and

non-functional requirements (NFRs). Each factor has its

own weight, and a value ranging from 0 to 5 is assigned

to a factor, depending on the technical complexity of

the corresponding factor. Similarly, the EF is obtained

using the equation: EF = 1.4 + (0.03 × ENVF), where

ENVF is the sum of all the weighted values computed

for each of the 8 environmental factors. Environmental

factors are related to the people, process, and project

aspects of the software. Each factor has its own weight,

and a value ranging from 0 to 5 is assigned to a factor,

depending on its relevance. For example, the stability of

requirements is given the highest weight of 2 and if the

requirements are felt to be volatile, a high value of 5 is

assigned to it, making the weighted value 10. The

equation to obtain the number of adjusted use case

points is: AUCP = (UAW + UUCW) × TCF × EF.

To obtain the estimated effort in person-hours

needed to develop the software according to the UCP

metrics, Kamer stated that 20 person-hours are needed

for each use case point. However, other refinements and

empirical studies of the UCP technique suggested a

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

77

range between 15 and 30 person-hours per UCP.

Assuming we use p person-hours per UCP and a work

day of h hours, the number of work days would then be:

((p × AUCP)/h) days.

Reconciliation
If the two estimates obtained using the FP and UCP

techniques are far from each other, we can obtain a

third estimate from an expert in the application domain.

If the three estimates, Elow, Ehigh and Emid are obtained

such as Elow < Emid < Ehigh, the reconciled value for E is

then: E = (Elow + 4 × Emid + Ehigh) / 6.

4 Effort and cost allocation
Reported experiences on the time and budget spent on

the different software development activities show the

following facts:

a. Quality and testing related activities, including

integration testing, quality assurance, and evaluation

and testing, account for about 37% of the overall

effort.

b. Ongoing activities, covering project management,

configuration management, documentation, and

support and training, account for about 21% of the

overall effort.

c. Phased software development activities, including

requirements, specifications, design, implementation

and deployment and not including evaluation and

testing) account for about 42% of the overall effort.

Table 1 shows the details of the effort distribution for

each type of activity and the approximate pay rate

relative to the project manager pay rate. According to

the above facts and to the pay rate shown in Table 1,

the costs of performing the activities in the above facts

a, b and c, are 36%, 20% and 44%, respectively, of the

overall development cost.

Table 1. Effort distribution on activities and relative

pay rate.

Software phases % effort Pay rate

Requirements 7.5 0.95

Specifications 7.5 0.95

Design 10 0.95

Implementation 10 0.85

Integration testing 7.5 0.9

Acceptance & deployment 7.5 0.9

Ongoing life-cycle activities

Project management 8.34 1.0

Configuration management 4.16 0.75

Quality assurance 8.34 0.8

Documentation 4.16 0.7

Training and support 4.16 0.8

Evaluation And testing (V&V) 20.84 0.9

In this table, we are assuming that in medium to large

software projects, the team follows a functional

organization, in which a team member specializes in

one activity. However, we can estimate the average

salary of a non-managerial resource to be the average

for all other activities. This average would then be

87.5% of the project manager salary.

As an example, let us assume that the reconciled

estimate of the effort needed to develop a software

product is 240 person-day and the project manager

daily pay rate is 500 dollars. Based on Table 1, we can

then obtain the total cost of the software and the effort

distribution as shown in Table 2.

The total cost is 106650 dollars and the average rate

for one person-day is 445 dollars. We can also schedule

this project to be completed by 12 persons within 20

days according to the effort distribution shown in

Figure 2.

Table 2. Example effort and cost allocation to software

activities

Software phases effort cost

Requirements 18 8550

Specifications 18 8550

Design 24 11400

Implementation 24 10200

Integration testing 18 8100

Acceptance & deployment 18 8100

Ongoing life-cycle activities

Project management 20 10000

Configuration management 10 3750

Quality assurance 20 8000

Documentation 10 3500

Training and support 10 4000

Evaluation And testing (V&V) 50 22500

Total 240 106650

Figure 2. Schedule and effort distribution.

The charts showing the effort and cost distributions

among the phased and ongoing activities of the 240-

day software development project areare shown in

Figure 3.

Excel sheets for the cost estimation and effort

distribution are available from the author upon request.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

78

(a) Effort distribution

(b) cost distribution

Figure 3. Effort and cost distribution.

6 Conclusion
In this paper, we have provided guidelines for the

proper allocation of budget and human resources on the

various activities of the software development process.

The guidelines are based on some critical activities

needed in medium to large software projects and on

two requirements-based cost and effort estimation

techniques. Further study on the margin of error of this

guideline should follow in an empirical study based on

metrics collected from various software projects. It is

also interesting to analyze the guideline for various

types of software applications.

References:

[1] K. Saleh, Software Engineering, J. Ross

Publishing, Florida, USA, 2009.

[2] A. Albrecht and J. Gaffney, “Software function,

source lines of code and development effort

prediction: a software science validation”, IEEE

Transactions on Software Engineering, November

1983.

[3] G. Kamer, “Metrics for objector”, Diploma thesis,

University of Linkoping, Sweden, No. LiTHIDA-

Ex-9344:21, December 1993.

[4] S. McConnell, Software Estimation: Demystifying

the Black Art, Microsoft Press, 2006.

[5] M. A. Parthasarathy, Practical Software Estimation:

Function Point Methods for Insourced and

Outsourced Projects, Addison-Wesley

Professional, 2007.

[6] K. Wiegers, Software Requirements, Microsoft

Press, 2
nd

 edition, 2003.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 5, 2011

79

