
Faster Facility Location and Hierarchical Clustering

J. Skála∗ I. Kolingerová∗

Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Univerzitńı 22, 306 14 Pilsen, Czech Republic

Abstract

We propose several methods to speed up the facility loca-
tion, and the single link and the complete link clustering
algorithms. The local search algorithm for the facility loca-
tion is accelerated by introducing several space partition-
ing methods and a parallelisation on the CPU of a stan-
dard desktop computer. The influence of the cluster size
on the speedup is documented. The paper further presents
the computation of the single link and the complete link
clustering on the GPU using the CUDA architecture.

1 Introduction

The facility location problem is a clustering task generally
formulated as follows. Let F be the set of so called facil-
ities, and C be the set of clients. Every client should be
serviced by (connected to) a facility. The problem is to
decide which facilities to open, and which clients should
they service. The facility cost must be paid for opening a
facility, and the service cost must be paid for connecting
clients to facilities (mostly based on the distance).

The problem has a direct real life application. Imagine
cities that need to be supplied with electricity, and there
are several potential locations where a power plant could
be built. Building a power plant everywhere would be too
expensive; as well as connecting all the cities to a single
one. It is to be decided where to build a power plant, and
where to connect particular cities. It is necessary to find
such a balance to minimise the overall costs.

Expressing the problem in a mathematical way, the task
is to minimise the overall clustering cost Q defined as

Q =
∑
j∈F

fc +
∑
i∈C

cij (1)

where fc is the facility cost, and cij is the distance of the
client i to its facility j. Distances are considered non-
negative, symmetric, and satisfying the triangle inequality.
There are generally no restrictions on the set of facilities
F . It can be independent of C, a subset of C, or equal to
C. There are some specialisations of the facility location

∗This work has been supported by the Czech Science Foundation
under the research project 201/09/0097.

problem. Facilities may have different facility costs, and
may have limited capacities to service just a certain num-
ber of clients. These specialisations are not considered in
this paper.

To compute an ordinary clustering of a set P , simply set
C = P and F = P . Unlike the k-means algorithm, there is
no need to specify the number of clusters in advance. It is,
however, necessary to choose the facility cost. Basically,
it determines the cluster size. A high value will produce
a low number of large clusters. Facilities are expensive,
so only a few of them will be opened, and a lot of clients
connected to each of them. Contrary, a low facility cost
will result in many small clusters. Facilities are cheap, so a
lot of them will be opened, and clients distributed among
them. Recommendations on how to set the facility cost,
and an experimental evaluation of the effects of the facility
cost, can be found in our paper [1].

One particularly popular approach for the facility loca-
tion is the local search algorithm described in Section 2.1.
However, its straightforward use is rather inefficient. It is
therefore necessary to employ acceleration techniques. A
space partitioning, such as a quadtree, and a parallelisa-
tion are especially suitable for the use with the local search
algorithm. The possible speedup achieves 80–95 %.

The facility location algorithm requires the facility cost
as an input parameter. Specifying this value might be un-
natural in some scenarios. Perhaps the most convenient
would be to somehow specify the desired size of the clus-
ters, e.g., their maximal diameter. The single link and es-
pecially the complete link algorithms are particularly suit-
able for that.

With powerful graphics cards becoming a common part
of desktop computers, the research focuses on using the
GPU (Graphics Processing Unit) to solve computationally
intensive tasks. CUDA (Compute Unified Device Archi-
tecture) is a framework developed by NVIDIA for parallel
computing on the GPU. It allows using the graphics pro-
cessor as a general purpose computing unit such as for
computing the fast Fourier transform (FFT) [2]. The sin-
gle link and the complete link algorithms can be imple-
mented efficiently using CUDA.

The next section presents existing methods for the facil-
ity location, and the single link and the complete link clus-
tering. Section 3 introduces our improvements to speed up

1

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

132



the facility location computation. Section 4 proposes the
complete link computation on the GPU using the CUDA
architecture. Section 5 documents the experimental eval-
uation of the presented algorithms.

2 Related work

The following sections describe selected clustering algo-
rithms. Several different approaches to solve the facility
location problem are described. A more detailed summary
of the methods may be found in [3]. The single link and
the complete link algorithms are described.

2.1 Local search algorithm

From the general point of view, the local search technique
operates on a graph on the space of all feasible solutions.
Two solutions are connected by an edge if one solution can
be obtained from the other by a particular type of modifi-
cation. The local search technique then walks in the graph
along nodes with decreasing costs, and searches for a local
optimum. That is such a node whose cost is not greater
than the cost of any of its neighbours. Korupolu et al. [4]
analysed clustering techniques based on the local search.
One of the first such techniques was proposed by Charikar
and Guha [5]. First, a coarse initial solution is generated.
It is then iteratively refined by a series of local improve-
ments. A single local search step can be briefly described
as follows. A facility is chosen at random, and it is decided
whether opening it can improve the solution. If so, nearby
clients are reassigned to the new facility. Facilities with a
low number of remaining clients are then closed and their
clients are reassigned to the new facility too.

Describing the local search algorithm more precisely,
a facility j ∈ F is selected at random (does not matter
whether it is opened or closed), and it is decided whether
it can improve the current solution: If j is not already
opened, the facility cost would have to be paid for open-
ing it. Next, some clients may be closer to j then to their
current facility. All such clients can be reassigned to j,
decreasing the connection cost. After that, some facilities
may have just a few clients. If those clients would be re-
assigned somewhere else, the facilities could be closed and
their facility costs spared. To limit computational com-
plexity, reassignments are allowed only to the facility j
which is being investigated. The reassignments will in-
deed increase connection costs, but the savings for closing
the facilities (sparing their facility costs) could be larger.
The possible improvement of the current solution is com-
puted by the gain function. If gain(j) > 0, the facility j
is opened (if not already opened), and reassignments and
closures are performed.

In order to obtain a constant-factor approximation, the
described local search technique is repeated N log N times
[5], where N is the number of potential facilities. We be-

lieve that the number of iterations could be considerably
reduced at the cost of slightly decreased accuracy. Detailed
experiments can be found in our paper [1].

An algorithm to create the initial solution is also pre-
sented in [5]. It is for the general case when the facility
cost can be different for each facility. This text assumes
uniform facility costs so a different algorithm proposed by
Meyerson [6] will be described. It assumes that all input
points are potential facilities, i.e., C = F , which is quite
common in general clustering problems. Points are taken
in random order. A facility is always created at the first
one. For every other point i, the distance cij to the clos-
est already open facility j is measured. A new facility is
opened at i with probability cij/fc (or one, if cij > fc).
Otherwise, the point i is assigned to the facility j.

2.2 Other facility location algorithms

Linear programming rounding was introduced by Shmoys
et al. [7] based on the work by Lin and Vitter [8]. It
was later extended and improved in [9, 10]. The facility
location problem is formulated as an integer program. The
linear relaxation of the program is solved in polynomial
time. The fractional solution is then rounded to the integer
solution while increasing the clustering cost by a small
constant factor. The proof may be found in [7].

A related approach also based on the linear program-
ming is the primal-dual algorithm introduced by Jain and
Vazirani [11] and later addressed by Charikar and Guha
[5] and Mahdian et al. [12]. The method again starts with
an integer program and its linear relaxation. A dual linear
program is constructed whose solution gives the solution
to the original problem.

A different approach is to use genetic algorithms. Choi
et al. [13] presented a heuristic using a genetic algorithm
for plant-warehouse location problem. Lee at al. [14] pro-
pose an immunity based genetic algorithm to solve the
quadratic assignment problem which is closely related to
the facility location.

2.3 Single link and complete link

Single link [15] and complete link [16] are hierarchical clus-
tering algorithms, i.e., they start with each element in a
single cluster and proceed by merging similar clusters to-
gether. The algorithms differ in the way they measure
the similarity between clusters. The single link algorithm
defines the distance between two clusters as the minimum
pairwise distance between the elements of the two clusters,
i.e., the distance of the most similar elements from the two
clusters. By contrast, the complete link algorithm uses the
maximum pairwise distance, i.e., the distance of the most
dissimilar elements, which is practically the diameter of
the two cluster union. Special distance measures can be
used, e.g., for clustering documents [17].

2

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

133



The single link algorithm is more versatile but tends
to produce straggly or elongated clusters. This could be
unpleasant but in some scenarios it is very useful to de-
tect non-spherical clusters. The complete link algorithm
produces compact clusters.

Let us review some terms of graph theory for the follow-
ing paragraph. A connected graph is a graph where there is
a path connecting each pair of points. A connected com-
ponent of a graph is a maximal set of connected points
such that there is a path connecting each pair. A clique
in a graph is a set of points that are completely linked
together.

Both the single link and the complete link clustering can
be constructed by similar algorithms. The complete link
algorithm can be summarised as follows:

1. Start with each element in a distinct cluster

2. Compute distances between all pairs of elements

3. Take the distances in an ascending order. For each
such distance d, create a graph where all pairs of ele-
ments closer than d are connected by an edge. When
all the elements form a single clique, stop.

4. The result is a hierarchy of graphs where an arbitrary
similarity level can be selected. The clusters are de-
termined by the maximal cliques of the appropriate
graph.

The single link algorithm basically works the same way.
The difference is that the second phase is terminated when
all the elements form a connected graph. When a graph
is selected from the hierarchy, the clusters are determined
by the connected components of the graph.

The algorithm above is presented in the terms of graph
theory. A more practical notation can be found in [18]
where it was used to implement the single link and the
complete link clustering on a concurrent supercomputer.

1. Start with each vertex in a distinct cluster

2. Compute the mutual distances between the clusters

3. Find the closest clusters and merge them

4. Update the distances of all other clusters to the newly
merged cluster

5. If not all clusters have been merged, go to 3

3 Speeding up the facility location

The local search algorithm used directly as it is theoreti-
cally presented is too slow. This section presents two ac-
celeration techniques to make the algorithm more efficient
– a space partitioning and a parallelisation which are es-
pecially suitable for the local search.

The local search algorithm for facility location basically
consists of three operations. First the generation of the
initial solution, then repeatedly computing the gain, and
eventually performing reassignments.

Generating the initial solution is done only once at the
beginning, and takes only about 2 % of the computing
time. The iterative local search algorithm remains, con-
sisting of repetitive gain computation and eventual reas-
signments. Most of the time, about 96 %, is spent evaluat-
ing the gain function; see Section 5.1. The reassignments
take significantly less time and the nature of the opera-
tion (reassigning client indices from one array to another)
does not give much space for improvements. The effort
to speed up the computation was therefore focused on the
gain computation.

3.1 Space partitioning

To compute the gain of a potential new facility f , the
clients must be inspected to decide whether f would be
closer to them than their current facilities. However, not
all the clients need to be inspected. Many of them are just
too far from f , so that it is sure their current facility is
closer. Eliminating such inperspective clients would be a
great benefit. The core idea is therefore to inspect only
those clients that can actually contribute to the gain.

We introduce the term of the longest connection. Let
C ′ be a subset of clients connected to some facilities. The
longest connection cmax is the maximal distance of any
client i ∈ C ′ to its facility j.

cmax = max
i∈C′

cij (2)

The longest connection is the upper bound on the dis-
tance where any client from C ′ can be reassigned without
increasing the connection cost.

To derive an upper bound for the whole set C ′, con-
sider the worst case – a client on the C ′ boundary. The
client can be reassigned at most cmax far away from the C ′

boundary1. Therefore, if the distance of a facility candi-
date f from the boundary C ′ is greater than cmax, then no
client from C ′ can be reassigned to f without increasing
the connection cost.

3.1.1 Quadtree, octree, kD-tree

The idea is straightforward – partition the clients using a
tree and then inspect only those tree nodes that contain
perspective clients. A fundamental space partitioning is a
simple quadtree (for 2D) or an octree (for 3D). A kD-tree
is perhaps a bit more difficult to build, but it can well
adapt to non-uniform distribution of input data. The kD-
tree showed particularly good performance on a data in
the form of a narrow rectangle.

1The form of the boundary depends on the implementation. It
can be, e.g., a bounding box, a bounding sphere, or a convex hull.

3

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

134



Either of the trees is built once at the beginning of the
clustering. Each tree node stores its bounding box, and
the longest connection cmax of the clients belonging to the
node. Leaf nodes contain in addition a list of clients be-
longing to them. Figure 1 shows an example of a quadtree
with the longest connections highlighted in red.

Figure 1: Example of a quadtree with the longest connec-
tions highlighted.

The gain of a facility candidate f is computed by travers-
ing the tree. The distance of f to the bounding box of
each node is computed. If the distance is smaller than the
longest connection in the node, then the node is traversed.
When the traversal gets to a leaf node, all its clients are
inspected.

After considering the relevant clients for reassignment,
it is necessary to consider facilities for closure. This cannot
be done using the tree because closing a facility creates a
spare, which can pay for reassigning the clients farther.
Closing a facility creates a spare equal to its facility cost.
The clients of the facility are considered one by one. Let
c be the distance of a client to its current facility, and let
cf be the distance to the facility candidate. The distance
extension cf − c is subtracted from the spare. As soon as
the spare reaches zero, the facility is not worth closing.
This is usually decided after testing just several clients.

If the gain of the facility candidate comes out positive,
the reassignments and closures are actually performed.
This may change the longest connection cmax of some tree
nodes. If a client with the longest connection is reassigned
to a closer facility (cmax will decrease), or if any client is
reassigned to a farther facility (cmax may increase), then
the tree leaf is marked that it needs to update cmax. Once
the reassignments are done, the marked tree leaves are
updated. The updates propagate up to their parents.

The tree space partitioning works better for a low facility
cost which yields small clusters. The longest connections
are short, so only the tree nodes very close to the facil-
ity candidate are traversed. Experiments can be found in
Section 5.3.

3.1.2 Partitioning by facilities

Why to create an artificial space partitioning when there is
one already constructed? The clustering itself – although
not finished yet – is a partitioning, and it perfectly corre-
sponds to the task being solved.

Each facility (cluster centre) keeps the list of its clients,
and the longest connection cmax. The cluster boundary
is a sphere centred at the facility with the radius cmax.
To compute the gain of a facility candidate f , clusters are
considered one by one. It is to be decided whether f is
at most cmax from the cluster boundary, that is at most
2cmax from the facility. See Figure 2 for an illustration.
If f lies close enough, all the clients of the facility are
inspected. Otherwise, the facility is only considered for
closure. The algorithm is the same as described in Sec-
tion 3.1.1.

cmax 2·cmax

Figure 2: Facility with its boundary and the longest con-
nection.

If the gain of the facility candidate comes out posi-
tive, the reassignments and closures are performed. As in
the case of trees in Section 3.1.1, if a reassignment could
change the longest connection of a facility, the facility is
marked. Once the reassignments are done, the marked
facilities are updated.

The cluster size also matters for the partitioning by fa-
cilities. A great facility cost yields large clusters. The
longest connections are long, so even the clusters far away
from the facility candidate must be inspected. A low facil-
ity cost and small clusters is also not good. There is a lot
of clusters, and, although most of them are too far from
the candidate, the overhead grows. Experiments can be
found in Section 5.3.

3.2 Parallelisation

Modern computers commonly have four or more CPU
cores. This gives the possibility to employ parallelism to
further accelerate the computation. This section describes
two possible approaches to the parallelisation. Both of
them suppose the use of the space partitioning by facilities
(see Section 3.1.2) because the parallelisation is straight-
forward.

4

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

135



3.2.1 Single gain computed in parallel

Thanks to the space partitioning, the gain is computed
facility by facility. The computation for each facility is
independent. Therefore, the most straightforward paral-
lelisation is to divide the set of facilities among several
threads and let every thread deal with a subset of facili-
ties. The computation can proceed independently, so no
synchronisation is necessary. When all the threads finish,
their particular results are easily merged – the gain values
are summed up, the lists of clients to reassign are concate-
nated, and the lists of facilities to close are concatenated.

3.2.2 Parallel computations of several gains

The gain often gives a positive result in the early itera-
tions of the algorithm. With increasing number of itera-
tions performed, positive results become less frequent. In
later stages of the algorithm, gain results come out mostly
negative. Again, the performance is affected by the cluster
size. A detailed evaluation can be found in Section 5.3.

This gives another possibility of parallelisation – to com-
pute the gain for several different facility candidates simul-
taneously. Candidates with a negative gain are useless.
No reassignments are done, so the clustering is not mod-
ified. Therefore, any number of negative results can be
accepted as valid iterations of the local search algorithm
at the same time (yet unsuccessful to improve the solu-
tion). This means that actually several iterations of the
clustering algorithm are executed in parallel. The compu-
tation pauses only when a positive result appears, and the
clustering is modified.

If the gain of any of the candidates is positive, the ap-
propriate reassignments are done. Other candidates with
a negative gain can be accepted as well. But if more can-
didates happen to have a positive gain, the one with the
greatest gain is used. The remaining positive gain results
must be discarded because the clustering changes after the
reassignments to the first candidate, so the other positive
results are not valid anymore.

4 Single link and complete link
on the GPU

This section presents the computation of the single link
and the complete link clustering, described in Section 2.3,
on a GPU using the CUDA framework.

4.1 The algorithm for the GPU

The complete link algorithm starts with computing the
distance matrix. Each element is computed by one GPU
thread. Only half of the distances are actually computed,
due to the symmetry of the distance matrix. Section 4.2
describes this in detail.

Each vertex is initialised as an individual cluster, and
maintains a list of assigned vertices, which at the beginning
contains only the vertex itself. All the rows of the distance
matrix are active, meaning that the cluster corresponding
to the row has not been merged into some other cluster.
The algorithm then proceeds as described in Section 2.3.

Sequential algorithms mostly maintain a sorted list of
the closest pairs of clusters to quickly find the closest ones
to merge. Our GPU implementation pre-computes the
mutual distances, but does not do the sorting. It relies on
the massively parallel computing power and finds the clos-
est clusters (the minimum in a distance matrix) by brute
force. Maintaining the sorted list is inherently a sequential
operation, and it would not fit the parallel computation.

To find the closest pair of clusters, each active row of the
distance matrix is scanned by a GPU thread to find the
minimum. Again, only half of the elements are scanned,
due to the symmetry. The partial minima from the rows
are gathered by the CPU to find the global minimum which
identifies the closest clusters A and B.

The clusters are merged, specifically, B is merged into
A. The list of vertices already assigned to B is copied to
A. The row corresponding to cluster B in the distance
matrix is deactivated.

Now the distances to new cluster must be updated. For
each active row of the distance matrix, except A (and the
deactivated B), a GPU thread compares the distance to
A with the distance to B. The greater value is kept as
the distance to the merged cluster. The matrix symmetry
ensures that the distances in the row corresponding to the
merged cluster A will be updated as well.

4.2 Maintaining the distance matrix

The distance matrix used in the computation is indeed
symmetric. The elements on the diagonal are of no use,
so only the elements above the diagonal are really needed.
This is, however, not well suitable for distributing the work
among the parallel threads. If the matrix size is n, the first
row contains n − 1 elements that need to be processed,
while the before-last row contains just a single element to
be processed.

A better load balancing can be elegantly achieved by
a smart distribution of the matrix elements. We simply
store

⌊
n
2

⌋
elements in every row, starting from the first

element to the right of the diagonal. If we get to the last
column, we continue with the first column (count columns
modulo n). The stored elements form a band above the
diagonal and a triangle in the lower left corner. The idea
is illustrated in Figure 3. The elements that are actually
stored are marked grey. If n is even, n/2 elements will
be stored twice (the dark grey elements in the figure), but
this is no problem.

The work for the parallel threads is then easily dis-
tributed as if the matrix elements would be stored in a
rectangular matrix n×

⌊
n
2

⌋
. Each thread is assigned a sin-

5

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

136



0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

5

5

Figure 3: Scheme of the distance matrix storage for n odd
and for n even, respectively.

gle row i′ and processes the elements j′ ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
.

Indices to the original n × n matrix are computed by the
following indexing:

i = i′

j = (j′ + i′ + 1) mod n (3)

Converting the index back is more complicated:

if
(
0 < i− j <

n + 2
2

OR j − i >
n + 2

2

)
swap(i, j)

i′ = i

j′ = (j − i + n) mod n (4)

Fortunately, the backwards conversion it never needed in
the algorithm.

5 Experiments

This section summarises the experiments done to identify
the bottlenecks, find the possibilities for improvement, and
to document the achieved speedup.

The program is written in C# under the .NET Frame-
work 2.0. Experiments were performed on a PC with
Core 2 Quad 2.4 GHz CPU, 4 GB RAM, running Win-
dows XP. The parallel computations were executed in four
threads.

The presented experiments were done on the following
data sets: Bunny and Armadillo2 (laser scanned 3D mod-
els), the famous Utah teapot3 (vertices sampled from the
surface), and the Crater Lake4 (nearly 2D terrain model).

5.1 Facility location running time

Table 1 shows the running time of the original algorithm,
and partial times for the relevant parts of the computation.

2Stanford 3D Scanning Repository, http://graphics.
stanford.edu/data/

3Original 3D model by M. Newell, 1975.
4M. Garland, http://mgarland.org/dist/models/

Evaluating the gain functions takes approximately 96 % of
time. Generating the initial solution and performing the
reassignments are negligible.

5.2 Facility location speedup

This section documents the speedup achieved by imple-
menting the proposed improvements. Table 2 shows the
speedup by space partitioning. The kD-tree is the best be-
cause it splits the data adaptively. The space partitioning
by facilities is a small bit slower, but it is perhaps easier to
implement, and the parallelisation is straightforward. The
octree performs slightly worse on the Crater Lake because
the data are practically flat.

Table 3 shows the speedup achieved by the parallelisa-
tion. The columns ratio 1 show the speedup compared
to the original algorithm, the columns ratio 2 show the
speedup compared to the (non-parallelised) partitioning
by facilities. Although ran on a 4 core CPU, the program is
not 4 times faster because only the gain evaluation runs in
parallel. Eventual reassignments remain sequential. The
CPU utilisation oscillated between 25 and 95 %.

5.3 The influence of cluster size

This section shows how the cluster size affects the effi-
ciency of the proposed algorithms. It is to be noted that
the cluster size (the facility cost) is a user specified pa-
rameter, and it is therefore unreasonable to search for an
optimum.

The graph in Figure 4 shows how often the gain comes
out positive for various facility cost values. This strongly
influences the efficiency of the parallel computation of sev-
eral gains. At the beginning, gains are all positive because
the initial clustering is very coarse, and almost any facility
candidate can improve it. Later, the ratio of positive gains
drops, especially for great facility costs (large clusters).

Fraction of positive gain results

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500iteration

fraction of 
positive gains

fc 0.1
fc 0.5
fc 1
fc 4

Figure 4: Fraction of positive gain results.

The graph in Figure 5 shows the fraction of vertices
inspected for various facility cost values. A vertex here
means either a facility or a client. In both cases, inspecting

6

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

137



Table 1: Total running time of the original algorithm, and partial times for the important parts.
Number Total Initial Reassign-

Data set of vertices time [s] solution [s] Gains [s] ments [s]
Bunny 35947 23.1 0.7 21.5 0.1
Teapot 80203 113.5 2.3 107.7 0.5
Crater 100001 175.1 2.8 167.9 0.5
Armadillo 172974 524.3 9.0 515.1 1.4

Table 2: Speedup achieved by space partitioning.
Original Quadtree Octree kD-tree Facility

Data set Vertices time [s] t. [s] ratio t. [s] ratio t. [s] ratio t. [s] ratio
Bunny 35947 23.1 4.7 80 % 4.6 80 % 4.1 82 % 4.3 81 %
Teapot 80203 113.5 16.2 86 % 15.1 87 % 13.4 88 % 16.1 86 %
Crater 100001 175.1 18.0 90 % 21.7 88 % 17.3 90 % 19.7 89 %
Armadillo 172974 524.3 65.7 87 % 62.1 88 % 54.9 90 % 60.2 89 %

means computing the distance to the facility candidate.
If a facility is close enough, all its clients are inspected.
The notion of vertices was introduced to overcome the
issue described at the end of Section 3.1.2. The vertices
represent all the facilities and clients we effectively have
to deal with. The ratio of inspected vertices is greater at
the beginning because of the coarse initial clustering. The
ratio is lower for a small facility cost (small clusters).

Fraction of vertices inspected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500
iteration

fraction of 
verts. inspect.

fc 0.1
fc 0.5
fc 1
fc 4

Figure 5: Fraction of vertices inspected.

5.4 Complete link on the GPU

This section documents the experiments with the complete
link clustering on the GPU using CUDA. The measure-
ments were performed on a PC with Pentium 4 3.6 GHz
CPU and an NVIDIA GeForce 8800 GTX graphics card.
The GPU algorithm was compared with a similar imple-
mentation written in C running on the CPU. Several 3D
surface models were used as test data.

The results are summarised in Table 4. The overall
speedup ranges from 15 to 40 % which is not as great
as expected. It is probably caused by fragments of work
still being done on the CPU. Transferring the data be-

tween the main memory and the graphics card memory
causes delays. The computation of the distance matrix is
very fast already. The following steps of the complete link
algorithm can be further optimised.

6 Conclusion

The paper presented various techniques to accelerate the
facility location, and the single link and the complete link
clustering algorithms. Several space partitioning methods
were introduced for the facility location. Further speedup
was achieved by proposing two parallelisation schemes.
The performance of the suggested methods was evaluated.
The best one brings a speedup of up to 95%. The influ-
ence of the cluster size on the efficiency of the proposed
methods was documented.

The single link and the complete link clustering algo-
rithms were implemented on the GPU using the CUDA
architecture. The speedup for the complete link algorithm
ranges from 15 to 40 %. In the future work, we would
like to further improve the proposed methods, and espe-
cially optimise the complete link clustering on the GPU to
achieve a better performance.

References

[1] J. Skála and I. Kolingerová, “Clustering geometric
data streams,” in SIGRAD 2007, pp. 17–23, 2007.

[2] S. Romero, M. A. Trenas, E. Gutierrez, and E. L. Za-
pata, “Locality-improved FFT implementation on a
graphics processor,” in Proceedings of the 7th WSEAS
International Conference on Signal Processing, Com-
putational Geometry & Artificial Vision, (Stevens
Point, Wisconsin, USA), pp. 58–63, World Scientific
and Engineering Academy and Society (WSEAS),
2007.

7

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

138



Table 3: Speedup achieved by parallelising the gain computation by facilities.
Facility Parallel single gain Parallel multiple gains

Data set Vertices time [s] t. [s] ratio 1 ratio 2 t. [s] ratio 1 ratio 2
Bunny 35947 4.3 2.5 89 % 42 % 2.2 90 % 48 %
Teapot 80203 16.1 8.5 92 % 47 % 8.2 93 % 49 %
Crater 100001 19.7 10.3 94 % 48 % 9.4 95 % 52 %
Armadillo 172974 60.2 29.2 94 % 52 % 27.0 95 % 55 %

Table 4: Speedup of the CUDA implementation.
Number

Data set of vertices CPU time [s] GPU time [s] Speedup
Objects 1420 2.855 2.434 15 %
Ellipsoid 2452 11.985 7.193 40 %
Cow 2905 25.578 19.420 24 %
Head 4098 70.369 54.951 22 %

[3] D. B. Shmoys, “Approximation algorithms for facility
location problems,” in APPROX ’00: Approximation
Algorithms for Combinatorial Optimization, vol. 1913
of Lecture Notes in Computer Science, (London, UK),
pp. 27–33, Springer-Verlag, 2000.

[4] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman,
“Analysis of a local search heuristic for facility loca-
tion problems,” in SODA: ACM-SIAM Symposium on
Discrete algorithms, (Philadelphia, PA, USA), pp. 1–
10, Society for Industrial and Applied Mathematics,
1998.

[5] M. Charikar and S. Guha, “Improved combinato-
rial algorithms for the facility location and k-median
problems,” in IEEE Symposium on Foundations of
Computer Science, pp. 378–388, 1999.

[6] A. Meyerson, “Online facility location,” in FOCS ’01:
IEEE Symposium on Foundations of Computer Sci-
ence, (Washington, DC, USA), pp. 426–431, IEEE
Computer Society, 2001.

[7] D. B. Shmoys, É. Tardos, and K. Aardal, “Approxi-
mation algorithms for facility location problems (ex-
tended abstract),” in ACM Symposium on Theory of
Computing, pp. 265–274, 1997.

[8] J.-H. Lin and J. S. Vitter, “Approximation algorithms
for geometric median problems,” Information Pro-
cessing Letters, vol. 44, pp. 245–249, 1992.

[9] S. Guha and S. Khuller, “Greedy strikes back: Im-
proved facility location algorithms,” in SODA: ACM-
SIAM Symposium on Discrete Algorithms, pp. 649–
657, 1998.

[10] F. A. Chudak, “Improved approximation algorithms
for uncapacitated facility location,” Lecture Notes in
Computer Science, vol. 1412, pp. 180–194, 1998.

[11] K. Jain and V. V. Vazirani, “Primal-dual approxi-
mation algorithms for metric facility location and k-
median problems,” in IEEE Symposium on Founda-
tions of Computer Science, pp. 2–13, 1999.

[12] M. Mahdian, E. Markakis, A. Saberi, and V. Vazi-
rani, “A greedy facility location algorithm analyzed
using dual fitting,” Lecture Notes in Computer Sci-
ence, vol. 2129, pp. 127–137, 2001.

[13] S.-K. Choi, T. Lee, and J. Kim, “The genetic heuris-
tics for the plant and warehouse location problem,”
WSEAS Transactions on Circuits and Systems, vol. 2,
no. 4, pp. 704–709, 2003.

[14] C.-Y. Lee, Z.-J. Lee, and S.-F. Su, “Immunity based
genetic algorithm for solving quadratic assignment
problem (qap),” in Proceedings of the 2nd WSEAS
International Conference on Electronics, Control and
Signal Processing, pp. 1–9, 2003.

[15] P. H. A. Sneath and R. R. Sokal, Numerical taxon-
omy: The principles and practice of numerical classi-
fication. San Francisco: W.H. Freeman, 1973.

[16] B. King, “Step-wise clustering procedures,” Jour-
nal of the American Statistical Association, vol. 62,
no. 317, pp. 86–101, 1967.

[17] A. Jalali, F. Oroumchian, and M. R. Hejazi, “Com-
parison of different distance measures on hierarchi-
cal document clustering in 2–pass retrieval,” WSEAS
Transactions on Computers, vol. 3, no. 3, pp. 725–
731, 2004.

[18] S. Arumugavelu and N. Ranganathan, “Simd al-
gorithms for single link and complete link pattern
clustering,” in Proceedings of the International Con-
ference on Pattern Recognition, (Washington, DC,
USA), pp. 625–629, IEEE Computer Society, 1996.

8

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 5, 2011

139




