
Java Interrogation of an Homogeneous System of
Inheritance Knowledge Bases by Client-Server

Technology
Nicolae Ţăndăreanu

Abstract—The subject developed in this paper is connected by the
remote interrogation of a knowledge base. We suppose we have a
collection of the same kind of knowledge bases, namely, extended
inheritance knowledge bases. We use the client-server technology
to query each element of such a system of knowledge bases. To
implement the application we used Java technology. The reasoning
process is based on an inference engine. The mechanism of this
engine is based on the extended inheritance presented in [18], [22]
and [23]. A methodological description is given based on Java
technology. Both the server and client side of the application are
presented step by step. The way of presentation is divided into stages,
each stage is well defined according to the proposed tasks. Each step
of the presentation can be easily modified and adapted by a person
who wants to write his/her own application to query a knowledge
base by client-server technology. The use of the extended inheritance
knowledge bases can be explained by the fact that the inference
engine in this case is easier to write than the inference engine for other
methods of knowledge representation. The last section enumerates
several developing directions.

Keywords—client, server, socket, graphical user interface, inheri-
tance, query, Java technology

I. I NTRODUCTION

There are two main entities for every client/server applica-
tion: one entity is the client and another is the server. The
client and server components of the application usually do
not reside on the same computer. In other words, the client is
installed on a computer that is different from the one hosting
the server installation. But logically they are components of
the same application.

The client/server programming supposes that the server is
a provider of services. In a client-server application the client
requests an action or service from the provider of service. The
simplest example and the most used application is given by
a Web browser and a Web server. When a person addresses
a URL in the browser window, it becomes a client which
requests a page from a Web server. The server returns an html
page to the client, which displays it on its computer.

Client programs request service from a server by sending
it a message. Server programs process client requests by
performing the tasks requested by clients. Servers are generally
passive as they wait for a client request. During these waiting
periods servers can perform other tasks. Unlike the client,
the server must continually run because clients can request
service at any time. Clients on the other hand only need to run

N. Ţăndăreanu, Faculty of Mathematics and Computer Science, University
of Craiova, http://inf.ucv.ro/˜ntand/en/, email: ntand@rdslink.ro

when they require service. Many server applications allow for
multiple clients to request service.

A very common problem in the domain of databases is
the connection to a remote database server. ODBC (Open
Database Connectivity) provides a way for client programs
to access a databases. This is a standardized API that enables
connections to SQL database servers. It was developed accord-
ing to the specifications of the SQL Access Group and defines
a set of function calls, error codes, and data types that can
be used to develop database-independent applications. Using
MyODBC we can establish a connection to a remote database,
export a database to the remote server, import a database from
the remote server and establish a link from a local database
to a remote database ([8]). Net8 is a fundamental networking
technology to establish a network connection and facilitate
the transfer of data between a client session and the database.
Net8 allows Oracle services and clients to communicate with
each other over a network. The most common application
for Net8 is to allow clients to talk to database servers,
but Net8 also enables server-to-server and other types of
communication ([9]). Once the user established a connection
to the database server and configured Net8 appropriately, the
SQL*PLUS program allows the user to store and retrieve data
in the relational database management system ORACLE ([1]).
WS-JDBC (Web Service - Java DataBase Connectivity) is a
JDBC driver implemented using Web services, which allows
clients to connect to remote databases using the standard
JDBC interface. The WS-JDBC driver allows to useserver-
side classes that implement the necessary parts of the JDBC
interface as Web services andclient-side classes that are used
by applications to invoke those Web service operations ([25]).

The modern network programming is based on a
client/server model. A client/server application stores large
quantities of data on a high-powered server, while most of
the program logic and the user interface is handled by client
software running on personal computers. In most cases, a
server primarily sends data, while a client primarily receives
it. In general the client initiates a conversation, while a server
waits for clients to start conversations with it ([13], [10]).

As we can see, the remote interrogation of a data base is
an usual action for practitioners in computer science. But the
same problem forknowledge bases is less treated in literature.
This is because there is a wide variety of knowledge bases.

In this paper we inaugurate a possible research line concern-
ing the remote interrogation of a system of knowledge bases.
Some inference engine to interrogate a knowledge base is used.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

166

The features of the method used for knowledge representation
are fully integrated into this inference engine. Java can create
applications that are distributed between clients and servers in
a network. For this reason in order to fulfill our purpose we
used the client-server technology based on Java mechanisms.
Both the server side and the client side of the application
are presented. The system is exemplified for the extended
inheritance knowledge bases.

The paper is organized as follows. Section II gives a short
presentation of the communication by sockets in Java. In
Section III we present a minimal set of concepts concerning
the extended inheritance knowledge bases. Section IV contains
the description of the server side application. In Section V we
describe the client side application. The last section contains
the conclusions of our study and several possible extensions
of this application.

II. BASIC JAVA CONCEPTS

In the domain of client-server programming there are two
main entities: theserver and theclient. These two entities
communicate one by another by means of real network, that
can be Internet or a private network. A computer is identified
in a network by means of an IP- address. The processes
running on a computer in a network are identified by means
of a number on 16 bits namedport.

A socket is one endpoint of a two-way communication link
between two programs running on the network. A socket is
bound to a port number so that the TCP layer can identify the
application that data is destined to be sent. The Java platform
provides implementations of sockets in thejava.net package.
Java provides two classes for creating TCP sockets, namely,
Socket andServerSocket. The java.net.Socket class is used by
clients to make a connection with a server. The constructors
of this class have the following forms:
• Socket(String hostname, int port)
• Socket(InetAddress addr, int port)
• Socket(String hostname, int port, InetAddress localAddr,

int localPort)
• Socket(InetAddress addr, int port, InetAddress localAddr,

int localPort)
We emphasize that the Socket constructor attempts to connect
to the remote server. Data is sent and received with output and
input streams.

The java.net.ServerSocket class is used to by server to
accept client connections. The constructors for this class have
one of the following form:
• ServerSocket(int port)
• ServerSocket(int port, int backlog)
• ServerSocket(int port, int backlog, InetAddress network-

Interface)
The ServerSocket objects use theiraccept() method to connect
to a client. This situation is represented in Figure 1.

III. E XTENDED INHERITANCE KNOWLEDGE BASES

The best definition of a knowledge base is obtained if
we define first the concept ofknowledge representation and
reasoning system, which is a tuple of components cooperating

Fig. 1. Comunication and connections

between them ([26]). Some component describes the repre-
sentation language and other components define the inference
relation and the update tasks. In this paper we use an ex-
tended inheritance knowledge base to exemplify a possible
dialog server-client to interrogate such a base. Intuitively
an extended inheritance knowledge base is a finite set of
objects. An object has an unique description of the form
(name, parents, attributes), where

- name is the name of the object and this entity identifies
uniquely the object;

- parents is a list of object names; each element of this
list is a parent ofname;

- attributes is a list of attribute names forname and
their descriptions; the simplest form of a description
is attr(name

−
attr, val, p), wherename

−
attr is an at-

tribute name,val is the value of this attribute andp is a
parameter.

The parameter of an attribute value can represent the certainty
of the value, a risk coefficient or a cost for the use of this
value.

An interrogation of such knowledge base is specified by
a pair (name1, attr1), wherename1 is an object name and
attr1 is an attribute name. If this is an interrogation then the
answer of the system gives the value of the attributeattr1
for the objectname1. This value is computed by inheritance:
if attr1 is specified by the objectname1 and the description
is of the formattr(attr1, v1, p1) then v1 is the value of the
answer mapping. Otherwise this value is computed from the
nearest predecessors of the objectname1. If by inheritance
we obtain a set{attr(attr1, v1, p1), . . . , attr(attrk, vk, pk)}
of descriptions, wherek ≥ 2, then we choose the valuevi
which satisfies the ”choice strategy” given by the parameters
p1, . . . , pk.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

167

Fig. 2. Modules used by server actions

Fig. 3. The server actions

IV. SERVER SIDE APPLICATION

The server side application containsmodules and actions.
The modules are presented in Figure 2 and they are used by
the server actions. The actions are presented in Figure 3.

In the remainder of this section we describe step by step
the actions of the server.

Step 1: connection with a client.

• The server program begins by creating a new Server-
Socket object to listen on a specific port 9090.
• If the server successfully binds to its port, then the
ServerSocket object is successfully created and the server
continues to the next step, accepting a connection from

a client.
• When a connection is successfully established, the ac-
cept method returns a new Socket object which is bound
to the same local port and has it’s remote address and
remote port set to that of the client.

• The constructor for ServerSocket throws an exception if
it can’t listen on the specified port (for example, the port
is already being used).

• The server can communicate with the client over this
new Socket and continue to listen for client connection
requests on the original ServerSocket.

• The server can service simultaneously several clients
through the use of threads - one thread per each client
connection. The basic flow of logic can be described as
follows:
while (true) {

accept a connection ;
create a thread to deal with the client ;

}

The thread reads from and writes to the client connection
as necessary.

All these tasks are performed by the following code:

import java.net.*;
import java.io.*;
import java.util.*;
...
public class MultiClientTcpServer{
public static void main(String[] args)
{int port = 9090;
try {ServerSocket server =

new ServerSocket(port);
while(true) {

System.out.println("Waiting for clients on port ...");
Socket client = server.accept();
ConnectionHandler handler =

new ConnectionHandler(client);
handler.start();}}

catch(Exception ex) {System.out.println("Connection
error: "+ex);}

}
}

Step 2: A ConnectionHandler object is created to examine
and process the requests sent to and the responses received
from the client.

Step 2.1: Define data structures for knowledge bases and
the communication channel between server and a client.

class ConnectionHandler extends Thread {
private Socket client;
BufferedReader reader;
PrintWriter writer;
static int count=0;
...
String date[][] = new String[0][0];
String col[] =
{"Object Name", "Parents", "Attributes"};

DefaultTableModel model =
new DefaultTableModel(date,col);
JTable kb = new JTable(model);

...
data structures for knowledge bases
...
String lista_KB="Hobbies Shopping";
public ConnectionHandler(Socket client) {
this.client = client;
System.out.println("Got connection from "+

client.getInetAddress()+":"+client.getPort());
count++;

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

168

System.out.println("Active Connections = "+ count);
} //end constructor

We relieve the following remarks:

• The variablecount contains at every time the number of
the active connections to the server.
• The server contains a numberm of knowledge bases.
The data structurelista

−
KB is a string of the form

"KB_1 KB_2KB_m" including the names of
these knowledge bases such that two consecutive names
are separated by a blank character.
• Each knowledge base is represented by means of a
specific data structure. For example, the extended inheri-
tance knowledge base Hobbies used in our application is
defined as follows:
private Object[][] data2 = {

{"Alin", "","attr(likes,to_drink_coffee,60)
attr(speaks,English,30)
attr(main_hobby,fishing,30)"},

{"George", "Alin",
"attr(likes,to_drink_tea,10)"},

{"Susan","George David",
"attr(speaks,English,20)
attr(main_hobby,cooking,40)"},

{"David","","attr(likes,to_drink_juice,15)
attr(plays,tennis,30)
attr(main_hobby,hunting,75)"},

{"Melvin","Susan","attr(drives,Logan,25)
attr(speaks,French,10)
attr(main_hobby,gardening,80)"}

We used also the knowledge base Shopping defined as
follows:
private Object[][] data3 = {

{"shop1", "shop2 shop3","attr(water,3,2)
attr(pencil,1,7)
attr(cake,8,14)"},

{"shop2", "shop4","attr(juice,5,15)
attr(pizza,8,21)"},

{"shop3","shop4 shop5","attr(cheese,40,10)
attr(strawberry,6,20)"},

{"shop4","","attr(bread,20,10)
attr(wine,50,30)"},

{"shop5","shop6","attr(bread,30,20)
attr(juice,4,3)"},

{"shop6","","attr(wine,35,40)
attr(water,4,1)"}

};

• In order to manipulate the extended inheritance knowl-
edge bases we used in Java theTableModel interface
which specifies the methods the JTable will use to inter-
rogate a tabular data model. The class DefaultTableModel
is an implementation of TableModel that uses a Vector of
Vectors to store the cell value objects. As well as copying
the data from an application into the DefaultTableModel,
it is also possible to wrap the data in the methods of the
TableModel interface so that the data can be passed to
the JTable directly.
• The BufferedReader objectreader is used to receive data
from client and the PrintWriter objectwriter is used to
send data to client.
• As we mentioned above the server accepts several
clients. In Figure 4 we exemplified a connection of three
clients.

Step 2.2: inference engine for extended inheritance knowl-

Fig. 4. Connection of three clients

edge bases; this part implements the module CalculateAnswer
presented in Figure 2.

//....
public String calculateAnswer(...) {
...
} // end method

Step 2.3: first communication.

public void run() { //begin run
String message=null;
String name_obj=null;
String name_attr=null;
boolean rasp=true;
boolean change_kb=true;

try {
// questions to and answers from client
reader =
new BufferedReader(new InputStreamReader
(client.getInputStream()));
writer =
new PrintWriter(client.getOutputStream());
writer.println("Welcome to my server!");
writer.flush();
writer.println(lista_KB);
writer.flush();

The first communication includes the message ”Welcome to
my server!”; a list of knowledge base names is sent to client.

Step 2.4: invitation for client to choose a name of knowl-
edge base and data initiation of this structure.

while(change_kb){ //while 5---------------
rasp=true;
writer.println("Choose a Knowledge Base! ");
writer.flush();
writer.println("Select it from the first

choice structure.");
writer.flush();
name_kb_client=reader.readLine();
if(name_kb_client.equals("Hobbies"))
{nr_lines=data2.length;writer.println(nr_lines);
writer.flush();
for(int i=0; i<nr_lines; i++){

writer.println(data2[i][0]);
writer.flush();
model.insertRow(i, new Object[]
{data2[i][0], data2[i][1], data2[i][2]}); };

}; //end if
if(name_kb_client.equals("Shopping"))
{nr_lines=data2.length;writer.println(nr_lines);
writer.flush();
for(int i=0; i<nr_lines; i++){

writer.println(data3[i][0]);
writer.flush();
model.insertRow(i, new Object[]
{data3[i][0], data3[i][1], data3[i][2]}); };

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

169

}; //end if

We observe the following steps:

• The client is invited to choose the name of the
knowledge base which will be interrogated. This name
is selected from a choice structure of the graphical
user interface of the client and this value is sent to
server. The server receives this value and assigns it to
name

−
kb

−
client.

• As an effect of the sequence of code
for(int i=0; i<nr_lines; i++){
writer.println(data2[i][0]);
writer.flush();
model.insertRow(i, new Object[]
{data2[i][0], data2[i][1], data2[i][2]}); };
}; //end if

the object names of the selected knowledge base are sent
to client and the structurekb wraps the knowledge base
defined bydata2.

Step 2.5: extract the attribute names of the inheritance
knowledge basekb and send them to client.

public void compute_all_attributes_of_kb(){
//begin "Extraction module"
String Val21="";
int jjj=0;
int ix=0;
String attr5="";
boolean difera=true;
boolean prima_data=true;
for (int idx=0;idx<nr_lines; idx++) { //for200

ix=0; difera=true;
Val21=(String)kb.getValueAt(idx,2);

if (!Val21.equals("")) { //if100
int tokenCount;
String words_attr[] = new String [10];
message=Val21;
StringTokenizer st1 =

new StringTokenizer(message);
tokenCount = st1.countTokens();
while (st1.hasMoreTokens()) {

words_attr[ix] = st1.nextToken();
ix++;

} //end while
for (int ix2=0;ix2<tokenCount; ix2++) { //for300

String s3 = words_attr[ix2];
String [] temp = null;
temp = s3.split(",");
attr5=temp[0].substring(5);
if(prima_data) {all_attributes[jjj]=attr5;

prima_data=false;
jjj++;} else { //else400

for(int j7=0;j7<jjj;j7++){
if(all_attributes[j7].equals(attr5))

difera=false;}; //end for
if(difera) {all_attributes[jjj]=attr5;

jjj++;}; //end if
} //end else400
} //end for300
} //end if100
} //end for200

writer.println(jjj);
writer.flush();
for (int idx=0;idx<jjj; idx++) {

writer.println(all_attributes[idx]);
writer.flush();}
} // end "Extraction module"

Step 2.6: Final dialog with client.

while(rasp){ //while 7

val="";
writer.println("Select the object name!");
writer.flush();
name_obj = reader.readLine();
writer.println("Select the attribute name!");
writer.flush();
name_attr = reader.readLine();
calculateAnswer(name_obj,name_attr);
Communication(name_obj,name_attr,val);
message=reader.readLine();
if(message.equals("yes")) rasp=true;
else rasp=false;

} //end while 7
writer.println("Change KB? Change_KB/FINISH buttons");
writer.flush();
String message4;
message4=reader.readLine();
if(message4.equals("yes")) change_kb=true;

} //end while 5
client.close();
count--;
System.out.println("Active Connections = " + count);
} catch (Exception ex) {
count--;
System.out.println("Active Connections = " + count);}

} //end run Step 2.3
} // end ConnectionHandler

This dialog consists of the following:

• The server sends to client the messageSelect the object
name!. The answer of client is stored byname

−
obj.

• The client is invited by the messageSelect the attribute
name! to indicate its choice. The answer is stored in
name

−
attr.

• The variablevar contains the value of the attribute
name

−
attr for name

−
obj and this value is computed

by the methodcalculateAnswerKB2. The value ofval
is sent to client.

• The program running on the client side asks whether or
not the client wishes another interrogation of the same
knowledge base. The client answer is sent to server and
the variablemessage specifies this answer (yes or not).

• In the remainder of the dialog the client is asked if
wishes to change the knowledge base or to finish its
interrogation.

• The methodCommunication implements ”Module for
answer sentences”:
public void Communication(String name_obj1,

String name_attr1,String value1){
if(!(val.equals(""))){ //first if
if(name_kb_client.equals("Shopping"))
{nr_answers++;writer.println(nr_answers+
") "+"You can buy "+name_attr1+
" from "+name_obj1+" with "+value1+" Euro.");

writer.flush();
writer.println(vec_fcs[index_fcs]);};

// send the certainty factor
if(name_kb_client.equals("Hobbies")){
if(name_attr1.equals("main_hobby"))
{nr_answers++;writer.println(nr_answers+") "
+"The main hobby of "+name_obj1+
" is "+value1+".");
writer.flush();
writer.println(vec_fcs[index_fcs]); }

if(name_attr1.equals("likes"))
{nr_answers++;writer.println(nr_answers+") "
+name_obj1+" likes "+value1+".");
writer.flush();
writer.println(vec_fcs[index_fcs]); }

if(name_attr1.equals("speaks"))
{nr_answers++;writer.println(nr_answers+") "

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

170

Fig. 5. Interface of the client

+name_obj1+" speaks "+value1+".");
writer.flush();
writer.println(vec_fcs[index_fcs]); }

if(name_attr1.equals("drives"))
{nr_answers++;writer.println(nr_answers+") "
+name_obj1+" drives a "+value1+".");
writer.flush();
writer.println(vec_fcs[index_fcs]); }

};
writer.flush();

} //end first if
if(val.equals("")){nr_answers++; //second if
writer.println(nr_answers+") "+
"The value of attribute "+name_attr1+
" for "+name_obj1+" is unknown.");
writer.flush();
writer.println("unknown");
writer.flush();

} //end second if
}

V. CLIENT SIDE APPLICATION

In this section we describe the actions of the client. For a
friendly communication with the server we used a Graphical
User Interface having three windows, three choice option
structures and seven buttons. This is shown in Figure 5.

Step 1: use JFrame class, windows, choice structures and
buttons to build the graphical user interface of the user.

public class C_S extends JFrame implements
ActionListener, ItemListener{

boolean sem_cont=false;
boolean sem_ncont=false;
boolean sem_kb;
boolean sem_obj=false;
boolean sem_attr=false;
boolean sem_finish=false;
boolean sem_another=false;
JTextArea _resultArea;
Font font = new Font("Verdana", Font.BOLD, 14);
JTextArea _resultArea1;
JTextArea _resultArea2;
Insets insets = new Insets(0, 0, 0, 0);
Choice optiune1=new Choice();
Choice optiune2=new Choice();
Choice optiune3=new Choice();
JButton ckb=new JButton("Confirm KB ");
JButton cob=new JButton("Confirm Obj ");
JButton cont=new JButton("Confirm YES ");
JButton ncont=new JButton("Confirm NO ");
JButton another_kb=new JButton("Change_KB");
JButton finish=new JButton(" FINISH ");
JButton cat=new JButton("Confirm Attr");

...
//restrictions.....
......

Step 2: establish a connection with server and define the
output and input channel (writer1/reader1) to communicate
with the server.

public static void main(String args[])
throws UnknownHostException,IOException{
C_S console = new C_S();
console.setVisible(true);

} //end main
public C_S(){
super("CLIENT-SERVER Communication to

Interrogate a Knowledge Base");
init();
comm_Client_Server();

}
public void comm_Client_Server(){
int port = 9090;
try {

String host = "192.168.1.169";
Socket client = new Socket(host,port);
PrintWriter writer1 = new PrintWriter

(client.getOutputStream());
BufferedReader reader1 = new BufferedReader
(new InputStreamReader(client.getInputStream()));

Step 3: read the first message from server and the list of
knowledge bases.

//receive the message "Welcome to my Server!"
//display this message
write10(reader1.readLine());
boolean sem_change_kb=true;
String message;

//obtain the list of knowledge bases
message=reader1.readLine();

//introduce them into first choice structure
StringTokenizer st=new StringTokenizer(message);
int tokenCount=st.countTokens();
while(st.hasMoreTokens()) {

optiune1.addItem(st.nextToken());}

Step 4: choose a knowledge base, receive the objects and
attributes from server and introduce them into the correspond-
ing Choice structures of GUI

while(sem_change_kb){// while 5-----------
// read the message "Choose a Knowledge Base! "
//display this message
write10(reader1.readLine());
// read the message "Select it from the first
//choice structure."
//display this message
write10(reader1.readLine());
//choose kb by button--------
boolean raspuns=true;
boolean done;
boolean semafor1= false;
sem_kb=false;
this.setVisible(true);
while(!semafor1) {

if (sem_kb) {writer1.println(ales_kb);
writer1.flush();semafor1=true;}

}
//---------------------------
semafor1=false;
//the knowledge base contains nr_elem obiects-----
int nr_elem=0;
nr_elem=Integer.valueOf(reader1.readLine());
//introduce the objects into optiune2---------
optiune2.removeAll();
String elem;
for(int j1=0;j1<nr_elem;j1++){

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

171

elem=reader1.readLine();
optiune2.addItem(elem);};

//introduce the object attributes into optiune3---
optiune3.removeAll();
nr_elem=Integer.valueOf(reader1.readLine());
for(int j1=0;j1<nr_elem;j1++){

elem=reader1.readLine();
optiune3.addItem(elem);};

Step 5: the client chooses an object name and an attribute
name and sends them to server

while(raspuns){ //while 1
//read message "Select the object name!"------

message=reader1.readLine();
//display this message

write10(message);
//select the object---------------------------
while(!semafor1) {

if (sem_obj) {writer1.println(ales_obj);
writer1.flush();semafor1=true;}

}
semafor1=false; sem_obj=false;
//read message "Select the attribute name!"--

message=reader1.readLine();
//display this message
write10(message);

//select the attribute------------------------
while(!semafor1) { //while

if (sem_attr) {writer1.println(ales_attr);
writer1.flush();semafor1=true;}

}
semafor1=false; sem_attr=false;

Step 6: display the answer given by server

//receive the server answer and display
//this message at INFERENCE CONCLUSIONS
write20(reader1.readLine());
//receive the certainty factor and display
//this value
write20("(certainty factor="+

reader1.readLine()+")");

Step 7: the client can continue to interrogate the same or
another knowledge base

write30("Another interrogation? (yes/no):
click on Confirm YES or Confirm NO");");

semafor1=false;
sem_cont=false;
sem_ncont=false;
while(!semafor1) { //while

if (sem_cont) {
write30("You continue with

the same knowledge base.");
writer1.println("yes");
writer1.flush();
semafor1=true;raspuns=true;}

if (sem_ncont) {
write30("You does not continue with

the same knowledge base.");
writer1.println("no");writer1.flush();
semafor1=true;raspuns=false;} }

semafor1=false; sem_cont=false;
} //end while 1

//read message "Change KB? Change_KB/FINISH"
//display this message to client
write30(reader1.readLine());
while(!semafor1) {
if(sem_another){

write30("Send yes to server");
writer1.println("yes");writer1.flush();
sem_change_kb=true;semafor1=true;}

}
semafor1=false;sem_another=false;

} // end while 5
client.close();
}catch (UnknownHostException e) {
System.err.println("Server is not ready "+e);}

catch (IOException e) {System.err.println(e);}
} //end comm_Client_Server

Remark 5.1: We used above the following methods:

public void write10(String s){
_resultArea.append(s+"\n");

}
public void write20(String s){

_resultArea1.append(s+"\n");
}
public void write30(String s){

_resultArea2.append(s+"\n");
}

Remark 5.2: The init method includes the definition of the
components for the graphical user interface.

public void init(){
// set dimension
Dimension ds =
Toolkit.getDefaultToolkit().getScreenSize();

int a1= (int) ((double)ds.width * (8.0/10.0));
int b1=(int) ((double)ds.height * (8.0/10.0));
setSize(a1,b1);
setBackground(Color.gray.brighter());
this.setLayout(new GridBagLayout());
_resultArea = new JTextArea(50, 80);
_resultArea1 = new JTextArea(50, 80);
_resultArea2 = new JTextArea(50, 120);
_resultArea.setFont(font);
_resultArea1.setFont(font);
_resultArea2.setFont(font);
_resultArea.setForeground(Color.BLUE);
_resultArea1.setForeground(Color.RED);
JScrollPane scrollingArea =
new JScrollPane(_resultArea);

JScrollPane scrollingArea1 =
new JScrollPane(_resultArea1);

JScrollPane scrollingArea2 =
new JScrollPane(_resultArea2);

Panel my_Panel10=new Panel();
my_Panel10.setLayout(new GridLayout(1,1));
my_Panel10.add(scrollingArea, BorderLayout.CENTER);
Panel my_Panel20=new Panel();
my_Panel20.setLayout(new GridLayout(1,1));
my_Panel20.add(scrollingArea1, BorderLayout.CENTER);
Panel my_Panel30=new Panel();
my_Panel30.setLayout(new GridLayout(1,1));
my_Panel30.add(scrollingArea2, BorderLayout.CENTER);
optiune1.setFont(font);
optiune2.setFont(font);
optiune3.setFont(font);
...

} //end init

Remark 5.3: The action of the buttons are described by the
methodactionPerformed.

public void actionPerformed(ActionEvent evt){
if(evt.getSource()==ckb){
ales_kb=optiune1.getSelectedItem();
write30("You chosed the knowledge base "+ales_kb);
sem_kb=true; }

if(evt.getSource()==cob){
ales_obj=optiune2.getSelectedItem();
write30("You chosed the object "+ales_obj);
sem_obj=true;

... }

In figures 6 and 7 we illustrate two steps of the same session
of the client execution: two queries for the knowledge base
Hobbies and one query for the knowledge base Shopping.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

172

Fig. 6. Example of interrogation

Fig. 7. Changing the knowledge base

VI. CONCLUSIONS AND FUTURE WORK

In this paper we tried to model communication between
the server and client to query a knowledge base. Both the
server and client side of the application are presented step
by step. With this features we can say that this work is a
methodological one. The reader can easily adapt each step
according to his vision.

We relieve the following features of the application pre-
sented in this paper:

1) In order to implement the application the Java mecha-
nisms were used.

2) The client side uses a graphical user interface to visual-
ize the communication with the server. This interface
contains three windows: the first window is used to
display the messages of the server, the second shows
the conclusions of the inference engine and the third
window is used to display messages which confirm the
choice of the client. The client actions are guided by
buttons.

3) There is a particular aspect of the client GUI. This
is established by the GUI components. In order to
exemplify the application execution we used an extended
inheritance knowledge base. For this reason the choice
components of GUI contains the object names and the
attribute names.

As a future work we emphasize the following directions to
improve the implementation presented in this paper:

• Describe the implementation of the inference engine for
various kinds of knowledge bases. Various structures of
knowledge bases can be considered:

- object oriented knowledge bases (the inference mech-
anism is based on inheritance, [15], [18]);

- knowledge bases with output, represented by means of
labeled stratified graphs ([14], [16]);

- knowledge bases represented by means of semantic
schemas ([17], [20]);

- conditional knowledge bases ([3], [21], [24]);
- knowledge bases represented by conceptual graphs

([2], [5], [12])

and other kind of knowledge bases.
• Adapt the GUI client components in the vision of the use
of other kinds of knowledge bases. For example, the first
Choice component can be preserved to specify the name
of the knowledge base. If the server contains knowledge
bases using a graph based knowledge representation
(labeled stratified graphs, semantic schemas, conditional
graphs, conceptual graphs etc) then the inference engine
uses a path based reasoning. In this case the other two
Choice components of the GUI can contain the initial and
the final node respectively.

• Extend the implementation introducing the communi-
cation by text in natural languages. The design of the
system GINLIDB (Generic Interactive Natural Language
Interface to Databases) can be taken as a starting point
in this study ([6]).

• Imply the use of mobile agents to satisfy a query ([19]).
• Try to introduce the communication by voice in a natural
language ([4], [11]).

• Our approach presented in this paper considers a very
simple query, a pair (object,attribute) of two entities. A
subject of general interest is connected by the use of
complex queries. An interesting approach of this problem
can be obtained from [7]. The query is processed and
translated in one or more queries that are submitted to
one or more sources. The results are then merged together
and reinterpreted to obtain an unique answer.

REFERENCES

[1] N.R.Adam, R.H.Holowczak, J-H.Maeng:- ORACLE SQL*Plus and
SQL*Forms: An Introduction and Tutorial, Technical Working Paper
89, CRAMTD Project, Rutgers University, September, 1994

[2] Ganter Bernhard, Guy W. Mineau, eds.:- Conceptual Structures:
Logical, Linguistic, and Computational Issues, Lecture Notes in AI
1867, Springer-Verlag, Berlin, 2000

[3] M.Colhon, N.Ţăndăreanu:- The Inference Mechanism in Conditional
Schemas, Annals of the University of Craiova, Mathematics and Com-
puter Science Series, Vol.37, No.1, p.55-57, 2010

[4] Daniel Jurafsky, James H. Martin:- Speech and Language Process-
ing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, 2nd Edition, Pearson Education,
2006.

[5] Ellis Gerard, Robert A. Levinson, William Rich, John F. Sowa,
eds.:- Conceptual Structures: Applications, Implementation, and Theory,
Lecture Notes in AI 954, Springer-Verlag, Berlin, 1995

[6] Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A. Almagrous,
Irdess S. El-Feghi:- Generic Interactive Natural Language Interface
to Databases (GINLIDB), International Journal of Computers, Issue 3,
Volume 3, 301-309, 2009

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

173

[7] Mario Arrigoni Neri :- Knowledge integration through semantic query
rewriting, Proceedings of the 9th WSEAS International Conference on
APPLIED COMPUTER SCIENCE, ISBN: 978-960-474-127-4, 229-
234, 2009

[8] Steve Knoblock:- Using MyODBC to Connect to a Remote Database,
http://www.devarticles.com/cp/bio/Steve-Knoblock/

[9] Hugo Toledo, Jonathan Gennick:- Oracle Net8 Configuration and
Troubleshooting, O’Reilly Media, 2000

[10] Elliotte Rusty Harold :- Java Network Programming, Third Edition,
O’Reilly Media, 2004

[11] M. Selvam, A.M. Natarajan:- Improvement of Rule Based Morpho-
logical Analysis and POS Tagging in Tamil Language via Projection
and Induction Techniques, International Journal of Computers, Issue 4,
Volume 3, 357-367, 2009

[12] J.F.Sowa:- Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks Cole Publishing Co., Pacific Grove,
CA, 2000.

[13] Dick Steflik, Prashant Sridharan, Richard Steflik:- Advanced Java
Networking, Prentice Hall, 2000

[14] N.Ţăndăreanu:- Knowledge Bases with Output, Knowledge and Infor-
mation Systems, 2(4), 438-460, 2000

[15] N.Ţăndăreanu:- Inheritance-based knowledge systems and their answer
functions computation using lattice theory, Romanian Journal of Infor-
mation Science and Technology, Vol.6, Numbers 1-2, 227-248, 2003

[16] N.Ţăndăreanu:- Knowledge Representation by Labeled Stratified
Graphs, The 8th World Multi-Conference on Systemics, Cybernetics and
Informatics, July 18-21, 2004, Orlando, Florida, USA, Vol. V: Computer
Science and Engineering, p.345-350, 2004

[17] N.Ţăndăreanu:- Semantic Schemas and Applications in Logical rep-
resentation of Knowledge, Proceedings of the 10th International Con-
ference on Cybernetics and Information Technologies, Systems and
Applications (CITSA2004), July 21-25, Orlando, Florida, USA, Vol.III,
82-87, 2004

[18] Claudiu Popirlan, N.Ţ ăndăreanu:- An Extension of Inheritance
Knowledge Bases and Computational Properties of their Answer Func-
tions, Annals of the University of Craiova, Vol. 35, 149-170, 2008

[19] Claudiu Ionut Popirlan :- A Multi-Agent Approach for Distributed
Knowledge Processing in Contact Centers, 14th WSEAS International
Conference on Computers, Corfu Island, Greece, July 23-25, ISBN 978-
960-474-201-1, 214-219, 2010

[20] N.Ţăndăreanu:- Transfer of knowledge by semantic schemas, The 11th
IASTED International Conference on Intelligent Systems and Control
(ISC 2008), Ed.K.Grigoriadis, ISBN 978-0-88986-777-2, 2008

[21] N.Ţăndăreanu, M.Colhon:- Conditional graphs generated by condi-
tional schemas, Annals of the University of Craiova, Mathematics and
Computer Science Series, Vol.36, No.1, p.1-11, 2009

[22] N.Ţăndăreanu, Claudiu-Ionut Popirlan:- Factorization of an inher-
itance knowledge base (I), Annals of the University of Craiova -
Mathematics and Computer Science Series, Vol 37, No 2, 62-74, 2010

[23] N.Ţăndăreanu, Claudiu-Ionut Popirlan:- Factorization of an Inher-
itance Knowledge Base (II), Annals of the University of Craiova,
Mathematics and Computer Science Series, Vol.37, No.4, 1-8 (2010).

[24] N.Ţăndăreanu, Mihaela Colhon, Cristina Zamfir:- Embedding Con-
ditional Knowledge Bases into Question Answering Systems and Java
Implementation, International Journal of Computers, Issue 4, Volume 4,
169-176, 2010

[25] *** :- Web Service - Java DataBase Connectivity, http://ws-
jdbc.sourceforge.net/WS-JDBC

−
wp.pdf

[26] G. Wagner:- Vivid Logic: Knowledge-Based Reasoning with Two Kinds
of Negation, Knowledge-Based Reasoning with Two Kinds of Negation,
Lecture Notes in Artificial Intelligence 764, Springer-Verlag, 1994

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

174

