

Abstract— The software is always required to be developed and
maintained a quality to the rapid progresses in industry, technology,
economy, and other fields. Software maintenance is considered as
one of the main issues in software development life cycle that is
required efforts and resources more than other phase. Studies
estimated that the cost of software maintenance rapidly increased that
reached the 90% of the total cost of software development life cycle.
Therefore, it is considered as an economic impact in information
system community. Several researches are intended to estimate and
reduce the cost of this task.

This study introduces a model of software maintenance process
that emphasizes the impact of the software quality on the
maintenance process. The study presents the process of the software
maintenance, and then discussed the quality characteristics that affect
these tasks. Furthermore, the evaluation criteria for these factors are
discussed.

Keywords— Maintenance Evaluation, Maintenance Framework,

Maintenance Process, Software Quality, Maintainability.

I. INTRODUCTION

n order to keep the software useful and dynamic with the
world changes, it has to be changed accordingly [1-2]. As

the information technology industry gains maturity, the
number of software systems having moved into maintenance is
rapidly growing [3]. Software maintenance is a hard (and
costly and error-prone) process in software life cycle [4-6].
The resources spent in software maintenance are more than
that spent in other tasks of software development processes [7-
8]. Several models were proposed to estimate software
maintenance effort and cost has not yet been satisfactorily
addressed [9]. Therefore, the cost of software maintenance is
rapidly increased.

Souza [1] and Burch and Hsiang-Jui [10] show that the cost
estimated for software maintenance is very high (80-90%) of

Anas Bassam AL-Badareen is with the University Putra Malaysia, 43400

UPM, Serdang, Selangor, Malaysia. Phone: 601-72301530; e-mail:
anas_badareen@hotmail.com.

Mohd Hasan Selamat is a professor of software engineering with
University Putra Malaysia. Phone: 603-89471720; Fax: 603-8946 6577; e-
mail: hasan@fsktm.upm.edu.my.

Marzanah A. Jabar PhD is with University Putra Malaysia, 43400 UPM
Serdang Selangor, Malaysia; e-mail: marzanah@fsktm.upm.edu.my.

Jamilah Din PhD is with University Putra Malaysia, 43400 UPM Serdang
Selangor, Malaysia; e-mail: jamilah@fsktm.upm.edu.my.

Sherzod Turaev is a Postdoctoral Researcher with University Putra
Malaysia, 43400 UPM, Serdang Selangor, Malaysia; e-mail:
sherzod@fsktm.upm.edu.my.

the total cost of Software Development Life Cycle (SDLC).
According to IEEE, the annual cost of the software
maintenance in United States exceeds $70 billion [11]. Jones
[12] states that, the cost of software maintenance has been
increased in united states from 52% in 1995 to 76% in 2005
and is expected to increase steadily. Therefore, software
maintenance is recognized as an economic impact in the
information system community.

Effort estimation is the most relevant problem in the process
of software maintenance. That it is a complex process by many
aspects of software that affect maintenance activity [13].

This study aims to analyze the maintainability
characteristics, classify the evaluation criteria, and then discuss
their affects on the maintenance process. Finally, the study
comes out with the factors that need to be considered in order
to calculate the maintainability factor.

II. SOFTWARE MAINTENANCE

Traditionally, software maintenance is defined as any
modification made on a system after its delivery [1]. IEEE
defines the software maintainability as the modification of the
software products after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a
changed environment. Software maintenance broadly includes
error corrections, changes (amendments or enhancements) and
improvements to operational software [3].

Early of sixties, the size and the complexity of the software
started rapidly grow. More attention has been given to the
concept of software evaluation in the development and
maintenance processes. The evaluation started based on code
size and error correction. Nowadays, the evaluation is an
essential in software systems usage [14].

Software maintenance is differing from physical
maintenance that is the software does not physically wear and
it can be delivered with undiscovered flaw [15]. Sommerville
[16] estimated that, nearly 250 billion lines of source code
were being maintained by organizations in 2000, and this
number is growing.

 Tiako [14] presents the reasons of software maintenance as
(a) the changes at the level of software requirements; (b) the
changes at the level of functional specification and design of
the software system; (c) the changes that interfere at the level
of performance specification; (d) the changes at the level of
the system's environment; (e) the historic changes of the
software implementation; (f) the disparity between the

The Impact of Software Quality on Maintenance
Process

Anas Bassam AL-Badareen, Mohd Hasan Selamat, Marzanah A. Jabar, Jamilah Din, Sherzod Turaev

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

183

specification and the implementation of the software; and (g)
the changes of strategic needs.

IEEE Standard 1998 for Software Maintenance describes
the process for managing and executing software maintenance
activities [17]. IEEE standard 2006 [18] defines the activities
and tasks of software maintenance, and provides maintenance
planning requirements.

III. MAINTENANCE PROCESS

The modification is become a complex and costly process,
that is large and complex software system could be delivered
with undiscovered flow. Therefore, several tasks are
considered in order to achieve this process. Software
maintenance as shows in figure 1 consists of four main tasks,
understand, analyze, modify, and test the intended system [19].

System understanding: is the process of realize the system

functions and their relationships. It is considered as an
essential base of inspect and modify a software product.
System analysis: is very important task that concerned on

identifying the required modification to correct, enhance, or
adopt the system.
System modification: is the task of changes and corrects

the inspected functions within the system.
System testing: evaluates whether the modification that has

been made achieves the maintenance goals. This test is
differing from normal test, which considered only the
modification that has been made during modification task and
the side effects on other functions. Thayer [20], defined it as a
functional test is called regression test, which is used to
determine whether the modification has altered software
functions that were to remain changed.

IV. SOFTWARE MAINTAINABILITY

Since there is no clear definition of measuring software
maintainability, from different points of view the
maintainability measurement has been discussed.
Maintainability can be measured in terms of which the
software can be corrected, adapted or perfected. Also it can be
measured in terms of time oriented metric, such as Mean Time
to Change (MTTC), a cost oriented metric such as Spoilage, or

Software Maturity Index. Generally, the maintainability of the
software is the cost required to modify and correct the errors in
the delivered software product without damage the primary
functions.

The software maintenance is important, that it bypass the
developers the cost of build of new system in order to replace
the existing [21-22]. Mittal [23] expressed four software
aspects required to assess the software maintainability.
Moreover, the ability of the software to be diagnosed for
deficiencies or cause of failures in the software is added in
ISO, which is added to the definition the ability of the system
to specify the failures.

Hence, software maintenance includes four major stages:
understanding, analyzing, modifying, and testing. Singh [24]
analyzed the major factors that can affect software
maintenance and divided them into four categories:
Readability of source code, Documentation Quality,
Understandability of Software, and Average Cyclomatic
Complexity. A model proposed in [25], considers the
maintainability as integrated measure of three factors,
Readability of Source Code (RSC), Documentation Quality
(DQ), and Understandability of Software (UOS).

V. MAINTAINABILITY FACTORS

In order to evaluate the maintainability of the software, the
measurement is considered based on it is characteristics. These
characteristics are classified based on the maintenance
processes: understanding, analyzing, modifying, and testing.
The characteristics required for each process are derived and
concluded from the most well-known software quality models
and literature.

A. Understandability

If you can understand your system, you can change it
effectively [26]. The first task of software maintenance process
is to understand the existing software [27]. One of the major
concerns of any maintenance organization is to understand and
estimate the cost of maintain released software systems [28].
The major professional challenge is to understand and conquer
the complexity of the system as it is. System understanding is
the major point in the maintenance phase, which concerned
about the ability of the developer to understand the functions
and their relationships within the system. This allows them to
identify the errors or the parts of the system that required to be
modified.

Software understandability is a very important quality factor
allows the developers to understand the structure of the system
easily, which simplifies the processes of the maintenance [29].
Therefore, system understanding depends on cognitive abilities
and preferences, familiarity with the application domain, and
the set of support facilities that provided by the software
engineering environment. Thus, understandability affects the
total effort and cost required in maintenance process.

Therefore, software understanding aims to present enough
information about the system. This information is written by
software engineers and programmers during software

Figure 1: Software Maintenance Processes

Understanding

Analyzing

Modifying

Testing

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

184

development lifecycle [30]. If the documentation and the
source code are not correlated, the maintenance process will
be very difficult and not accurate [25]. In other words, the
understandability will be high if and only if the source code
and the documentation are closely related.

In order to understand a system, several software
characteristics are considered and intended to be measured.
Figure 1 shows the characteristics related to software
simplicity and the information used to express the software
functions and their relations.

Understandability

Modularity

Consistency

Structuredness

Documentation

Conciseness

Legibility

Fig. 1 Understandability Factors

B. Analyzability

Analyze a developed software is an essential to characterize
the software behavior [31]. In order to identify the errors or
the parts required to be modified, system analysis is required.
The analyzability specifies the ability of the system to be
diagnosed for deficiencies, causes of failures in the software,
or identification of the parts required a modification which
may be in primary concern [32-33]. Figure 2 presents the
characteristics that affect software analyzing.

Analyzability

Modularity

Accountability

Structuredness

Instrumentation

Legibility

Fig. 2 Analyzability Factors

C. Modifiability

One of the greatest challenges facing software engineers is
manage the change control. It has been estimated that the cost
of change control can be between 40% and 70% of the life
cycle costs [15]. Software maintenance is a modification of
software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a
changing environment.

Changeability is the ability of the software product to
changed, by allowing developers to modify the delivered
system and characterize the effects using different criteria
through its limited available information.

In order to simplify the process of software modification,

and to minimize the side effect of the modification on the other
parts of the system, several characteristics are required. Figure
3 shows the characteristics of the system that are required to
present the system modifiability.

Changeability

Stability

Expandability

Generality

Modularity

Structuredness

Fig. 3 Changeability Factors

D. Testability

Software testability is defined as “The degree to which a
system or component facilitates the establishment of test criteria
and the performance of tests to determine whether those criteria
have been met” [34]. Software testability is the ability to test
whether the software meets its requirements. It is used to
inspect a software defects early before release a software
product [35]. According to Singh [36], software testability has
been defined based on the controllability and observability.
Controllability represents the ability to control the input,
whereas the observability presents the ability to measure the
output of the system.

In maintenance process, testability presents whether the
modification has achieved its goals and if there is any side
effects on other functions. Testability reduces the defects
resulted from poorly software design. The test process
achieves by providing some type of individual and group
evaluation, in order to check the functionality of the system
components and the integrated system to insure it performs the
required functions. Figure 4 shows the software characteristics
that help in this process.

Testability

Modularity

Instrumentation

Structuredness

Fig. 4 Testability Factors

VI. MAINTAINABILITY CRITERIA

A. Documentation

The documentation of the system aimed to offer
comprehensive, clear and short information about the system.
This factor concerned to describe the system functions and
their relationships. Software documentation responds to three
necessities: (i) contractual; (ii) support a software development
project allowing team members to gradually conceive the
solution to be implemented, and (iii) allow a software
development team to communicate implementation details

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

185

across time to the maintenance team.
System documentation is important to improve software

development and to help in the maintenance process [1], which
is required to understand the certain level of the software
abstraction in shorter time. The documentation is a relevant
even if it is not up to date [37]. However, the quality of the
software documentation affects directly the system
understanding. Therefore, the documentation should be
meaningful for the developers, available at each level of the
system abstraction, smoothly move between these levels
without losing their position in the documentation, and
consistent with source code.

Forward [37], conducted a survey of professionals in
software industry. According to the result of the survey, he
observed that, the documentation is an important tool for the
communication and it is content can be relevant even if it is
not up to date. Lehner [38] proposed a decomposition of
software documentation quality attributes that proposed by
Arthur/Stevens. In addition to, eight methods that have been
used to measure documentation quality.

Software documentation can be measured by several
characteristics that can present whether the documents are
useful to describe a system components and structure. The
main characteristics of the software documentation are defined
as follow:
Clarity: documentation clarity can be measured by calculate

the inverse of the document ambiguity. The document
ambiguity is measured by ratio of the ambiguous statements to
the total statements in the document.
Consistency: the consistency evaluates the contradiction in

the software documentation, whether any oppositions between
two or more statements within a document.
Completeness: the completeness evaluates whether the

documentation covers all of the software components and their
relations.
Conciseness: the conciseness presents the ratio of the

nonrelated or non useful statements to the total statements in
the documentation.

B. Conciseness

It is a code characteristic means that excessive information
is not present [39]. Conciseness means a system provides only
the information necessary to complete the task. It is a
program’s compactness in terms of lines of code. According
to Thayer [20] , the conciseness is a software characteristic
provides a function implementation with a minimum amount of
code.

Conciseness measurement is considered at statement level,
which presents the ratio of the concise code statement to the
total number of statement on the software.

C. Consistency

According to Boehm [39] the consistency is presented from
two points of view, internal and external consistency. Internal
consistency is a code characteristic evaluates whether it
contains uniform notation, terminology and symbology within

itself. External consistency presents whether the code content
is traceable to the requirements.

The consistency is important for correct interpretation of
system components, which is defined as no contradiction in the
system. It covers the consistency among the components of
sub-system and among the sub-systems. Furthermore, the
system consistency can be achieved by covering the
consistency in each phase of software development and
between different phases of software development.

Internal consistency considered the code consistency at
three main levels, statement level, function level, and class
level. Statement level presents the ratio of the consistent
statements within a function, which is equals to the ratio of the
consistent statement to the total number of the statements
within a function. The function level presents the ratio of the
consistent function to the total number of functions within a
class. The class level presents the ratio of the consistent class
to the total number of classes within a system.

External consistency, at this level the code is considered as
a part of the software development phases. Therefore, the
consistency is evaluated based on the requirement definition
through development phases and resulted on the source code.
The consistency presents the sequential smooth of the
requirements through development phases.

The evaluation traces every requirement defined early in the
requirement elicitation through software development life
cycle till reach the source code. Therefore, the evaluation
calculates the consistency of the function in every level of
development and then the ratio of the consistency to the total
number of the functions within a system is measured.

D. Legibility

Clear design is good design [26]. It is a code characteristic
presents whether the easily of the function to be discerned by
reading the code [39]. Legibility of the system simplifies the
job of identifying the required modification, which defined
that the information should be easy to read.

The legibility of the class presented the ration of the
legibility functions to total number of functions. The legibility
of the function is the ratio of the legible statements to the total
number of statements within a function.

E. Accountability

The need for accountability has steadily grown, since the
computer system start growing in 1970s [40]. It has become a
major concern for businesses around the world [41].
Therefore, it has been considered as a goal for software quality
assurance [42].

According to Lin [41], Schedler [43] provides a definition
that succinctly captures the essence of accountability in real
life:”A is accountable to B when A is obliged to inform B
about A’s (past or future) actions and decisions, or justify them
and to be punished in the case of misconduct”.

The accountability tracks every action occurred in the
system [44], which allows to identify the errors and it is causes
efficiently. Moreover, it decrees the relationships between the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

186

components that reduced the scope affected by error, which
reduce the area of the inspection.

According to Boehm [39] the accountability is a code
characteristic presents whether the code usage can be
measured. The accountability can be calculated at function
level, it presents the ratio of accounted functions to the total
number of the functions within a class.

F. Modularity

Modularity is an available method to solve a complex
problem, which aims to decompose and integrate all objects.
Software modularity concerns about the decomposition of the
system into several manageable components, which allow
understanding a system part by part instead of understanding
the system as a one part. Moreover, it allows modifying some
parts of a system independently from other parts [45].
Therefore, it is considered as a key way of innovation and
mass customization. Common metrics of design modularity
include coupling, cohesion, and separation of concerns [45].

The modularity simplifies software analysis by decomposing
the system into several manageable parts. This allows
identifying the errors or the functions that required a
modification easily and efficiently. The modularity allows to
evaluates each part of the system independently and then
evaluate the integration between these parts. This way of
testing simplifies and increases errors inspections and the
reasons caused these errors. The modular software allows each
part of the system working independently with minimum
effects on the other parts of the system.

Basically, modularity is considered early in requirement
elicitation phase, it can be presented in a use case model. The
ability to consider every use case as an independent system
within software development phases is the essential point in
modularity. In terms of source code, the modularity presents
whether the system is divided into several manageable classes
and the relationships between these classes.

Cai [46] discussed the issues in modularity, the current
evaluation is only based on source code, while a design is not
considered yet. Therefore, in this evaluation the modularity is
considered based on requirement definition, which presented
use cases into implementation phase presented by source code.

The essential base used in object oriented design is a use
case model, which it used to classify the users’ requirements
into manageable groups intended to achieve same goals.
Therefore, the use case is considered as a base to evaluate
system modularity.

G. Structuredness

A good structure is an important software quality aspect
[47]. It is a code characteristic presents a definite pattern of
organization of its interdependent parts [39]. Software
structuredness represents the degree at which the SDD
(Software Design Description) and code possess a definite
pattern in their interdependent parts. This implies that the
design has been preceded in an orderly and systematic manner,
has minimized coupling between modules, and that standards

control structures have been followed during coding resulting
in well structured software.

The structuredness considers the coupling between software
parts and the effects of software analyzability by identifying
the scope of the error inspection process. Software
structuredness is very important in terms of modification
scope, which considers the coupling of the software
components. The reducing of the relationships between the
components within the system considered in structuredness
factor. It is important to reduce the efforts and the complexity
required to test the software components and their relations.

H. Instrumentation

As software increasingly grow and complex, supporting
tools are became an essential and crucial in software life cycle.
Whereas, the high cost of software maintenance, it is essential
need for automated tools, in order to analyze and understand a
large and complex software system [27]. These tools support
the construction, maintenance and analysis [48]. The
instrumentations simplify the task and reduce the time and the
efforts. Moreover, the instrumentation increases the accuracy
of the software analyzing. The instrumentations used on the
testing increase the accuracy of errors inspections and decrease
the efforts and the time required to test the system.

I. Stability

Normally, the modification of parts of the system caused a
change of the component behavior. This modification may
cause a side effects on other parts, which is mean solve a
problem by other problem. Therefore, the concept of stability
considered to reduce the impact of software modifications by
dividing a system into stable and unstable models [49].

Software stability describes the ability of the software to
avoid or minimize unexpected effects from system
modifications. This characteristic is considered in terms of
coupling and coherence in software modularity.

J. Generality

In order to increase the expandability and reduce the effort
to modify the system, the generality is considered. The
generality is a level of abstraction to retrieve results based on
desired generality appropriate for a user’s knowledge and
interests [50].

K. Expandability

It is a characteristic of the code that presents the ability to
accommodate any expansion in the software functions or
storages [39]. The expandability represents the ability of the
system to grow. In order to add new function to the existing
system, the expandability is very important. According to
Thayer [20] expandability is the degree of the effort required
to enhance or modify a software functions.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

187

VII. DISCUSSION AND IMPLICATION

As discussed earlier, the maintenance stage consists of four
main processes, software understanding, analyzing, modifying,
and testing. Figure 5 shows the processes of the maintenance
and the required quality characteristics for each process.
Software maintenance process consists of four main sequential
processes, whereas the developer able to back to the
modification process if there is any error inspected in the test
process. Furthermore, one more software factor has been
added. This factor presents whether those processes are
covered by any international standard or certificate. The
compliance can be considered for the whole processes or for
each one of them independently. Figure 6, shows the structure
of the maintainability characteristics.

Modularity and structuredness are the main characteristics
required in software maintenance, which used in all of the
software maintenance tasks. These characteristics considered
on the divide a system into several manageable parts
communicate with each other. Therefore, the maintenance
effort is reduce as much as system decomposed instead
considered the whole of the system in such modification,
whereas in the structuredness shows the effects of the modified
part on the other parts in the system.

The documentation is an essential archived software
documents that have been conducted through software
development. These documentations are very important in
order to understand the functions and their relations in the
system.

The legibility is considered as a base of software
maintenance, that is this characteristic presents the ability to
read and understand the system and to identify the part
required to be modify. Whereas, the maintenance is not a
direct continues with other phases of software development.
The maintainers have to go back to the archive, which required
reading and understanding a system from a beginning. Both of
source code and software documentation are required to be
eligible.

The consistency is considered in both of software
development process and software product. The consistency of
the process considered the smooth flow of the development
process that it can be presented in the documentation. The

consistency of the software product considered the free of the
contradictions between the software functions.

The conciseness presents whether both of the source code
comments and software documentation includes only
necessary and useful information and free of any nonsense
information, that may cause confusing and misunderstanding
for software developers.

The accountability is a security characteristic used to
trackback every action occurred in the system during it is
operation. This characteristic is considered in software
maintenance in order to identify and clarify the failures that
occurred during system use. In this technique, the maintainer
rollback to the last action occurred before the failures, which is
very helpful to identify what are the reasons of the failures and
where it was happened.

The development instrumentations were proposed when the
software size and complexity start growing. These
instrumentations are used to analyze and test the large and
complex system efficiently. The major advantages of the
development tools that save the time required to perform a
development task and reduce the ratio of the errors that may
caused by human.

The stability characteristic is used to presents whether the
modifications affect other functions in the system. It is a clear
on object oriented software, which the modified component
may affect the components that rely on it.

Expandability presents the ability to modify and extend a
software functions efficiently. The generality is a very
important characteristic for both maintenance and reusability.
The generality shows the flexibility of the software to manage
different types of data that may required.

VIII. CONCLUSION

In last decades, the growing of the software size and
complexity caused serious problems in maintenance problems.
Several studies were proposed different solutions from
different points of view, in order to overcome this issue. From

 Compliance

Understand

Modularity

Structuredness

Consistency

Documentation

Conciseness

Legibility

Analyze

Modularity

Legibility

Structuredness

Accountability

Instrumentation

Modify

Modularity

Generality

Stability

Expandability

Structuredness

Test

Modularity

Instrumentation

Structuredness

Figure 5: Software Maintenance Framework

 Documentation

Conciseness

Consistency

Legibility

Accountability

Modularity

Structuredness

Instrumentation

Stability

Generality

Expandability

Compliance

Understandability

Analyzability

Testability

Changeability

Maintenance

Figure 6: Software Maintainability Characteristics

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

188

different perspectives, the maintainability of the software is
discussed, and different software characteristics are considered
to calculate the maintainability factor.

This paper discusses the processes of software maintenance
and the concept of the software maintainability based on the
maintenance processes. Eleven software product
characteristics that affect the four tasks of software
maintenance were found. Moreover, the evaluation criteria of
these characteristics were discussed. Furthermore, in order to
evaluate whether the maintenance process or some of its task
follows any standard or international certificate, the
compliance factor was considered.

The proposed framework is a theoretical framework, which
lack of practical evaluation. Therefore, this issue is considered
in future in order to be validated.

REFERENCES

[1] S. C. B. D. SOUZA, ET AL., "A STUDY OF THE

DOCUMENTATION ESSENTIAL TO SOFTWARE

MAINTENANCE," PRESENTED AT THE PROCEEDINGS OF

THE 23RD ANNUAL INTERNATIONAL CONFERENCE ON

DESIGN OF COMMUNICATION: DOCUMENTING &

DESIGNING FOR PERVASIVE INFORMATION, COVENTRY,
UNITED KINGDOM, 2005.

[2] U. VORA AND N. SARDA, "FRAMEWORK FOR

EVOLVING SYSTEMS," IN 5TH WSEAS INTERNATIONAL

CONFERENCE ON SIGNAL PROCESSING, ROBOTICS

AND AUTOMATION (ISPRA '06), MADRID, SPAIN,,
2006, PP. 145-150.

[3] P. BHATT, ET AL., "DYNAMICS OF SOFTWARE

MAINTENANCE," SIGSOFT SOFTW. ENG. NOTES, VOL.
29, PP. 1-5, 2004.

[4] S. DAS, ET AL., "UNDERSTANDING DOCUMENTATION

VALUE IN SOFTWARE MAINTENANCE," PRESENTED AT

THE PROCEEDINGS OF THE 2007 SYMPOSIUM ON

COMPUTER HUMAN INTERACTION FOR THE

MANAGEMENT OF INFORMATION TECHNOLOGY,
CAMBRIDGE, MASSACHUSETTS, 2007.

[5] M. KERNAHAN, ET AL., "EXTRACTING

TRACEABILITY INFORMATION FROM C# PROJECTS," IN

WSEAS INTERNATIONAL CONFERENCE ON

ENGINEERING EDUCATION, ATHENS, GREECE,
2005.

[6] A. H. MOHAMED, "FACILITATING TACIT-KNOWLEDGE

ACQUISITION WITHIN REQUIREMENTS ENGINEERING,"
IN 10TH WSEAS INTERNATIONAL CONFERENCE ON

APPLIED COMPUTER SCIENCE (ACS '10), IWATE

PREFECTURAL UNIVERSITY, JAPAN, 2010, PP. 27-32.
[7] J. OLIVAS, ET AL., "USING FUZZY PROTOTYPES FOR

SOFTWARE ENGINEERING MEASUREMENT AND

PREDICTION," 2002.
[8] F. GARCÍA, ET AL., "A TOOL FOR THE MANAGEMENT

OF THE SOFTWARE MAINTENANCE PROCESS," IN 5TH

WSES INTERNATIONAL CONFERENCE ON CIRCUITS,

SYSTEMS, COMMUNICATIONS AND COMPUTERS,
RETHYMNO, GREECE, 2001.

[9] H.-W. JUNG AND D. R. GOLDENSON, "EVALUATING

THE RELATIONSHIP BETWEEN PROCESS IMPROVEMENT

AND SCHEDULE DEVIATION IN SOFTWARE

MAINTENANCE," INFORMATION AND SOFTWARE

TECHNOLOGY, VOL. 51, PP. 351-361, 2009.
[10] E. BURCH AND K. HSIANG-JUI, "MODELING

SOFTWARE MAINTENANCE REQUESTS: A CASE STUDY,"
IN SOFTWARE MAINTENANCE, 1997. PROCEEDINGS.,

INTERNATIONAL CONFERENCE ON, 1997, PP. 40-47.
[11] D. V. EDELSTEIN, "REPORT ON THE IEEE STD 1219-

1993-STANDARD FOR SOFTWARE MAINTENANCE,"
SIGSOFT SOFTW. ENG. NOTES, VOL. 18, PP. 94-95,
1993.

[12] C. JONES, "THE ECONOMICS OF SOFTWARE

MAINTENANCE IN THE TWENTY FIRST CENTURY,
2006," RYAN NORTH AND JAMES CHOI: LEVERAGING
SOFTWARE PERFORMANCE ENGINEERING TO ENHANCE

THE MAINTENANCE PROCESS, VOL. 68, 2006.
[13] A. D. LUCIA, ET AL., "EFFORT ESTIMATION FOR

CORRECTIVE SOFTWARE MAINTENANCE," PRESENTED

AT THE PROCEEDINGS OF THE 14TH INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING AND

KNOWLEDGE ENGINEERING, ISCHIA, ITALY, 2002.
[14] P. F. TIAKO, "MAINTENANCE IN JOINT SOFTWARE

DEVELOPMENT," IN COMPUTER SOFTWARE AND

APPLICATIONS CONFERENCE, 2002. COMPSAC 2002.

PROCEEDINGS. 26TH ANNUAL INTERNATIONAL, 2002,
PP. 1077-1080.

[15] B. HUNT, ET AL., "SOFTWARE MAINTENANCE

IMPLICATIONS ON COST AND SCHEDULE," IN

AEROSPACE CONFERENCE, 2008 IEEE, 2008, PP. 1-6.
[16] I. SOMMERVILLE, SOFTWARE ENGINEERING, 6TH ED.:

ADDISON-WESLEY: READING MA,, 2000.
[17] "IEEE STANDARD 1219," IN STANDARD FOR SOFTWARE

MAINTENANCE, ED: IEEE COMPUTER SOCIETY PRESS,
1998.

[18] "IEEE STD 14764-2006.," IN IEEE STANDARD FOR

SOFTWARE MAINTENANCE, ED: IEEE COMPUTER

SOCIETY PRESS, 2006.
[19] A. ECONOMIDES, "EVALUATION OF

COLLABORATIVE LEARNING SYSTEMS," 2005, PP. 169-
175.

[20] R. H. THAYER, "SOFTWARE MAINTENANCE,"
SOFTWARE, IEEE, VOL. 22, PP. 103-103, 2005.

[21] C.-C. CHIANG AND C. W. FORD, "MAINTAINABILITY

AND REUSABILITY ISSUES IN CORBA-BASED

SYSTEMS," PRESENTED AT THE PROCEEDINGS OF THE

43RD ANNUAL SOUTHEAST REGIONAL CONFERENCE -
VOLUME 2, KENNESAW, GEORGIA, 2005.

[22] W. HORDIJK AND R. WIERINGA, "SURVEYING THE

FACTORS THAT INFLUENCE MAINTAINABILITY:
RESEARCH DESIGN," PRESENTED AT THE PROCEEDINGS

OF THE 10TH EUROPEAN SOFTWARE ENGINEERING

CONFERENCE HELD JOINTLY WITH 13TH ACM

SIGSOFT INTERNATIONAL SYMPOSIUM ON

FOUNDATIONS OF SOFTWARE ENGINEERING, LISBON,
PORTUGAL, 2005.

[23] H. MITTAL AND P. BHATIA, "SOFTWARE

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

189

MAINTAINABILITY ASSESSMENT BASED ON FUZZY

LOGIC TECHNIQUE," SIGSOFT SOFTW. ENG. NOTES,
VOL. 34, PP. 1-5, 2009.

[24] Y. SINGH, ET AL., "PREDICTING SOFTWARE

MAINTENANCE USING FUZZY MODEL," SIGSOFT
SOFTW. ENG. NOTES, VOL. 34, PP. 1-6, 2009.

[25] K. K. AGGARWAL, ET AL., "AN INTEGRATED MEASURE

OF SOFTWARE MAINTAINABILITY," IN RELIABILITY AND

MAINTAINABILITY SYMPOSIUM, 2002. PROCEEDINGS.

ANNUAL, 2002, PP. 235-241.
[26] M. FEATHERS, "BEFORE CLARITY [SOFTWARE

DESIGN]," SOFTWARE, IEEE, VOL. 21, PP. 86-88, 2004.
[27] E. HILL, ET AL., "EXPLORING THE NEIGHBORHOOD

WITH DORA TO EXPEDITE SOFTWARE MAINTENANCE,"
PRESENTED AT THE PROCEEDINGS OF THE TWENTY-
SECOND IEEE/ACM INTERNATIONAL CONFERENCE ON

AUTOMATED SOFTWARE ENGINEERING, ATLANTA,
GEORGIA, USA, 2007.

[28] V. BASILI, ET AL., "UNDERSTANDING AND PREDICTING

THE PROCESS OF SOFTWARE MAINTENANCE

RELEASES," IN SOFTWARE ENGINEERING, 1996.,

PROCEEDINGS OF THE 18TH INTERNATIONAL

CONFERENCE ON, 1996, PP. 464-474.
[29] K. LAITINEN, "ESTIMATING UNDERSTANDABILITY OF

SOFTWARE DOCUMENTS," SIGSOFT SOFTW. ENG.
NOTES, VOL. 21, PP. 81-92, 1996.

[30] S. HUANG AND S. TILLEY, "TOWARDS A

DOCUMENTATION MATURITY MODEL," PRESENTED AT

THE PROCEEDINGS OF THE 21ST ANNUAL

INTERNATIONAL CONFERENCE ON DOCUMENTATION,
SAN FRANCISCO, CA, USA, 2003.

[31] M. M. DIEP, "ANALYSIS OF A DEPLOYED SOFTWARE,"
PRESENTED AT THE THE 6TH JOINT MEETING ON

EUROPEAN SOFTWARE ENGINEERING CONFERENCE

AND THE ACM SIGSOFT SYMPOSIUM ON THE

FOUNDATIONS OF SOFTWARE ENGINEERING:
COMPANION PAPERS, DUBROVNIK, CROATIA, 2007.

[32] A. KUMAR, ET AL., "A QUANTITATIVE EVALUATION OF

ASPECT-ORIENTED SOFTWARE QUALITY MODEL

(AOSQUAMO)," SIGSOFT SOFTW. ENG. NOTES, VOL.
34, PP. 1-9, 2009.

[33] P. S. GROVER, ET AL., "FEW USEFUL CONSIDERATIONS

FOR MAINTAINING SOFTWARE COMPONENTS AND

COMPONENT-BASED SYSTEMS," SIGSOFT SOFTW.
ENG. NOTES, VOL. 32, PP. 1-5, 2007.

[34] "IEEE STANDARD GLOSSARY OF SOFTWARE

ENGINEERING TERMINOLOGY," IEEE STD 610.12-
1990, P. 1, 1990.

[35] J. FU, ET AL., "PRESENT AND FUTURE OF SOFTWARE

TESTABILITY ANALYSIS," IN COMPUTER APPLICATION

AND SYSTEM MODELING (ICCASM), 2010

INTERNATIONAL CONFERENCE ON, 2010, PP. V15-279-
V15-284.

[36] Y. SINGH AND A. SAHA, "IMPROVING THE

TESTABILITY OF OBJECT ORIENTED SOFTWARE

THROUGH SOFTWARE CONTRACTS," SIGSOFT SOFTW.
ENG. NOTES, VOL. 35, PP. 1-4, 2010.

[37] A. FORWARD, "SOFTWARE DOCUMENTATION–

BUILDING AND MAINTAINING ARTEFACTS OF

COMMUNICATION," CITESEER, 2002.
[38] F. LEHNER, "QUALITY CONTROL IN SOFTWARE

DOCUMENTATION:: MEASUREMENT OF TEXT

COMPREHENSIBILITY," INFORMATION & MANAGEMENT,
VOL. 25, PP. 133-146, 1993.

[39] B. BOEHM, ET AL., "QUANTITATIVE EVALUATION OF

SOFTWARE QUALITY," 1976, P. 605.
[40] P. MALONE AND B. JENNINGS, "DISTRIBUTED

SUPPORT FOR PUBLIC AND PRIVATE ACCOUNTABILITY

IN DIGITAL ECOSYSTEMS," PRESENTED AT THE

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON MANAGEMENT OF EMERGENT DIGITAL

ECOSYSTEMS, FRANCE, 2009.
[41] K. J. LIN, ET AL., "ACCOUNTABILITY COMPUTING FOR

E-SOCIETY," IN ADVANCED INFORMATION NETWORKING

AND APPLICATIONS (AINA), 2010 24TH IEEE

INTERNATIONAL CONFERENCE ON, 2010, PP. 34-41.
[42] S. ERIKSÉN, "DESIGNING FOR ACCOUNTABILITY,"

PRESENTED AT THE PROCEEDINGS OF THE SECOND

NORDIC CONFERENCE ON HUMAN-COMPUTER

INTERACTION, AARHUS, DENMARK, 2002.
[43] A. SCHEDLER, ET AL., THE SELF-RESTRAINING STATE:

POWER AND ACCOUNTABILITY IN NEW DEMOCRACIES:
LYNNE RIENNER PUB, 1999.

[44] E. BERTINO, ET AL., "END-TO-END ACCOUNTABILITY IN

GRID COMPUTING SYSTEMS FOR COALITION

INFORMATION SHARING," PRESENTED AT THE

PROCEEDINGS OF THE 4TH ANNUAL WORKSHOP ON

CYBER SECURITY AND INFORMATION INTELLIGENCE

RESEARCH: DEVELOPING STRATEGIES TO MEET THE

CYBER SECURITY AND INFORMATION INTELLIGENCE

CHALLENGES AHEAD, OAK RIDGE, TENNESSEE, 2008.
[45] C. YUANGFANG AND S. HUYNH, "AN EVOLUTION

MODEL FOR SOFTWARE MODULARITY ASSESSMENT,"
IN SOFTWARE QUALITY, 2007. WOSQ'07: ICSE

WORKSHOPS 2007. FIFTH INTERNATIONAL WORKSHOP

ON, 2007, PP. 3-3.
[46] Y. CAI AND S. HUYNH, "MEASURING SOFTWARE

DESIGN MODULARITY," 2008.
[47] M. H. AMMANN AND R. D. CAMERON, "MEASURING

PROGRAM STRUCTURE WITH INTER-MODULE

METRICS," IN COMPUTER SOFTWARE AND

APPLICATIONS CONFERENCE, 1994. COMPSAC 94.

PROCEEDINGS., EIGHTEENTH ANNUAL INTERNATIONAL,
1994, PP. 139-144.

[48] A. R. DALTON AND J. O. HALLSTROM, "NAIT: A

SOURCE ANALYSIS AND INSTRUMENTATION

FRAMEWORK FOR NESC," JOURNAL OF SYSTEMS AND
SOFTWARE, VOL. 82, PP. 1057-1072, 2009.

[49] C. CHIA-CHU, "SOFTWARE STABILITY IN SOFTWARE

REENGINEERING," IN INFORMATION REUSE AND

INTEGRATION, 2007. IRI 2007. IEEE INTERNATIONAL

CONFERENCE ON, 2007, PP. 719-723.
[50] A. B. AL-BADAREEN, ET AL., "REUSABLE SOFTWARE

COMPONENTS FRAMEWORK," IN EUROPEAN

CONFERENCE OF COMPUTER SCIENCE (ECCS '10),
PUERTO DE LA CRUZ, TENERIFE, 2010, PP. 126-130.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

190

